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3D GenAl for XR/Spatial Computing/Simulation




3D GenAl Digital Humans
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Dense Spatial Signal Sparse Spatial Sigr;al

Full controllability of appearance and motions
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Next frontier: GenAl for 3D Humans

#1

modeling can augment detailed realism of generation
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GenAl for Humans: Also Many Real-world Applications
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Disc force for injury prevention  Knee load for Exoskeleton  Comfort level during dressing
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Left Wrist

A person raises the toolbox
with the use of one hand
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Dense Spatial Signal

3D Gen-Al Physical 3D Gen-Al

From Digital to Physical-world Applications
More challenging to obtain large-scale high-quality data
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Part 1: Scalable Human Simulation with Learned Components



Part 2: Simulation-augmented Generative Motion Model

Part 3: Scalable Physical Human Data Capture



Scalable Human Simulation with Learned Components

— How to accurately simulate human without explicit anatomy details

[Jiang et al] SIGGRAPH'19




Standard Simulation Model

e.g. SMPL
/j{/\ 23 ball-and-socket joints
S\ : M ! Easy to simulate,
\ but not biomechanically accurate




Detailed Biomechanics Models & Simulations
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Not fast & robust enough for
large-scale training & synthetic
data generation



The Tale of Two Simulation Spaces
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Example #1: joint limit (RoM) depends on other joints

Smaller elbow range when the arm is behind the back.

Front
Back




Example #1: joint limit (RoM) depends on other joints

Heuristic Boxed Limits Realistic “state-dependent” Joint Limits

Knee flexion

Hip rotation

Qiow = q = Qhigh /i bone-ligaments (q,D)



Example #2: torque capability is state-dependent

' Heuristic Boxed Limits State-dependent Joint Limits

Feasible Ankle Torque t

Thigh

Ankle Angle Ankle Angle

Self-defense



Example #2: torque capacity also depends on other joints

Each muscle spans multiple joints, and
multiple muscles interplay at each joint




Example #3: metabolic rate is state dependent

“Same torque, different effort”
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Standard Motion Control Formulation in “SMPL" Space
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T: Joint Tor | ¢ |
General to any task and foint Torques L L]
mjn Y4+ Ctask(q)
task objective ¢ : VY
task subject to

q — f:skel—dynamics (Q: Q)

Tiow S T S Thigh

Qiow = q = Qhigh



Standard Motion Control Formulation in “SMPL" Space

i

T: Joint Tor | ¢ |
Control / Energy Joint Torques oL
mlin YT+ Ctask(q)
() [ ] T
Reqularization | r )
subject to

q — fskel—dynamics (Qr Q)

Tiow S T S Thigh

Qiow = q = Qhigh



In Comparison to Detailed Anatomical Simulation
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A: Muscle Activations T. Joint Torques ] 1 %
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Expectedly, discrepancies in defining cost and constraints (e.g. capability limits)



Why Learning? A “Lift-up” in Simulation Space
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Intuition: why simple sim can be as accurate as detailed sim?
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.+~ :  Simpler Abstract Space

& = Iffinal output is still skeletal motion

-

Anatomical space is
- 90 leg muscles -> 10 DoFs
- Many bones -> a few DoFs at shoulder
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Detailed Anatomical Space .




“State-dependency” to Bridge Simulation Spaces

. r— :  Simpler Abstract Space

@ Learning “state-dependent” functions
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Learned “olV, Torque limit, Metabolic energy Functions
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Learned “olV, Torque limit, Metabolic energy Functions
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Learned “olV, Torque limit, Metabolic energy Functions
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Learned “olV, Torque limit, Metabolic energy Functions

Learn from detailed muscle simulator

Learn from real data
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Learned “olV, Torque limit, Metabolic energy Functions
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Learned “olV, Torque limit, Metabolic energy Functions

E(q,q,1)

Learn from detailed muscle simulator

C(g,q,T) <0

Learn from real data



Augmented with learned

state-dependent functions
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We can both control problems now have

a same optimal value (equivalency)



Results




No Motion Control, Free-fall Simulation

With learned L(g) > O Without learned L.(g) > 0O
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Motion Control: Jump as High as You Can

With learned torque limits C 2x slow
With box limits of torques
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Motion Control 2: Swing as Far as You Can

With learned torque limits C
With box limits of torques

Similarly, ours don’t hyper-flex
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Motion Control 2: Swing as Far as You Can

Ours
Detailed muscle models

Almost identical solution compared with detailed muscle simulation



Motion Control 2: Swing as Far as You Can

Ours
Detailed muscle models

Almost identical solution compared with detailed muscle simulation



Recap

Biomechanically accurate, fast, and easier for solving control
Facilitate large-scale simulations, for training / synthetic data generation

Learned anatomical functions to provably “compress” biomechanics knowledge



Simulation-augmented Generative Motion Model

— How to build GenAl motion models that interactively reacts to physics

[Jiang et al] SIGGRAPH Asia ‘23




Digital Humans that Understands and Responds to Intuitive Physics
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Physics-aware Digital Humans Can:

(@ embodying no-physics avatar
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Improve immersion in AR/VR

Tao et al CHI'23



Physics-aware Digital Humans Can:

Help train robots / embodied Al agents in simulation

Habitat 3.0, 2023
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Generative Models, for Motion

Diverse Samples
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Same Input, Diverse Qutput
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Yes, but does not respond to physical events

However, the character does not resbond to the environment,
such as being hit by an object or stumbled upon an obstacle
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Challenges

1. Formulation does not consider physics

all possible
state == kinematics > next

model states



Challenges

1. Formulation does not consider physics 2. Physical responses data unsafe to capture

State === 700 —_—

model




Challenges

1. Formulation does not consider physics 2. Physical responses data unsafe to capture

Simulation could help with both!




Commonly, Off-the-shelf Simulation in Training Loop

Reinforcement /Supervised Learning

d

mm) action =) =) next state




Commonly, Off-the-shelf Simulation in Training Loop

Harder to scale up to diverse motor skills, compared with

pure kinematics models



Physics plugin so that no further training is needed?
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Introducing DROP

Pre-trained

Minimal Sim Generative Models Generative Mode!

Plug in any pre-trained autoregressive Generative Model

/2

PN

<

fully inherited from Generative Model




Pre-trained Autoregressive Generative Model

state X,
NOISE 7, mup-
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Pre-trained Autoregressive Generative Model
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Pre-trained Autoregressive Generative Model

of all
possible next states
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state X,
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Naively, Physics as Post-processing...
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Naively, Physics as Post-processing...

Get a sample Push
Physually
— —] ==  integrate
forces



Can Lead to Model Drifting Out of Distribution
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Instead of Isolated Sampling and Physics Post-processing
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Manifold-aware Simulation

Physics-aware

v  sampling 4_‘

Stay closeto ., j

when solving physics
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Intuitively, Need to “Align” Model Generation to Physics

Ay Xyl X2 Attn



Energy-based Formulation for Model & Simulation
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Energy-based Formulation for Model & Simulation

Akin to a control force from High Energy

Generative Model



Energy-based Formulation for Model & Simulation

Akin to a control force from High Energy

Generative Model



Other Energies to Align Model Generations to Physics
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Other Energies to Align Model Generations to Physics

See paper all energy terms



Projective Dynamics for Simulation [Bouaziz 14}

Optimization-based (Variational) Integration:

X,, 1 = argmin + E

Implicit Euler integration
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Optimization-based (Variational) Integration:
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Projective Dynamics (PD) Naturally Support Manifolds

& Global solve




Projective Dynamics (PD) Naturally Support Manifolds

& Global solve

Al



Putting Things Together
¢— PD iterations 4—‘
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Results







Setup

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well
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Setup

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data
- Other models should work as well

Focus on showcasing dynamic responses

All demos are stochastically created without high-level motion planning



Being Thrown with Objects




Being Thrown with Objects




Flexible Framework Enabling Diverse Downstream Tasks

#1
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Emergent Behavior
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Two-character Interactions
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Generative Model
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Recap

Pre-trained
Minimal Sim Generative Models Generative Model

Plug in any pre-trained autoregressive Generative Model

<

physical motions at scale
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Scalable Physical Human Data Capture

— How motion & physics prior can help scale up human data

[Jiang et al] SIGGRAPH Asia’22,
[Lee, Jiang, Liu] SIGGRAPH'23
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Motion Data Engine Sim-augmented GenAl model



Motion capture can be tedious



Cannot Fully Observe All Quantities

o
/

e.g. detailed shoulder and spine movements

CCLENE 1))



First, how might we capture human data cost-
effectively, to scale up the process?



Wearable IMUs for Inexpensive Motion Capture

Xsens Awinda (17 IMUs) https://www.xsens.com/ Apple Airpods https://twitter.com/ConcreteSciFi/status/1311332262131113984



Only 6 Sparse IMUs — Minimized User Friction
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Transformer-Decoder Based Model, Pretrained on Large Motion Data

History Prediction Buffers
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Simultaneous Terrain Map Generation

Correct slow drift

Predict plausible terrains

Predicted Motion Height Map



Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1X Reconstructed motions
M stable body points (SBP)
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Speed: 1X Reconstructed motions
M stable body points (SBP)




If we can collect full-body motion data at scale,
what more could we do?



Sparse Sensors Full-body Motion Estimates



,
A

Sparse Sensors Full-body Motion Estimates Detailed Spine Motion?



First, we built a detailed torso simulator




Use Simulator to “In-paint” Unobserved Spine Movements

\«

M

Simulate to static equilibrium

Given sparse locations of head,

. Detailed torso states
humerus, pelvis



Results: In-painting a Large Dataset without Detailed Spines




Results: In-painting a Large Dataset without Detailed Spines




Recap

Cost-effective, scalable motion capture from IMUs and Smart Glasses
Augmenting coarse motion data with fine-grained spine movements
Theme: Motion Prior (Transformer, Diffusion, etc.) and Biophysical Prior help bridging

the gap between insufficient sensing and detailed human states



Concluding Thoughts



Physical Digital Human &

The role of scalable simulation is irreplaceable for GenAl to continue to scale up:
Prior knowledge of physics/experts are very more dense in information

Simulation (synthesized data) brings expert knowledge to GenAl systems



Thank you!



