Physical Digital Humans in the Era of GenAI

May 2 @ GAMES Seminar

Yifeng Jiang Ph.D. Candidate Stanford University

2D Generative AI (of humans)

3D GenAI for XR/Spatial Computing/Simulation

3D GenAI Digital Humans

Full controllability of appearance and motions

3D GenAI Digital Humans

Full controllability of appearance and motions

Next frontier: GenAI for 3D Physical Humans

Bio & Physics modeling can augment detailed realism of generation

Next frontier: GenAI for 3D Physical Humans

Bio & Physics modeling can augment detailed realism of generation

GenAI for Physical Humans: Also Many Real-world Applications

Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

GenAI for Physical Humans: Also Many Real-world Applications

Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

2D Gen-AI 3D Gen-AI Physical 3D Gen-AI

From Digital to Physical-world Applications More challenging to obtain large-scale high-quality data

Dense Spatial Signal

Data can be partially observable, scarce, expensive/unsafe to capture

Data can be partially observable, scarce, expensive/unsafe to capture

Physical Digital Human

Physical Digital Human

Real Human Data Synthesized Human Data

Physical Digital Human

Real Human Data Synthesized Human Data

Modern Deep Learning Physics Simulation

Physical Digital Human

Modern Deep Learning and Second Second Physics Simulation

Part 1: Scalable Human Simulation with Learned Components

Part 1: Scalable Human Simulation with Learned Components

Part 2: Simulation-augmented Generative Motion Model

Part 3: Scalable Physical Human Data Capture

Scalable Human Simulation with Learned Components

— How to accurately simulate human without explicit anatomy details

[Jiang et al] SIGGRAPH'19

Standard Simulation Model

e.g. SMPL

23 ball-and-socket joints

Easy to simulate, but not biomechanically accurate

Detailed Biomechanics Models & Simulations

Not fast & robust enough for large-scale training & synthetic data generation

The Tale of Two Simulation Spaces

Detailed, Anatomical Simple, abstract

Detailed, Anatomical Simple, abstract

The Tale of Two Simulation Spaces

Detailed, Anatomical Simple, abstract

The Tale of Two Simulation Spaces

ATTORNEY SHIP

Example #1: joint limit (RoM) depends on other joints

Smaller elbow range when the arm is behind the back.

Example #1: joint limit (RoM) depends on other joints

 $q_{low} \leq q \leq q_{high}$

Heuristic Boxed Limits Realistic "state-dependent" Joint Limits

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

Example #2: torque capability is state-dependent

Self-defense

Feasible Ankle Torque τ

Heuristic Boxed Limits State-dependent Joint Limits

Ankle Angle

Example #2: torque capacity also depends on other joints

Each muscle spans multiple joints, and multiple muscles interplay at each joint

Example #3: metabolic rate is state dependent

"Same torque, different effort"

Pull-up Chin-up

Standard Motion Control Formulation in "SMPL" Space

General to any task and

task objective c_{task}

 τ : Joint Torques $\sum \tau^2$ + min τ subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

$$
\left\| c_{task}(q) \right\|
$$

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

Control / Energy

Regularization

subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

 $\sum \tau^2$ + $c_{task}(q)$

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

Standard Motion Control Formulation in "SMPL" Space

In Comparison to Detailed Anatomical Simulation

a: Muscle Activations

 $\sum a^2 + c_{task}(q)$ min \boldsymbol{a}

subject to

$$
\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})
$$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \boldsymbol{l})$ $0 \le a \le 1$ $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

Expectedly, discrepancies in defining energy cost and constraints (e.g. capability limits)

$$
\pi: \text{Joint Torges} \\
\boxed{\sum \tau^2 + c_{task}(q)}
$$

subject to

$$
\left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right)
$$

$$
\ddot{q} = f_{skel-dynamics}(q, \dot{q})
$$
\n
$$
\tau_{low} \le \tau \le \tau_{high}
$$
\n
$$
q_{low} \le q \le q_{high}
$$

Why Learning? A "Lift-up" in Simulation Space

Simpler Abstract Space Simpler Abstract Space

ML to supply "compressed" anatomical details

Detailed Simulation space Detailed Anatomical Space

Faster to simulate & Easier to solve control

Intuition: why simple sim can be as accurate as detailed sim?

If final output is still skeletal motion

Anatomical space is redundant

- **90 leg muscles -> 10 DoFs**
- **Many bones -> a few DoFs at shoulder**

Simpler Abstract Space

Detailed Anatomical Space

"State-dependency" to Bridge Simulation Spaces

Learning "state-dependent" functions

Simpler Abstract Space

Detailed Anatomical Space

 $\sum a^2 + c_{task}(q)$ min \boldsymbol{a}

subject to

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \boldsymbol{i})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

T: Joint Torques

 $\sum \tau^2 + c_{task}(q)$ min τ

subject to

$$
\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})
$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

 $\sum a^2 + c_{task}(q)$ min \boldsymbol{a}

subject to

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \boldsymbol{i})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

T: Joint Torques

 $\sum \tau^2 + c_{task}(q)$ min τ

subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $\mathop{\mathrm{L}}\nolimits(\mathbf{q}) > \mathbf{0}$

 $\sum a^2 + c_{task}(q)$ min \boldsymbol{a}

subject to

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \boldsymbol{i})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 τ : Joint Torques

 $min_{\tau} E(q, \dot{q}, \tau) + c_{task}(q)$

subject to

$$
\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})
$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $\mathop{\mathrm{L}}\nolimits(\mathbf{q}) > \mathbf{0}$

 $\sum a^2 + c_{task}(q)$ min \boldsymbol{a}

subject to

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \boldsymbol{i})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 τ : Joint Torques

 $min_{\tau} E(q, \dot{q}, \tau) + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{\text{skel-dynamics}}(\boldsymbol{q}, \dot{\boldsymbol{q}})$ $C(q, \dot{q}, \tau) \leq 0$ $L(q) > 0$

Learn from detailed muscle simulator

[Acktar, Black CVPR'15]

Learn from detailed muscle simulator

[Acktar, Black CVPR'15]

Learn from detailed muscle simulator

[Acktar, Black CVPR'15]

Learned RoM, Torque limit, Metabolic energy Functions

 $E(q, \dot{q}, \tau)$

Learn from detailed muscle simulator

[Acktar, Black CVPR'15]

Learned RoM, Torque limit, Metabolic energy Functions

 $E(q, \dot{q}, \tau)$

 $C(q, \dot{q}, \tau) \leq 0$

We can prove both control problems now have a same optimal value (equivalency)

Augmented with learned state-dependent functions

No Motion Control, Free-fall Simulation

With learned $L(q) > 0$ **Without learned** $L(q) > 0$

No Motion Control, Free-fall Simulation

With learned $L(q) > 0$ **Without learned** $L(q) > 0$

No Motion Control, Free-fall Simulation

With learned $L(q) > 0$ **Without learned** $L(q) > 0$

Can jump higher if bends down more

Can jump higher if bends down more

Humans don't do that because small torque limit during hyper-flexion

Humans don't do that because small torque limit during hyper-flexion

Motion Control 2: Swing as Far as You Can

With learned torque limits *C* **With box limits of torques**

Similarly, ours don't hyper-flex

Motion Control 2: Swing as Far as You Can

With learned torque limits *C* **With box limits of torques**

Similarly, ours don't hyper-flex

Ours Detailed muscle models

Ours use 70% less computation & fewer iterations Almost identical solution compared with detailed muscle simulation

Motion Control 2: Swing as Far as You Can

Ours Detailed muscle models

Ours use 70% less computation & fewer iterations Almost identical solution compared with detailed muscle simulation

Motion Control 2: Swing as Far as You Can

Biomechanically accurate, fast, and easier for solving control

Facilitate large-scale simulations, for training / synthetic data generation

Learned anatomical functions to provably "compress" biomechanics knowledge

Simulation-augmented Generative Motion Model

— How to build GenAI motion models that interactively reacts to physics

[Jiang et al] SIGGRAPH Asia '23

Digital Humans that Understands and Responds to Intuitive Physics

Digital Humans that Understands and Responds to Intuitive Physics

Physics-aware Digital Humans Can:

Improve immersion in AR/VR

Help train robots / embodied AI agents in simulation

Habitat 3.0, 2023

Physics-aware Digital Humans Can:

Help train robots / embodied AI agents in simulation

Habitat 3.0, 2023

Physics-aware Digital Humans Can:

Generative Models, for Motion

Rempe et al ICCV'21

Same Input, Diverse Output

Rempe et al ICCV'21

Same Input, Diverse Output

Rempe et al ICCV'21

Yes, but does not respond to physical events

However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

Yes, but does not respond to physical events

However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

Challenges

1. Formulation does not consider physics

Challenges

1. Formulation does not consider physics

2. Physical responses data unsafe to capture

Challenges

2. Physical responses data unsafe to capture

1. Formulation does not consider physics

Commonly, Off-the-shelf Simulation in Training Loop

Reinforcement /Supervised Learning

Commonly, Off-the-shelf Simulation in Training Loop

<u>state</u> **<code>diverse</code> motor skills, correlate to scale up to diverse motor skills, correlate simulate**
 next state
 next state Harder to scale up to diverse motor skills, compared with pure kinematics models

Reinforcement /Supervised Learning

Physics plugin so that no further training is needed?

Physics plugin so that no further training is needed?

Pre-trained Kinematics Generative Model

Physics plugin so that no further training is needed?

Pre-trained Kinematics Generative Model

Pre-trained Kinematics Generative Model

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Scalability fully inherited from Generative Model

Pre-trained Generative Model DROP

manifold of all possible next states

manifold of all possible next states

manifold of all possible next states

Naively, Physics as Post-processing…

Naively, Physics as Post-processing…

Naively, Physics as Post-processing…

Can Lead to Model Drifting Out of Distribution

Can Lead to Model Drifting Out of Distribution

Get a sample

Physically integrate forces

Instead of Isolated Sampling and Physics Post-processing

Manifold-aware Simulation

Physics-aware sampling Simulation Stay close to when solving physics *t*+1

Intuitively, Need to "Align" Model Generation to Physics

High Energy

High Energy

f = − ∇*E*

High Energy Akin to a control force from Generative Model f = $-\nabla E$

High Energy Akin to a control force from Generative Model f = ∇E

Low Energy f f

See paper all energy terms

Projective Dynamics for Simulation [Bouaziz 14]

Implicit Euler integration Physical alignment Generative Model

Optimization-based (Variational) Integration:
Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment Implicit Euler integration

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment Implicit Euler integration

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment Implicit Euler integration

Projective Dynamics (PD) Naturally Support Manifolds

 E_j = 0

Projective Dynamics (PD) Naturally Support Manifolds

 E_{j}

Putting Things Together

Putting Things Together

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Focus on showcasing dynamic responses

- That is, all demos are stress testing the low-data cases

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Focus on showcasing dynamic responses

- That is, all demos are stress testing the low-data cases

All demos are stochastically created without high-level motion planning

Being Thrown with Objects

Being Thrown with Objects

Flexible Framework Enabling Diverse Downstream Tasks

Flexible Framework Enabling Diverse Downstream Tasks

Emergent Behavior

Emergent Behavior

Two-character Interactions

Two-character Interactions

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Pre-trained Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model Diverse physical motions at scale

Scalable Physical Human Data Capture

— How motion & physics prior can help scale up human data

[Jiang et al] SIGGRAPH Asia'22, [Lee, Jiang, Liu] SIGGRAPH'23

Data-driven Human Sim

Pre-trained Generative Model

Sim-augmented GenAl model

So far…

Data-driven Human Sim

Pre-trained Generative Model

Motion Data Engine Sim-augmented GenAI model

Motion capture can be tedious

Cannot Fully Observe All Quantities

e.g. detailed shoulder and spine movements

First, how might we capture human data costeffectively, to scale up the process?

Wearable IMUs for Inexpensive Motion Capture

Xsens Awinda (17 IMUs) https://www.xsens.com/

Apple Airpods https://twitter.com/ConcreteSciFi/status/1311332262131113984

Only 6 Sparse IMUs - Minimized User Friction

Only 6 Sparse IMUs - Minimized User Friction

Transformer-Decoder Based Model, Pretrained on Large Motion Data

Simultaneous Terrain Map Generation

Predicted Motion Height Map

Correct slow drift

Predict plausible terrains

Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1x

Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1x

If we can collect full-body motion data at scale, what more could we do?

Sparse Sensors Full-body Motion Estimates

Sparse Sensors Full-body Motion Estimates Detailed Spine Motion?

First, we built a detailed torso simulator

Use Simulator to "In-paint" Unobserved Spine Movements

Given sparse locations of head, humerus, pelvis Detailed torso states

Simulate to static equilibrium

Results: In-painting a Large Dataset without Detailed Spines

Results: In-painting a Large Dataset without Detailed Spines

Cost-effective, scalable motion capture from IMUs and Smart Glasses

Augmenting coarse motion data with fine-grained spine movements

Theme: Motion Prior (Transformer, Diffusion, etc.) and Biophysical Prior help bridging

the gap between insufficient sensing and detailed human states

Concluding Thoughts

Physical Digital Human & World

The role of scalable simulation is irreplaceable for GenAI to continue to scale up: Prior knowledge of physics/experts are very more dense in information Simulation (synthesized data) brings expert knowledge to GenAI systems

