Physical Digital Humans in the Era of GenAl

May 2 @ GAMES Seminar

Yifeng Jiang Ph.D. Candidate Stanford University

2D Generative AI (of humans)

3D GenAl for XR/Spatial Computing/Simulation

3D GenAl Digital Humans

Full controllability of appearance and motions

3D GenAl Digital Humans

Full controllability of appearance and motions

Next frontier: GenAl for 3D Physical Humans

Bio & Physics modeling can augment detailed realism of generation

Next frontier: GenAl for 3D Physical Humans

Bio & Physics modeling can augment detailed realism of generation

GenAl for Physical Humans: Also Many Real-world Applications

Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

GenAl for Physical Humans: Also Many Real-world Applications

Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

2D Gen-Al

From Digital to Physical-world Applications More challenging to obtain large-scale high-quality data

Dense Spatial Signal

3D Gen-Al

Physical 3D Gen-Al

Data can be partially observable, scarce, expensive/unsafe to capture

Data can be partially observable, scarce, expensive/unsafe to capture

Real Human Data

Synthesized Human Data

Real Human Data

Synthesized Human Data

Modern Deep Learning

Physics Simulation

Modern Deep Learning

Part 1: Scalable Human Simulation with Learned Components

Physics Simulation

Part 1: Scalable Human Simulation with Learned Components

Part 2: Simulation-augmented Generative Motion Model

Part 3: Scalable Physical Human Data Capture

Physics Simulation

Scalable Human Simulation with Learned Components

— How to accurately simulate human without explicit anatomy details

[Jiang et al] SIGGRAPH'19

Standard Simulation Model

e.g. SMPL

23 ball-and-socket joints

Easy to simulate, but not biomechanically accurate

Detailed Biomechanics Models & Simulations

Not fast & robust enough for large-scale training & synthetic data generation

The Tale of Two Simulation Spaces

Detailed, Anatomical

Simple, abstract

The Tale of Two Simulation Spaces

Detailed, Anatomical

Simple, abstract

The Tale of Two Simulation Spaces

Detailed, Anatomical

Simple, abstract

TTO WITH SA LEY

Example #1: joint limit (RoM) depends on other joints

Smaller elbow range when the arm is behind the back.

Example #1: joint limit (RoM) depends on other joints

Heuristic Boxed Limits

 $q_{low} \leq q \leq q_{high}$

Realistic"state-dependent" Joint Limits

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

Example #2: torque capability is state-dependent

Heuristic Boxed Limits

Ankle Angle

Self-defense

State-dependent Joint Limits

Feasible Ankle Torque τ

Example #2: torque capacity also depends on other joints

Each muscle spans multiple joints, and multiple muscles interplay at each joint

Example #3: metabolic rate is state dependent

"Same torque, different effort"

Pull-up

Chin-up

Standard Motion Control Formulation in "SMPL" Space

General to any task and

task objective C_{task}

 $\boldsymbol{\tau}$: Joint Torques min τ subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

Standard Motion Control Formulation in "SMPL" Space

Control / Energy

Regularization

subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

 $\Sigma \tau^2 + c_{task}(q)$

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

In Comparison to Detailed Anatomical Simulation

a: Muscle Activations

 $\min_{a} \sum a^2 + c_{task}(q)$

subject to

$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $f_{muscle-dynamics}(a, l, \dot{l})$ $0 \le a \le 1$ $f_{bone-ligaments}(q, l)$

Expectedly, discrepancies in defining energy cost and constraints (e.g. capability limits)

$$\boldsymbol{\tau}: \text{ Joint Torques}$$
$$\boldsymbol{min}_{\boldsymbol{\tau}} \qquad \sum \tau^2 + c_{task}(q)$$

subject to

$$\ddot{m{q}} = f_{skel-dynamics}(m{q}, \dot{m{q}})$$
 $au_{low} \leq au \leq au_{high}$
 $m{q}_{low} \leq m{q} \leq m{q}_{high}$

Why Learning? A "Lift-up" in Simulation Space

Simpler Abstract Space

Detailed Anatomical Space

ML to supply "compressed" anatomical details

Faster to simulate & Easier to solve control

Intuition: why simple sim can be as accurate as detailed sim?

Simpler Abstract Space

Detailed Anatomical Space

If final output is still skeletal motion

Anatomical space is redundant

- 90 leg muscles -> 10 DoFs
- Many bones -> a few DoFs at shoulder

"State-dependency" to Bridge Simulation Spaces

Simpler Abstract Space

Detailed Anatomical Space

Learning "state-dependent" functions

a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} \quad \sum_{\tau} \tau^2 + c_{task}(q)$

subject to

$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} \quad \sum_{\tau} \tau^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $L(\mathbf{q}) > \mathbf{0}$

a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau}) + c_{task}(\boldsymbol{q})$

subject to

$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

L(q) > 0

a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} E(\boldsymbol{q}, \boldsymbol{\dot{q}}, \boldsymbol{\tau}) + c_{task}(\boldsymbol{q})$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$ $\mathbf{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau}) \leq 0$ $\mathbf{L}(\mathbf{q}) > \mathbf{0}$

Learn from detailed muscle simulator

Learn from real data

Learn from detailed muscle simulator

Learn from real data

 $E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})$

Learn from detailed muscle simulator

Learn from real data

 $E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})$

 $C(q, \dot{q}, \tau) \leq 0$

Learn from detailed muscle simulator

Learn from real data

We can prove both control problems now have a same optimal value (equivalency)

Augmented with learned state-dependent functions

No Motion Control, Free-fall Simulation

With learned L(q) > 0

Without learned L(q) > 0

No Motion Control, Free-fall Simulation

With learned L(q) > 0

Without learned L(q) > 0

No Motion Control, Free-fall Simulation

With learned L(q) > 0

Without learned L(q) > 0

Can jump higher if bends down more

Can jump higher if bends down more

Humans don't do that because small torque limit during hyper-flexion

Humans don't do that because small torque limit during hyper-flexion

With learned torque limits CWith box limits of torques

Similarly, ours don't hyper-flex

With learned torque limits CWith box limits of torques

Similarly, ours don't hyper-flex

Almost identical solution compared with detailed muscle simulation Ours use 70% less computation & fewer iterations

Ours Detailed muscle models

Almost identical solution compared with detailed muscle simulation Ours use 70% less computation & fewer iterations

Ours Detailed muscle models

Biomechanically accurate, fast, and easier for solving control

Facilitate large-scale simulations, for training / synthetic data generation

Learned anatomical functions to provably "compress" biomechanics knowledge

Simulation-augmented Generative Motion Model

— How to build GenAl motion models that interactively reacts to physics

[Jiang et al] SIGGRAPH Asia '23

Digital Humans that Understands and Responds to Intuitive Physics

Digital Humans that Understands and Responds to Intuitive Physics

Physics-aware Digital Humans Can:

Improve immersion in AR/VR

Physics-aware Digital Humans Can:

Help train robots / embodied Al agents in simulation

Habitat 3.0, 2023

Physics-aware Digital Humans Can:

Help train robots / embodied Al agents in simulation

Habitat 3.0, 2023

Generative Models, for Motion

Rempe et al ICCV'21

Same Input, Diverse Output

Rempe et al ICCV'21

Same Input, Diverse Output

Rempe et al ICCV'21

Yes, but does not respond to physical events

However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

Yes, but does not respond to physical events

However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

Challenges

1. Formulation does not consider physics

Challenges

Formulation does not consider physics 1.

Physical responses data unsafe to capture 2.

Challenges

Formulation does not consider physics 1.

Physical responses data unsafe to capture 2.

Commonly, Off-the-shelf Simulation in Training Loop

Reinforcement / Supervised Learning

Commonly, Off-the-shelf Simulation in Training Loop

Harder to scale up to diverse motor skills, compared with pure kinematics models

Reinforcement / Supervised Learning

Physics plugin so that no further training is needed?

Physics plugin so that no further training is needed?

Pre-trained Kinematics Generative Model

Physics plugin so that no further training is needed?

Pre-trained Kinematics Generative Model

Pre-trained Kinematics Generative Model

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Scalability fully inherited from Generative Model

Pre-trained Generative Model

manifold of all possible next states

manifold of all possible next states

manifold of all possible next states

Naively, Physics as Post-processing...

Naively, Physics as Post-processing...

Naively, Physics as Post-processing...

Can Lead to Model Drifting Out of Distribution

Can Lead to Model Drifting Out of Distribution

Instead of Isolated Sampling and Physics Post-processing

Get a sample

Physically integrate forces

Manifold-aware Simulation

Physics-aware sampling Simulation Stay close to \mathcal{X}_{t+1} when solving physics

Intuitively, Need to "Align" Model Generation to Physics

High Energy

High Energy

 $\mathbf{f} = -\nabla E$

Akin to a control force from Generative Model

High Energy

 $\mathbf{f} = -\nabla E$

Akin to a control force from Generative Model

High Energy $f = -\nabla E$ Low Energy

See paper all energy terms

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics (PD) Naturally Support Manifolds

 $E_{i,j} > 0$

 $E_{j} \ge 0$

Projective Dynamics (PD) Naturally Support Manifolds

 $E_{j} \equiv 0$

Putting Things Together

Putting Things Together

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Focus on showcasing dynamic responses

- That is, all demos are stress testing the low-data cases

Generative Model:

- Other models should work as well

Focus on showcasing dynamic responses

- That is, all demos are stress testing the low-data cases

All demos are stochastically created without high-level motion planning

HuMoR (ICCV'21) — trained on ~40h AMASS motion data

Being Thrown with Objects

Being Thrown with Objects

Flexible Framework Enabling Diverse Downstream Tasks

Flexible Framework Enabling Diverse Downstream Tasks

Emergent Behavior

#1

Emergent Behavior

#1

Two-character Interactions

#1

Two-character Interactions

#1

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model Diverse physical motions at scale

Scalable Physical Human Data Capture

— How motion & physics prior can help scale up human data

[Jiang et al] SIGGRAPH Asia'22, [Lee, Jiang, Liu] SIGGRAPH'23

Data-driven Human Sim

Pre-trained Generative Model

Sim-augmented GenAl model

So far...

Motion Data Engine

Data-driven Human Sim

Pre-trained Generative Model

Sim-augmented GenAl model

Motion capture can be tedious

Cannot Fully Observe All Quantities

e.g. detailed shoulder and spine movements

First, how might we capture human data costeffectively, to scale up the process?

Wearable IMUs for Inexpensive Motion Capture

Xsens Awinda (17 IMUs) https://www.xsens.com/

Apple Airpods https://twitter.com/ConcreteSciFi/status/1311332262131113984

Only 6 Sparse IMUs — Minimized User Friction

Only 6 Sparse IMUs — Minimized User Friction

Transformer-Decoder Based Model, Pretrained on Large Motion Data

Simultaneous Terrain Map Generation

Predict plausible terrains

Predicted Motion

Correct slow drift

Height Map

Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1x

Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1x

If we can collect full-body motion data at scale, what more could we do?

Sparse Sensors

Full-body Motion Estimates

Sparse Sensors

Full-body Motion Estimates

Detailed Spine Motion?

First, we built a detailed torso simulator

Use Simulator to "In-paint" Unobserved Spine Movements

Given sparse locations of head, humerus, pelvis

Simulate to static equilibrium

Detailed torso states

Results: In-painting a Large Dataset without Detailed Spines

Results: In-painting a Large Dataset without Detailed Spines

Cost-effective, scalable motion capture from IMUs and Smart Glasses

Augmenting coarse motion data with fine-grained spine movements

Theme: Motion Prior (Transformer, Diffusion, etc.) and Biophysical Prior help bridging

the gap between insufficient sensing and detailed human states

Concluding Thoughts

Physical Digital Human & World

The role of scalable simulation is irreplaceable for GenAl to continue to scale up: Prior knowledge of physics/experts are very more dense in information Simulation (synthesized data) brings expert knowledge to GenAl systems

Bio/Physics Simulation

