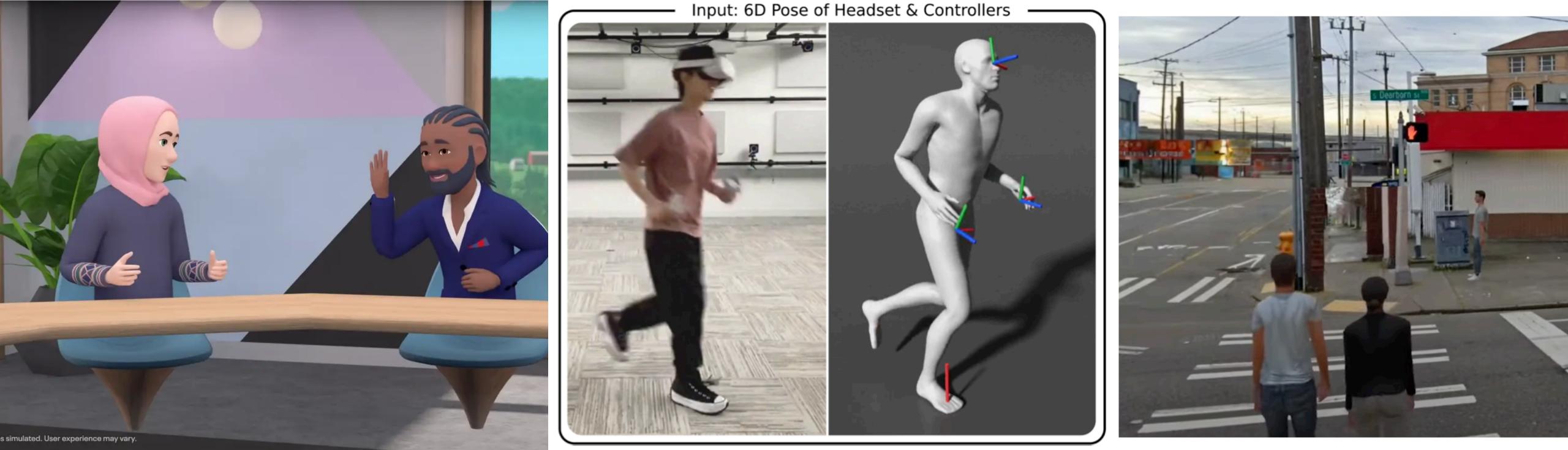
Physical Digital Humans in the Era of GenAl

May 2 @ GAMES Seminar

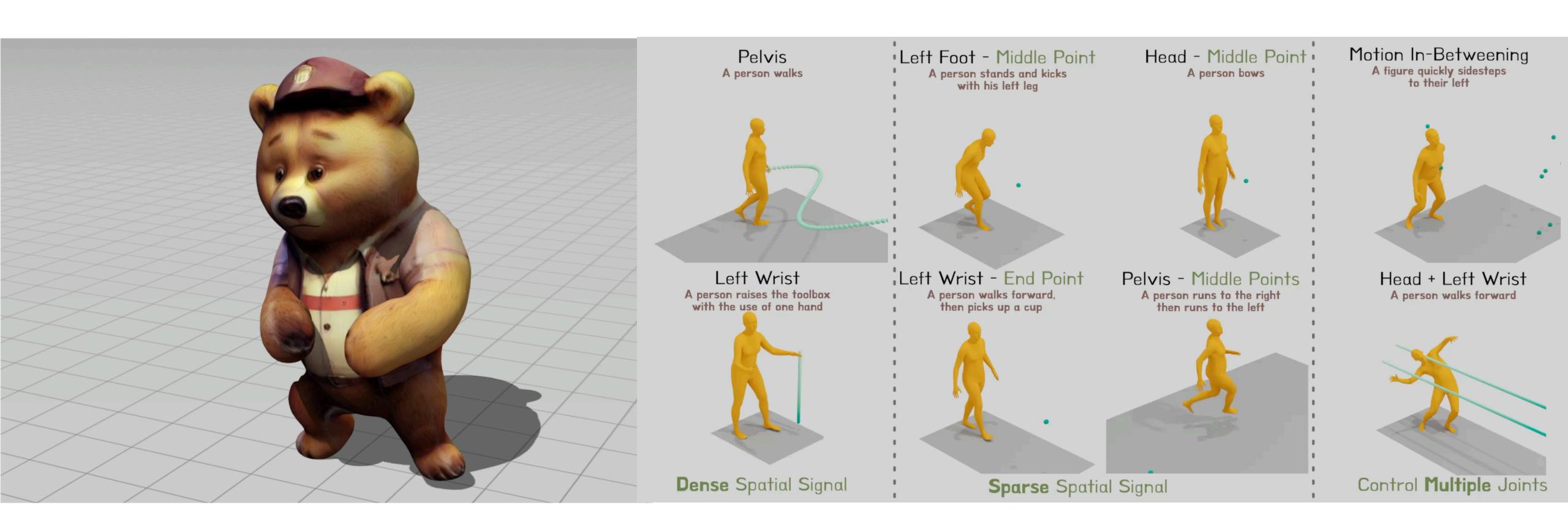
Yifeng Jiang Ph.D. Candidate Stanford University

2D Generative AI (of humans)

3D GenAl for XR/Spatial Computing/Simulation

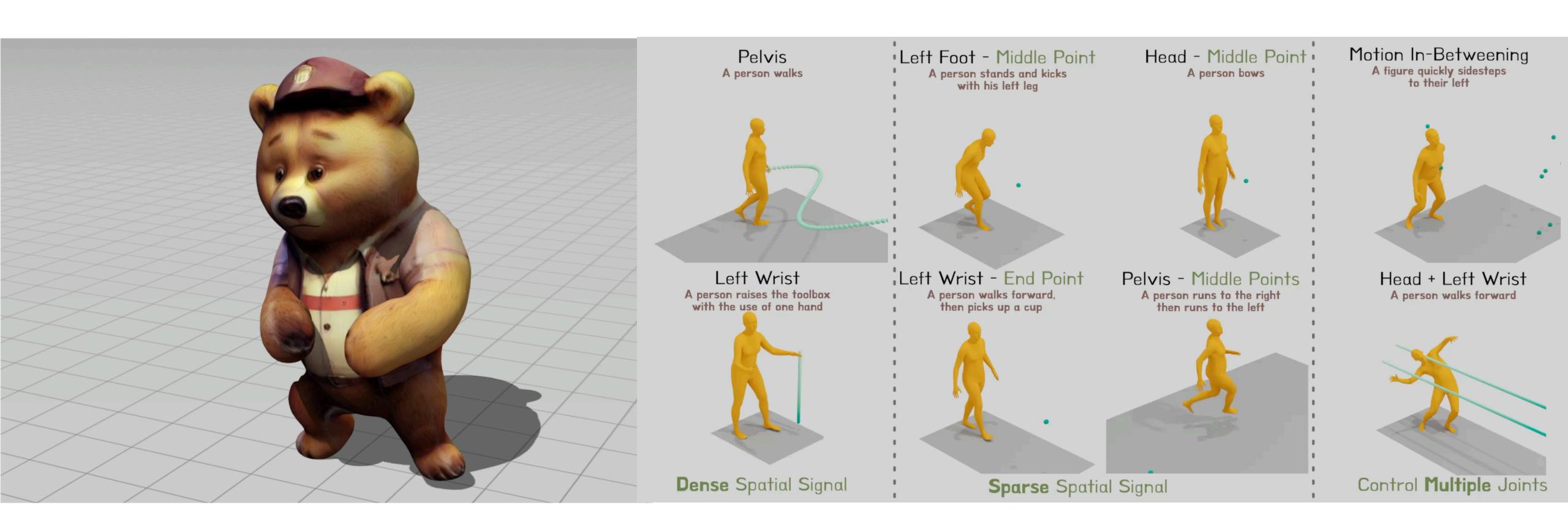


3D GenAl Digital Humans



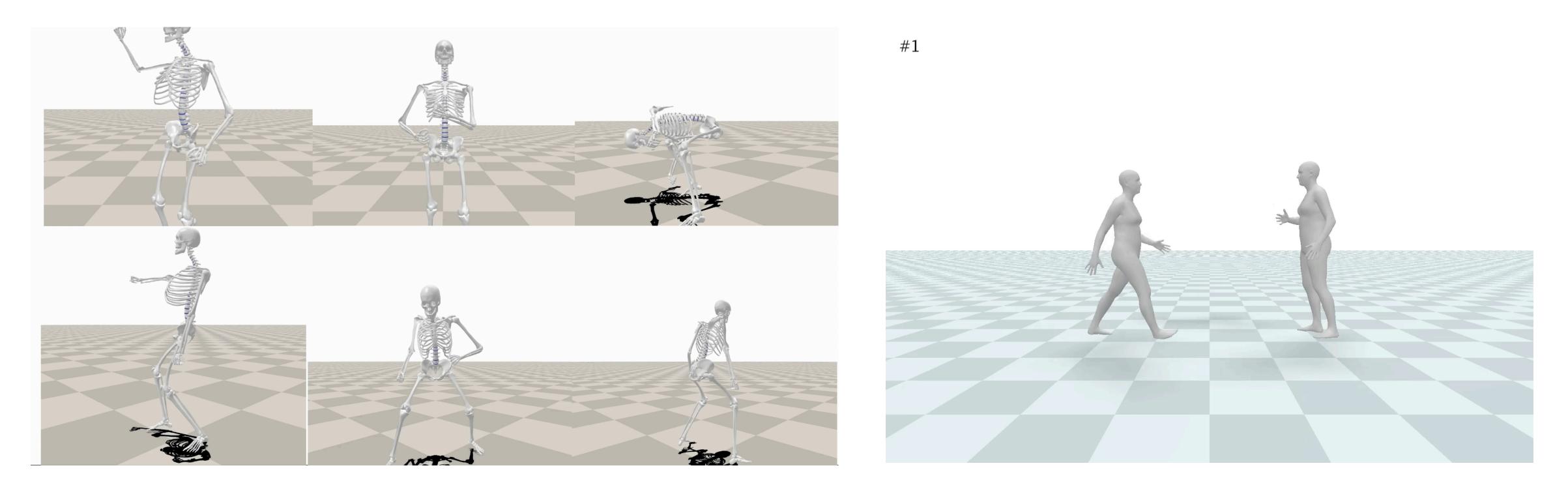
Full controllability of appearance and motions

3D GenAl Digital Humans



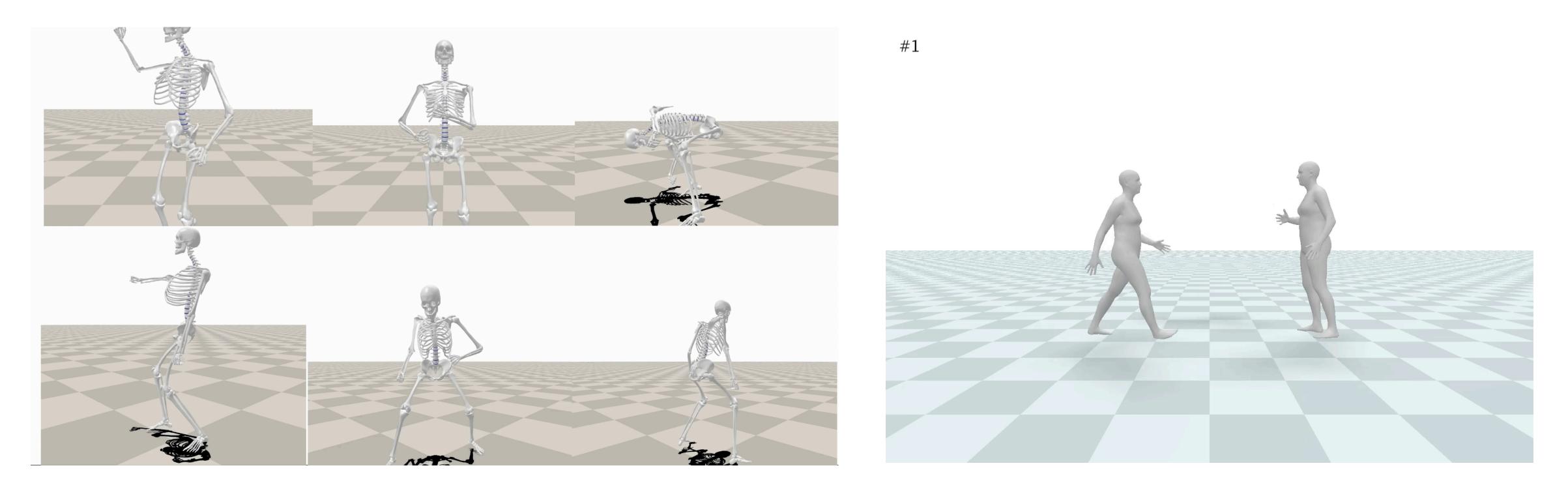
Full controllability of appearance and motions

Next frontier: GenAl for 3D Physical Humans



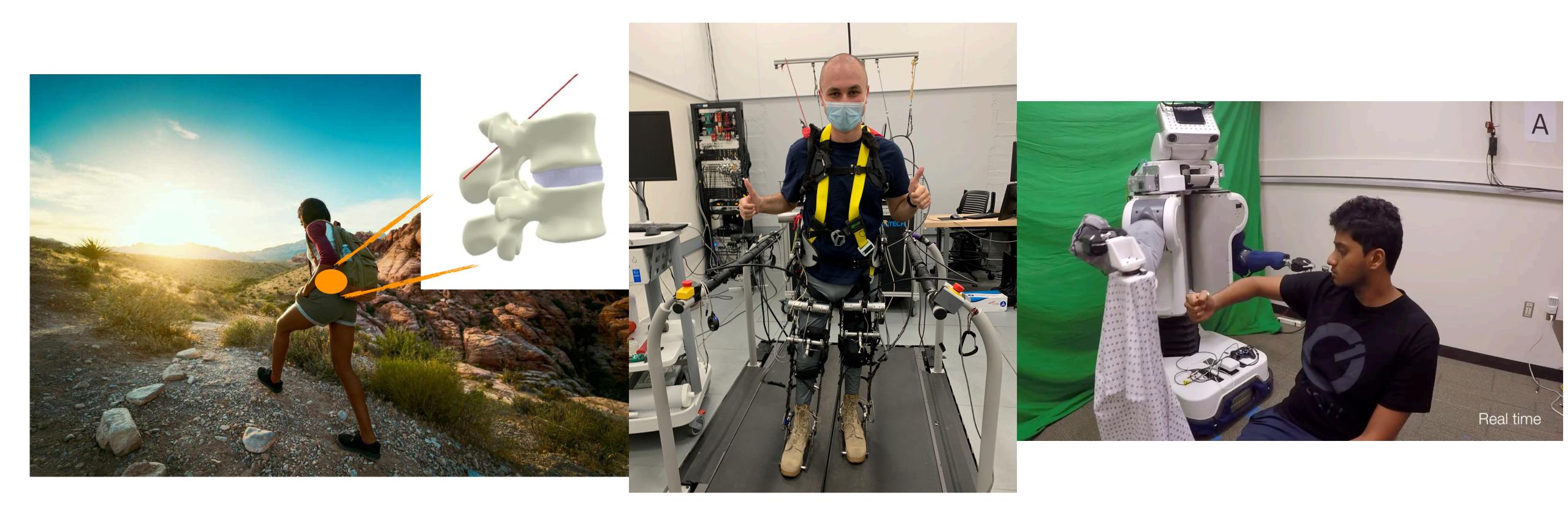
Bio & Physics modeling can augment detailed realism of generation

Next frontier: GenAl for 3D Physical Humans



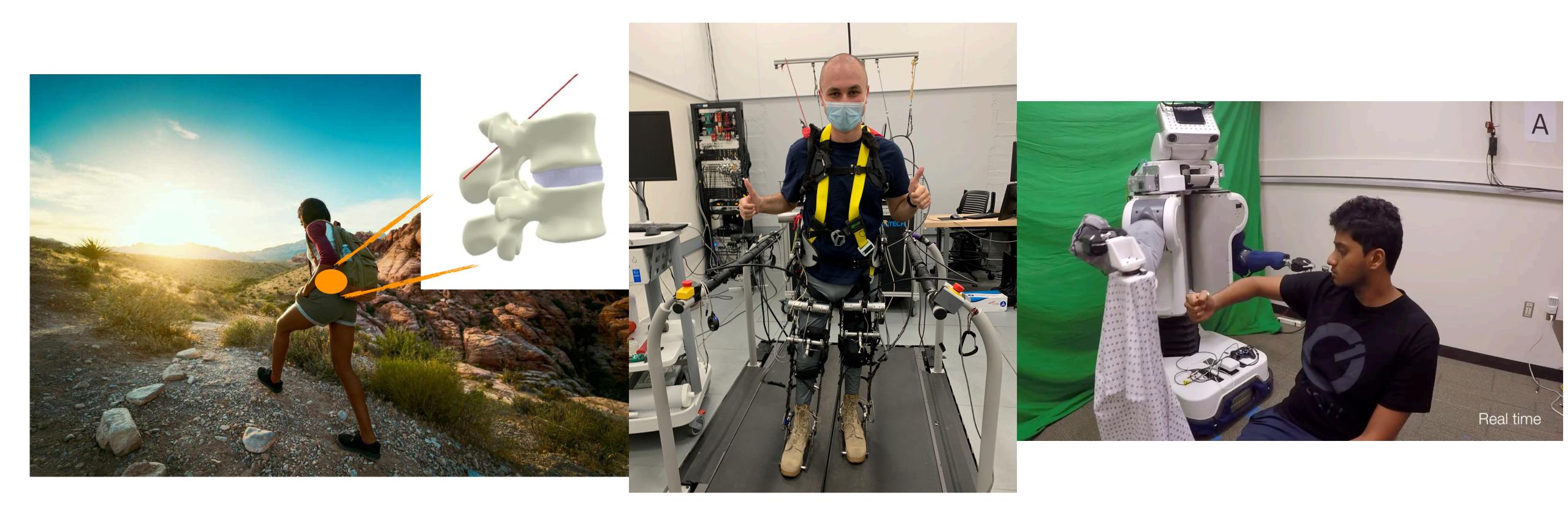
Bio & Physics modeling can augment detailed realism of generation

GenAl for Physical Humans: Also Many Real-world Applications



Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

GenAl for Physical Humans: Also Many Real-world Applications



Disc force for injury prevention Knee load for Exoskeleton Comfort level during dressing

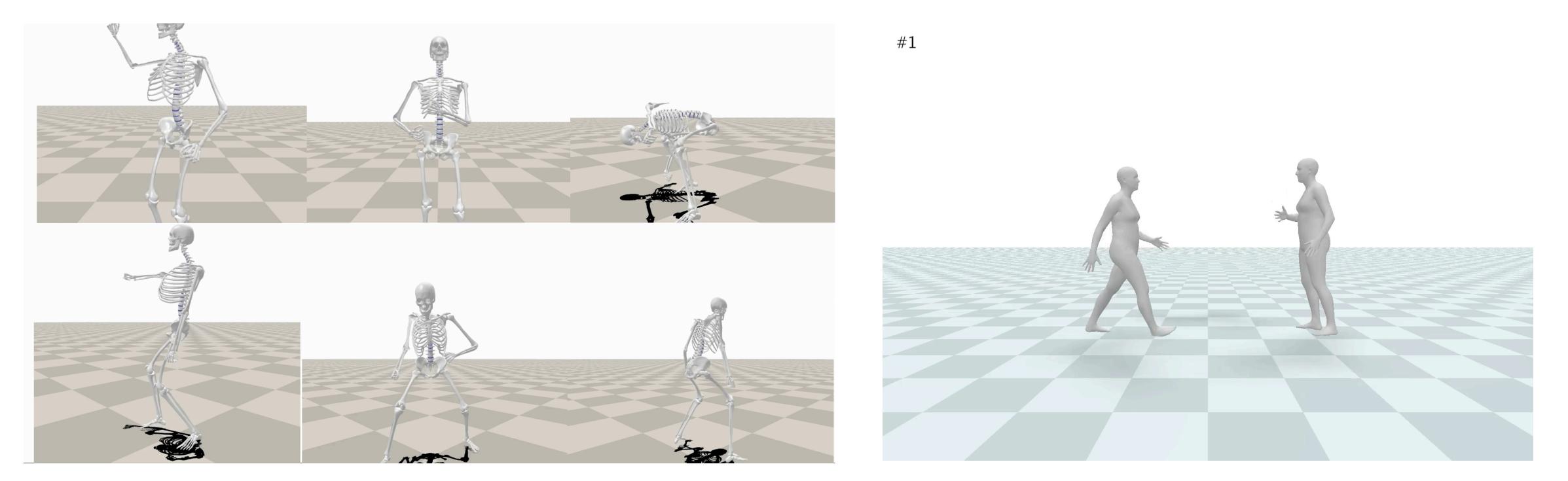
2D Gen-Al

From Digital to Physical-world Applications More challenging to obtain large-scale high-quality data

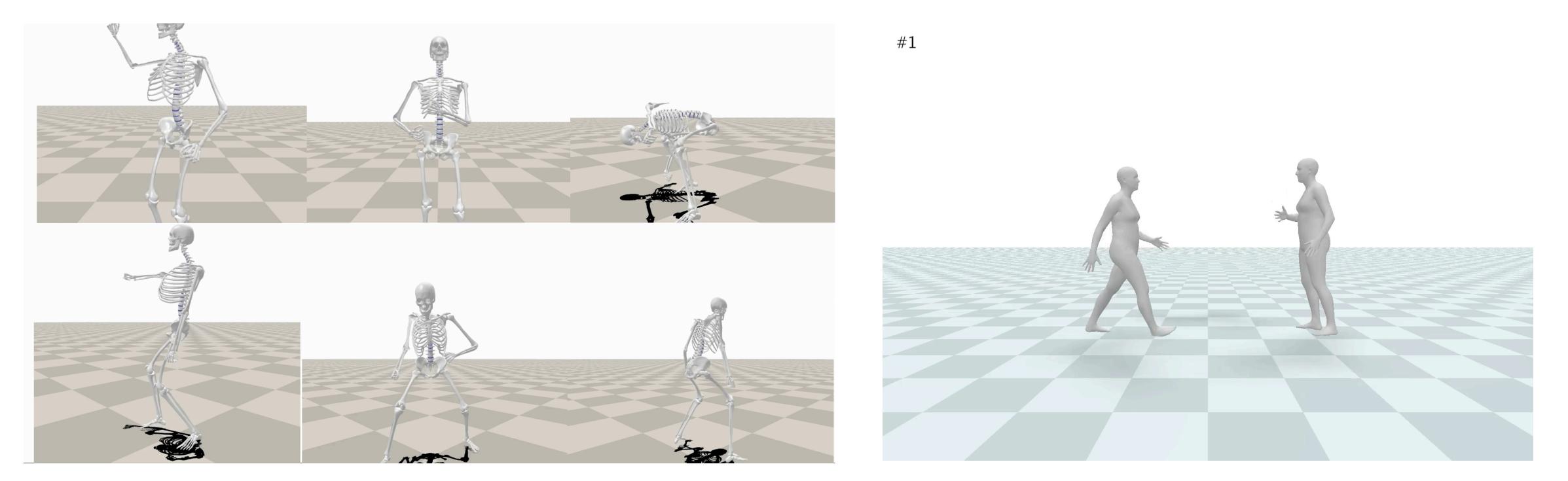
Dense Spatial Signal

3D Gen-Al

Physical 3D Gen-Al

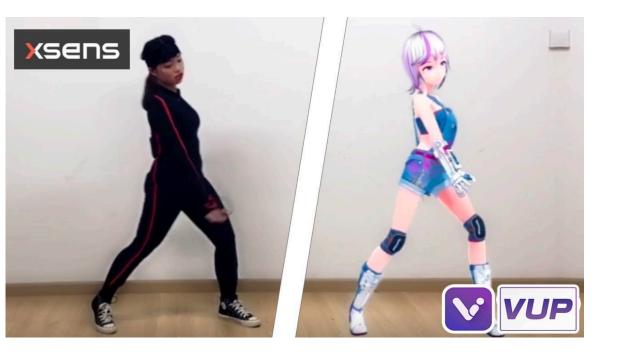


Data can be partially observable, scarce, expensive/unsafe to capture

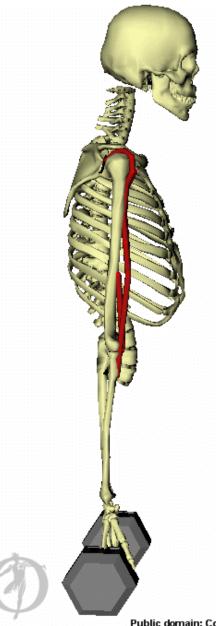


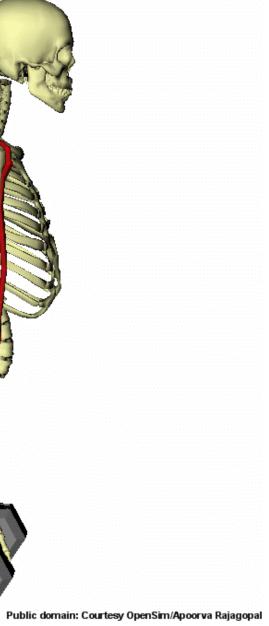
Data can be partially observable, scarce, expensive/unsafe to capture

Real Human Data

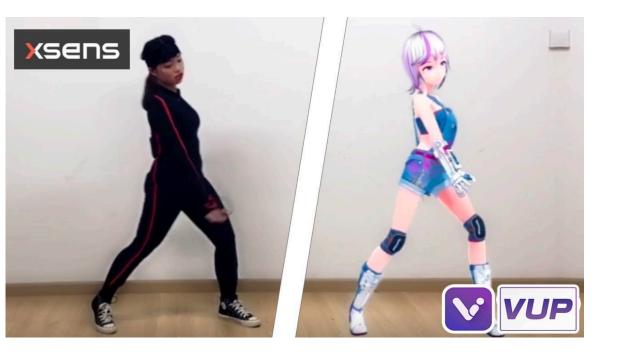


Synthesized Human Data

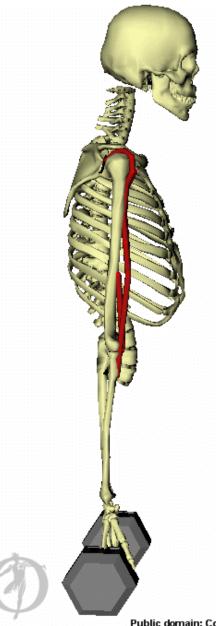


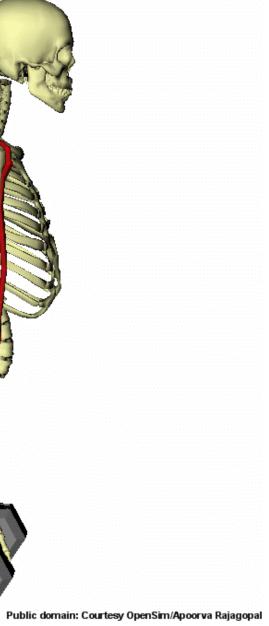


Real Human Data



Synthesized Human Data





Modern Deep Learning

Physics Simulation

Modern Deep Learning

Part 1: Scalable Human Simulation with Learned Components

Physics Simulation

Part 1: Scalable Human Simulation with Learned Components

Part 2: Simulation-augmented Generative Motion Model

Part 3: Scalable Physical Human Data Capture

Physics Simulation

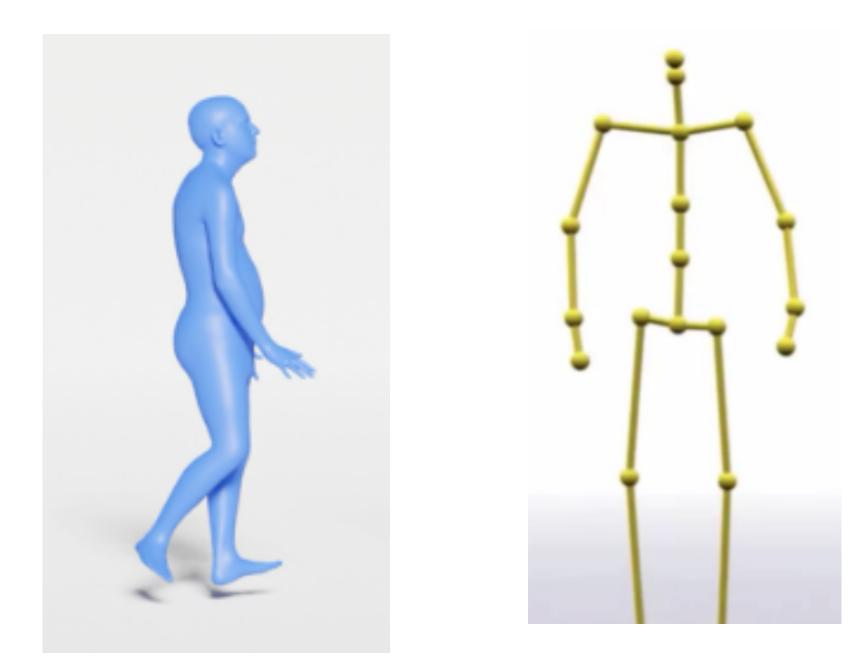
Scalable Human Simulation with Learned Components

— How to accurately simulate human without explicit anatomy details

[Jiang et al] SIGGRAPH'19

Standard Simulation Model

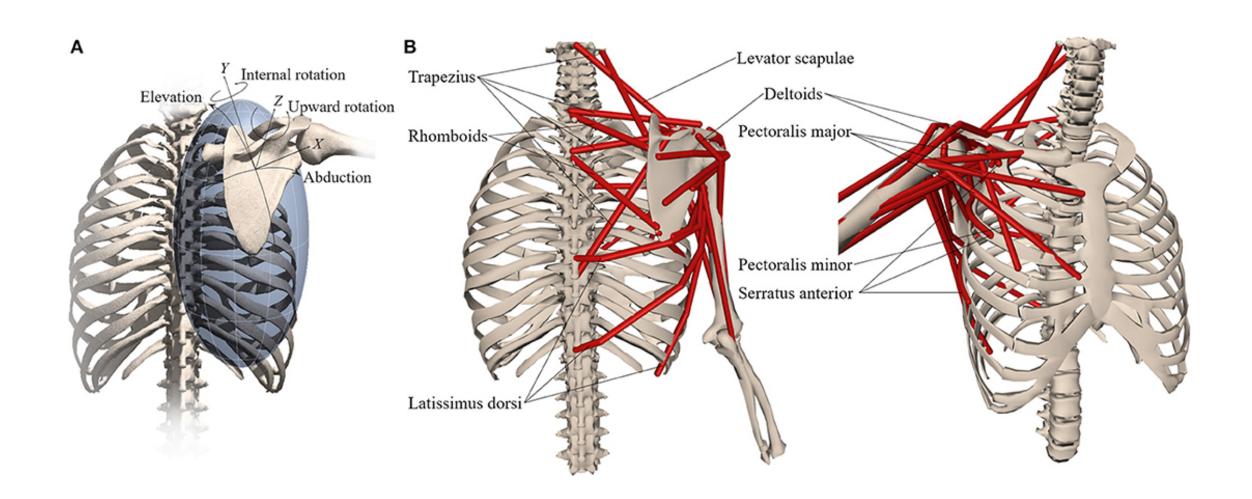
e.g. SMPL



23 ball-and-socket joints

Easy to simulate, but not biomechanically accurate

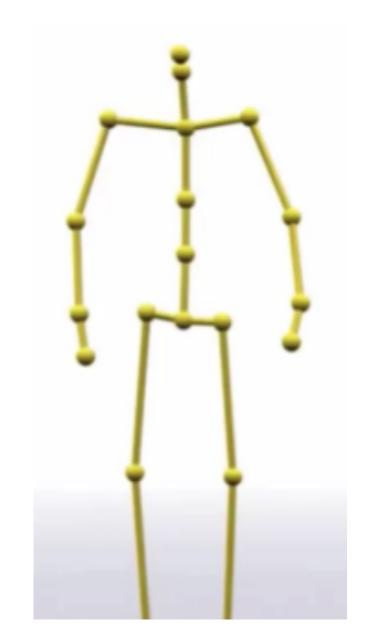
Detailed Biomechanics Models & Simulations



Not fast & robust enough for large-scale training & synthetic data generation

The Tale of Two Simulation Spaces

Detailed, Anatomical



Simple, abstract

The Tale of Two Simulation Spaces

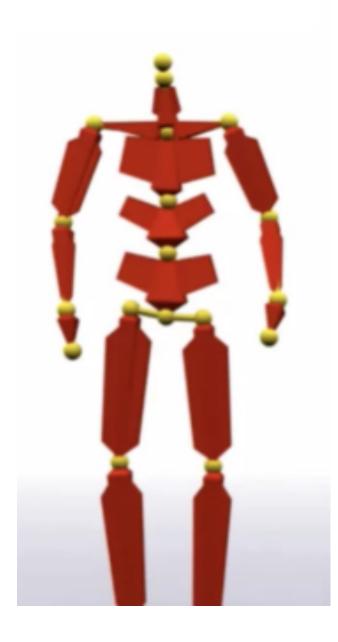
Detailed, Anatomical

Simple, abstract

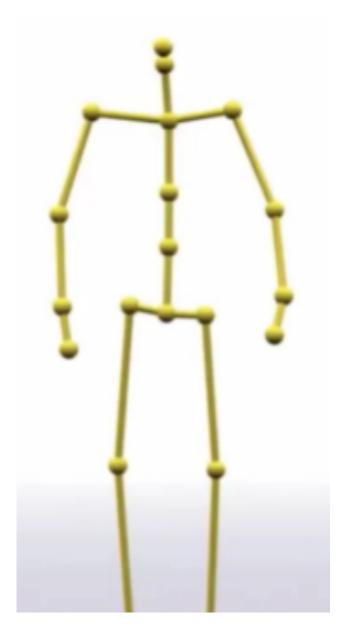
The Tale of Two Simulation Spaces

Detailed, Anatomical

Simple, abstract

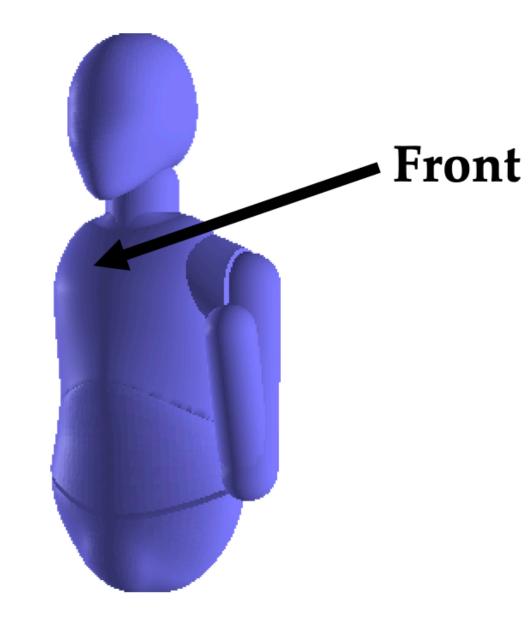


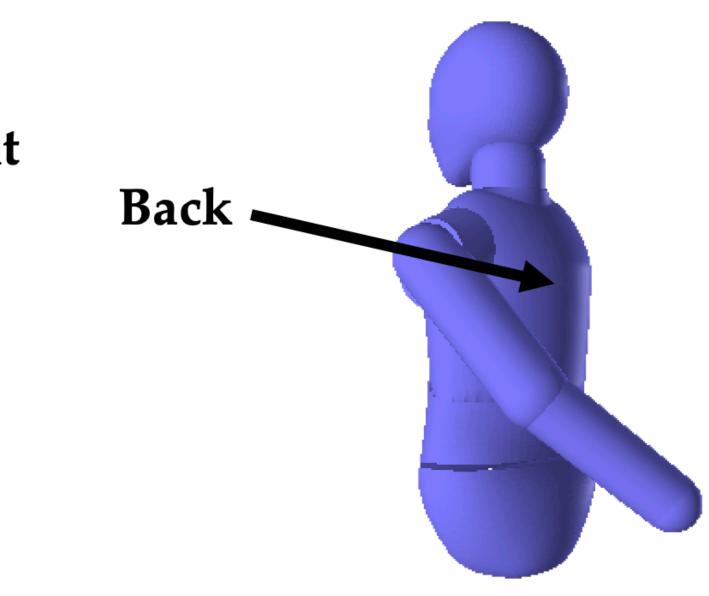
TTO WITH SA LEY



Example #1: joint limit (RoM) depends on other joints

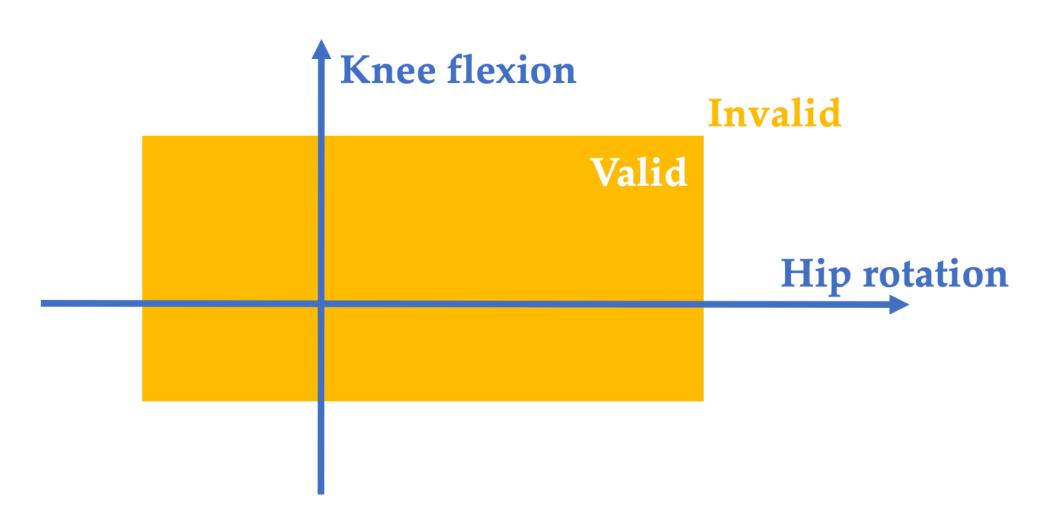
Smaller elbow range when the arm is behind the back.





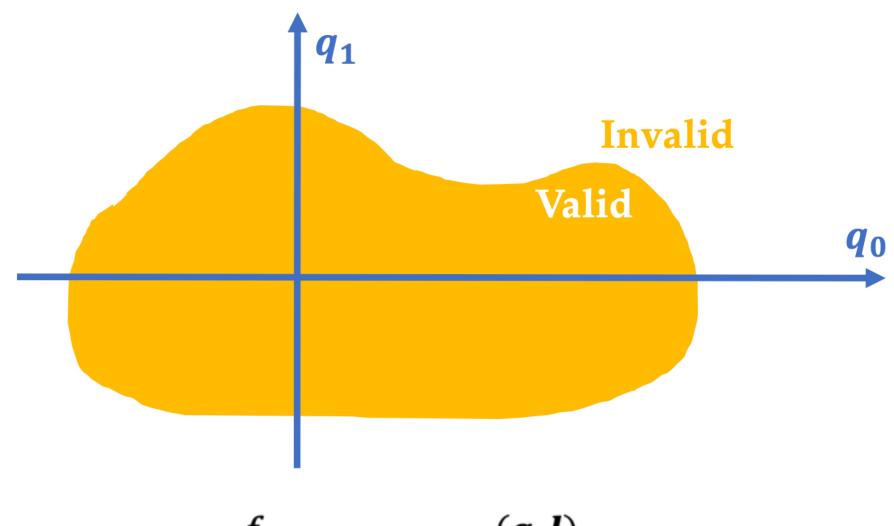
Example #1: joint limit (RoM) depends on other joints

Heuristic Boxed Limits



 $q_{low} \leq q \leq q_{high}$

Realistic"state-dependent" Joint Limits



 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

Example #2: torque capability is state-dependent

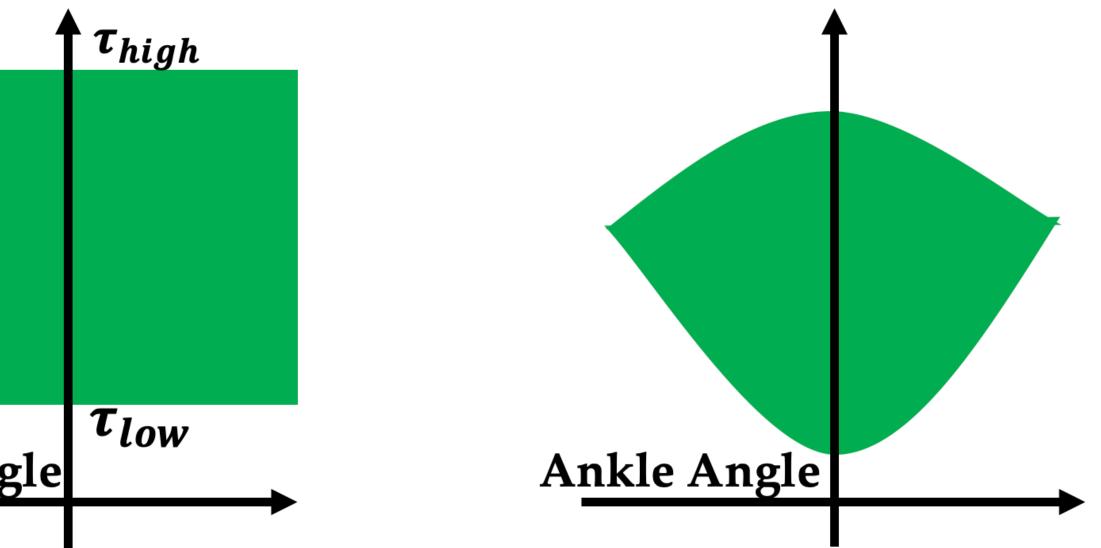
Heuristic Boxed Limits

Ankle Angle

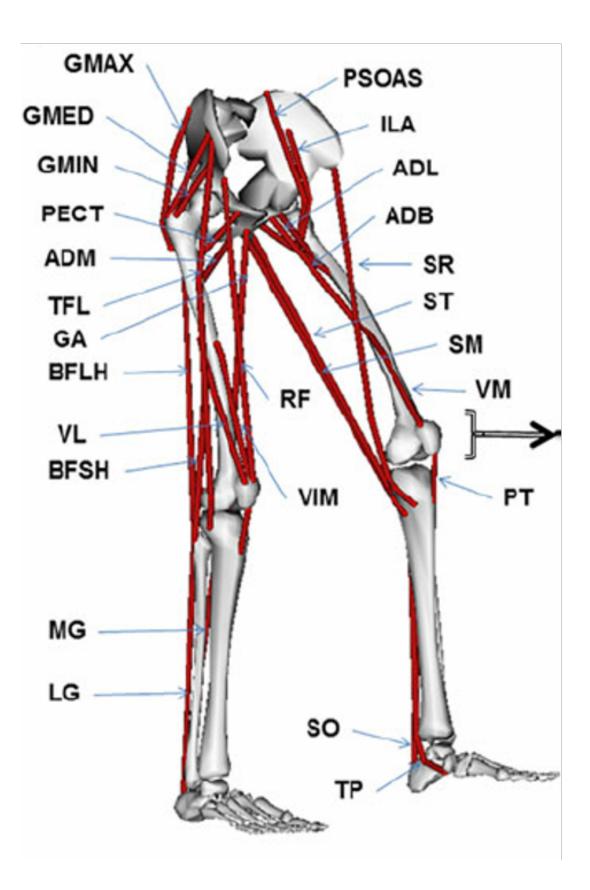
Self-defense

State-dependent Joint Limits

Feasible Ankle Torque τ



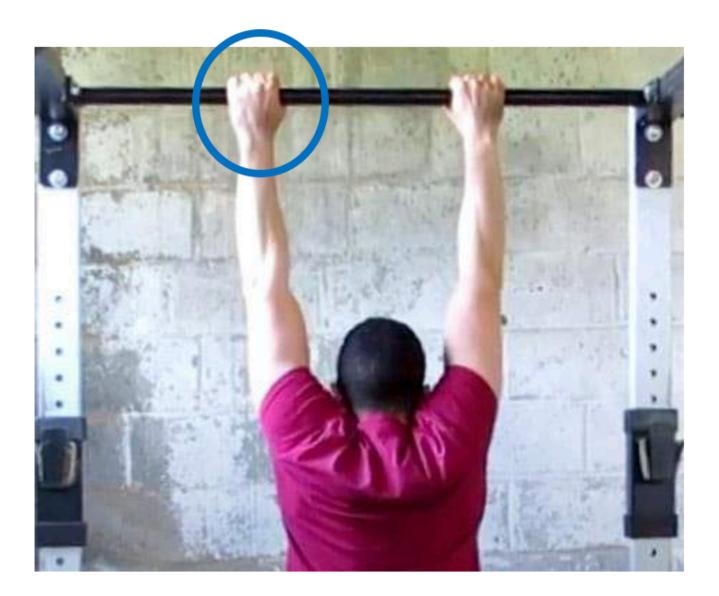
Example #2: torque capacity also depends on other joints



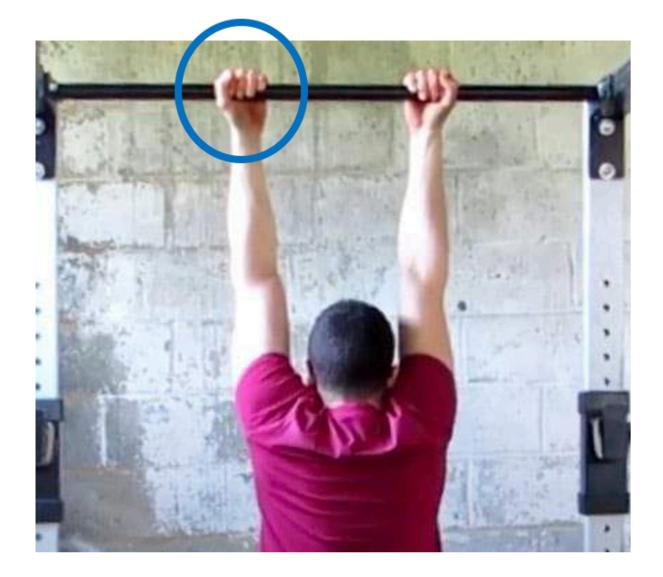
Each muscle spans multiple joints, and multiple muscles interplay at each joint

Example #3: metabolic rate is state dependent

"Same torque, different effort"



Pull-up



Chin-up

Standard Motion Control Formulation in "SMPL" Space

General to any task and

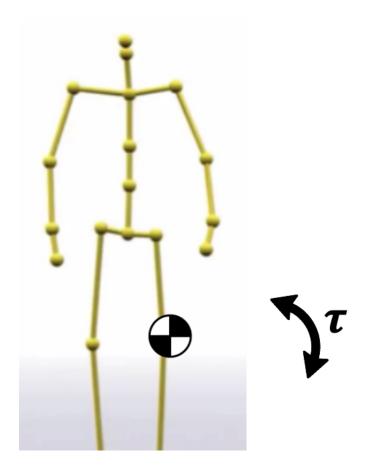
task objective C_{task}

 $\boldsymbol{\tau}$: Joint Torques min τ subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$

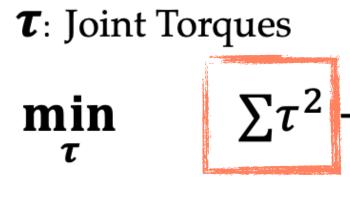
 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$



Standard Motion Control Formulation in "SMPL" Space

Control / Energy

Regularization



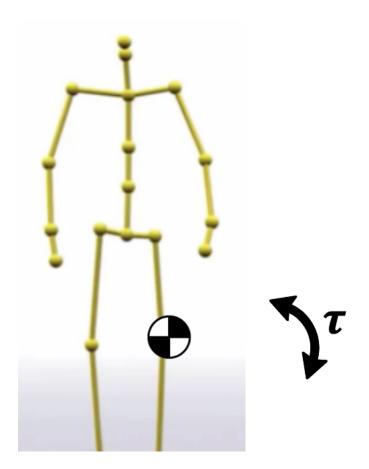
subject to

 $\tau_{low} \leq \tau \leq \tau_{high}$

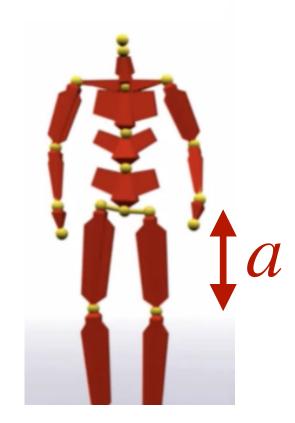
 $q_{low} \leq q \leq q_{high}$

 $\Sigma \tau^2 + c_{task}(q)$

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$



In Comparison to Detailed Anatomical Simulation



a: Muscle Activations

 $\min_{a} \sum a^2 + c_{task}(q)$

subject to

$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $f_{muscle-dynamics}(a, l, \dot{l})$ $0 \le a \le 1$ $f_{bone-ligaments}(q, l)$

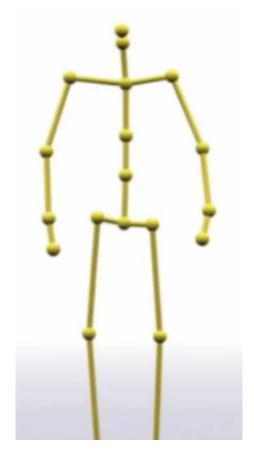
Expectedly, discrepancies in defining energy cost and constraints (e.g. capability limits)

$$\boldsymbol{\tau}: \text{ Joint Torques}$$
$$\boldsymbol{min}_{\boldsymbol{\tau}} \qquad \sum \tau^2 + c_{task}(q)$$

subject to

$$\ddot{m{q}} = f_{skel-dynamics}(m{q}, \dot{m{q}})$$
 $au_{low} \leq au \leq au_{high}$
 $m{q}_{low} \leq m{q} \leq m{q}_{high}$

Why Learning? A "Lift-up" in Simulation Space



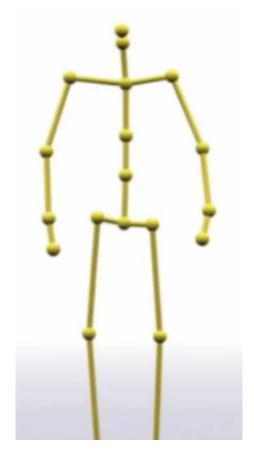
Simpler Abstract Space

Detailed Anatomical Space

ML to supply "compressed" anatomical details

Faster to simulate & Easier to solve control

Intuition: why simple sim can be as accurate as detailed sim?



Simpler Abstract Space

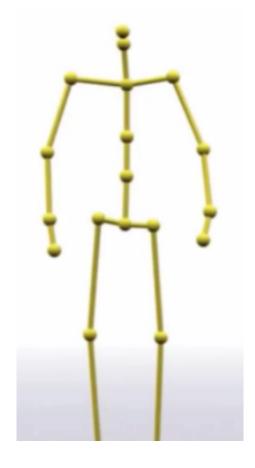
Detailed Anatomical Space

If final output is still skeletal motion

Anatomical space is redundant

- 90 leg muscles -> 10 DoFs
- Many bones -> a few DoFs at shoulder

"State-dependency" to Bridge Simulation Spaces

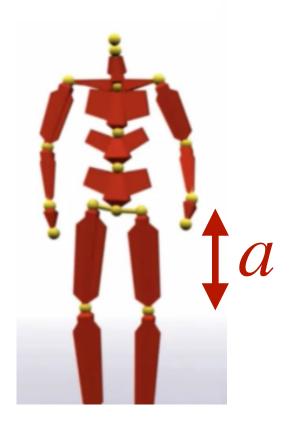


Simpler Abstract Space



Detailed Anatomical Space

Learning "state-dependent" functions



a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

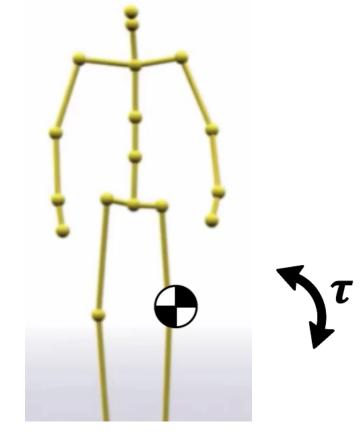
 $\min_{\tau} \quad \sum_{\tau} \tau^2 + c_{task}(q)$

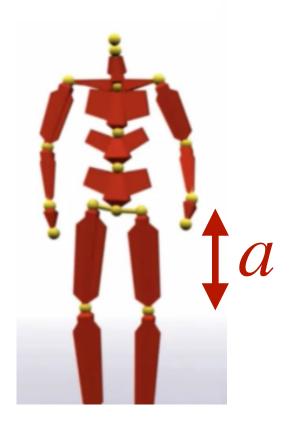
subject to

$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $q_{low} \leq q \leq q_{high}$





a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

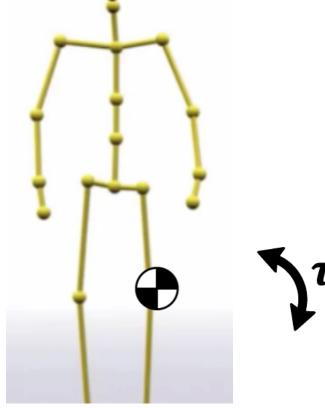
 $\min_{\tau} \quad \sum_{\tau} \tau^2 + c_{task}(q)$

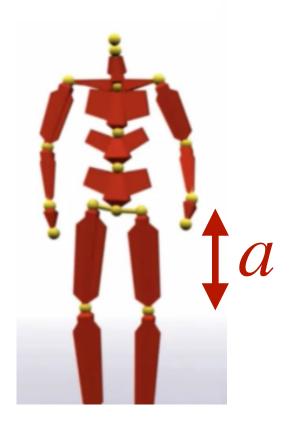
subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $\tau_{low} \leq \tau \leq \tau_{high}$

 $L(\mathbf{q}) > \mathbf{0}$





a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

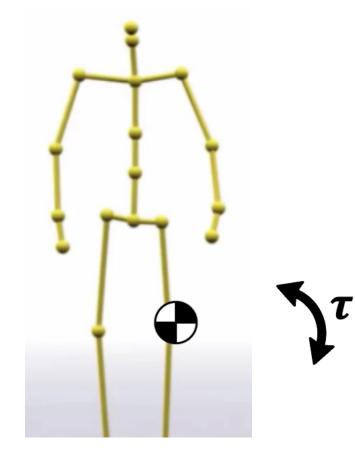
 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau}) + c_{task}(\boldsymbol{q})$

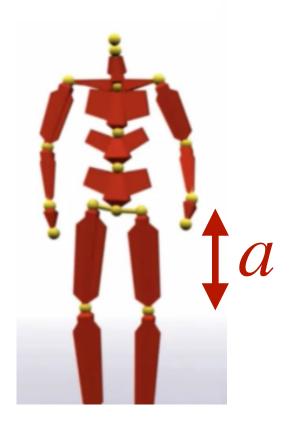
subject to



$$\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

 $\tau_{low} \leq \tau \leq \tau_{high}$

L(q) > 0



a: Muscle Activations

 $\min_{a} \quad \sum a^2 + c_{task}(q)$

subject to

 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

 $f_{muscle-dynamics}(\boldsymbol{a}, \boldsymbol{l}, \dot{\boldsymbol{l}})$

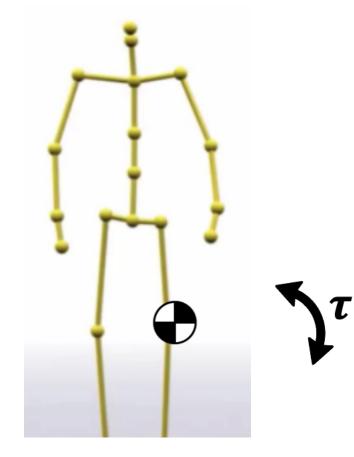
 $0 \le a \le 1$

 $f_{bone-ligaments}(\boldsymbol{q}, \boldsymbol{l})$

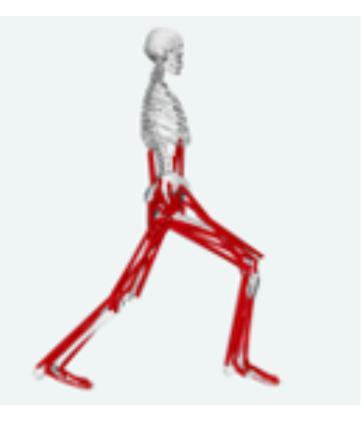
 $oldsymbol{ au}$: Joint Torques

 $\min_{\tau} E(\boldsymbol{q}, \boldsymbol{\dot{q}}, \boldsymbol{\tau}) + c_{task}(\boldsymbol{q})$

subject to

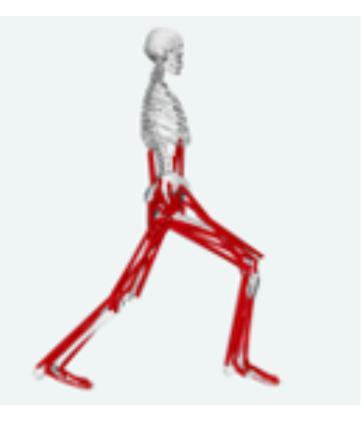


 $\ddot{\boldsymbol{q}} = f_{skel-dynamics}(\boldsymbol{q}, \dot{\boldsymbol{q}})$ $\mathbf{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau}) \leq 0$ $\mathbf{L}(\mathbf{q}) > \mathbf{0}$



Learn from detailed muscle simulator

Learn from real data



Learn from detailed muscle simulator

Learn from real data

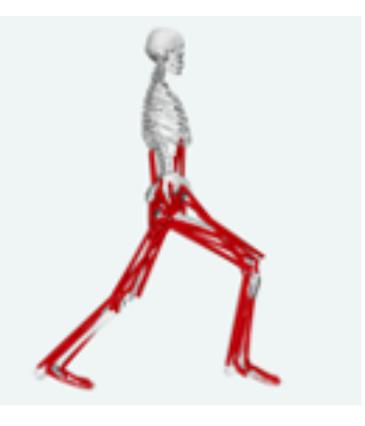
 $E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})$

Learn from detailed muscle simulator

Learn from real data

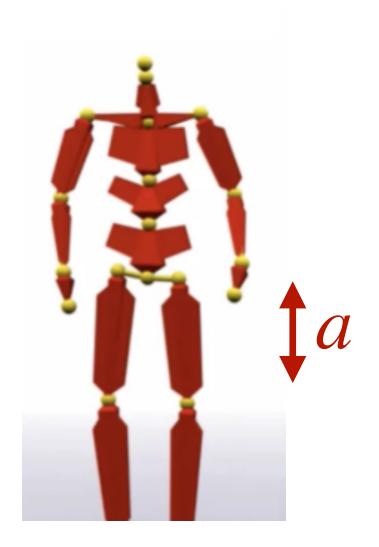
 $E(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})$

 $C(q, \dot{q}, \tau) \leq 0$



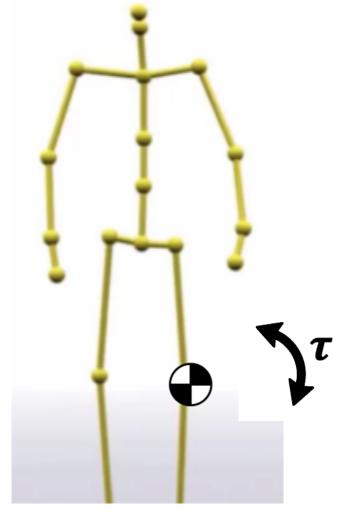
Learn from detailed muscle simulator

Learn from real data

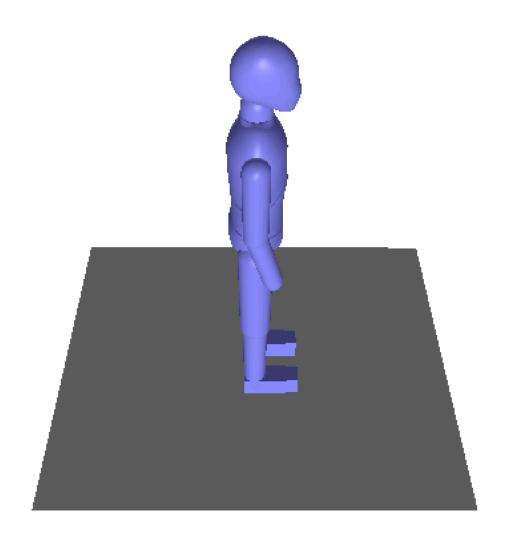


We can prove both control problems now have a same optimal value (equivalency)

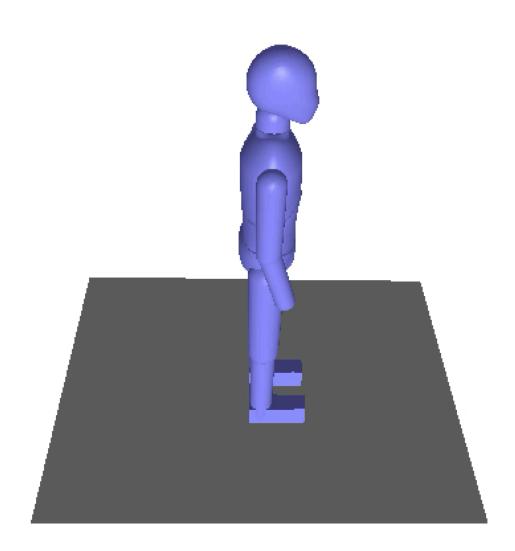
Augmented with learned state-dependent functions



No Motion Control, Free-fall Simulation

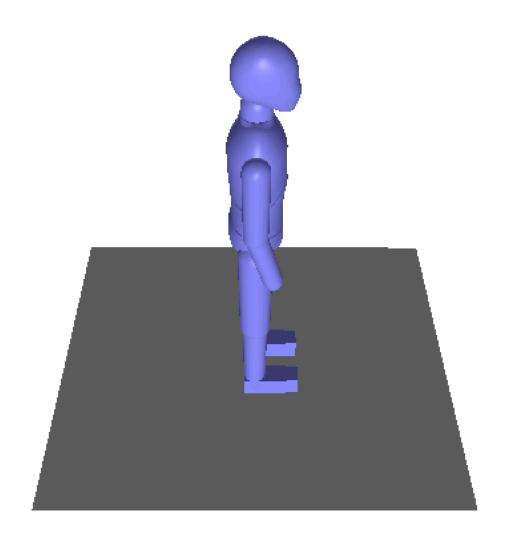


With learned L(q) > 0

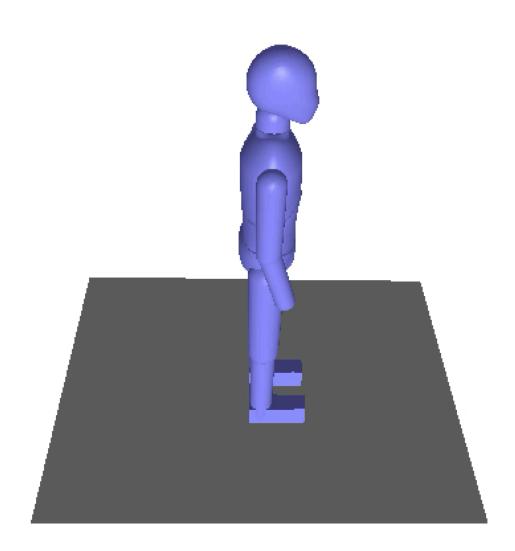


Without learned L(q) > 0

No Motion Control, Free-fall Simulation

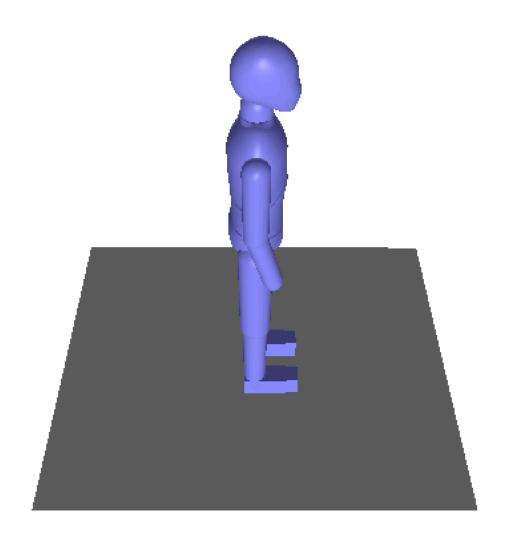


With learned L(q) > 0

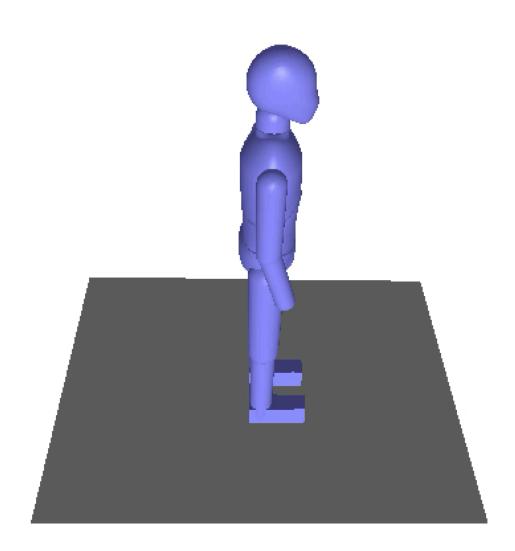


Without learned L(q) > 0

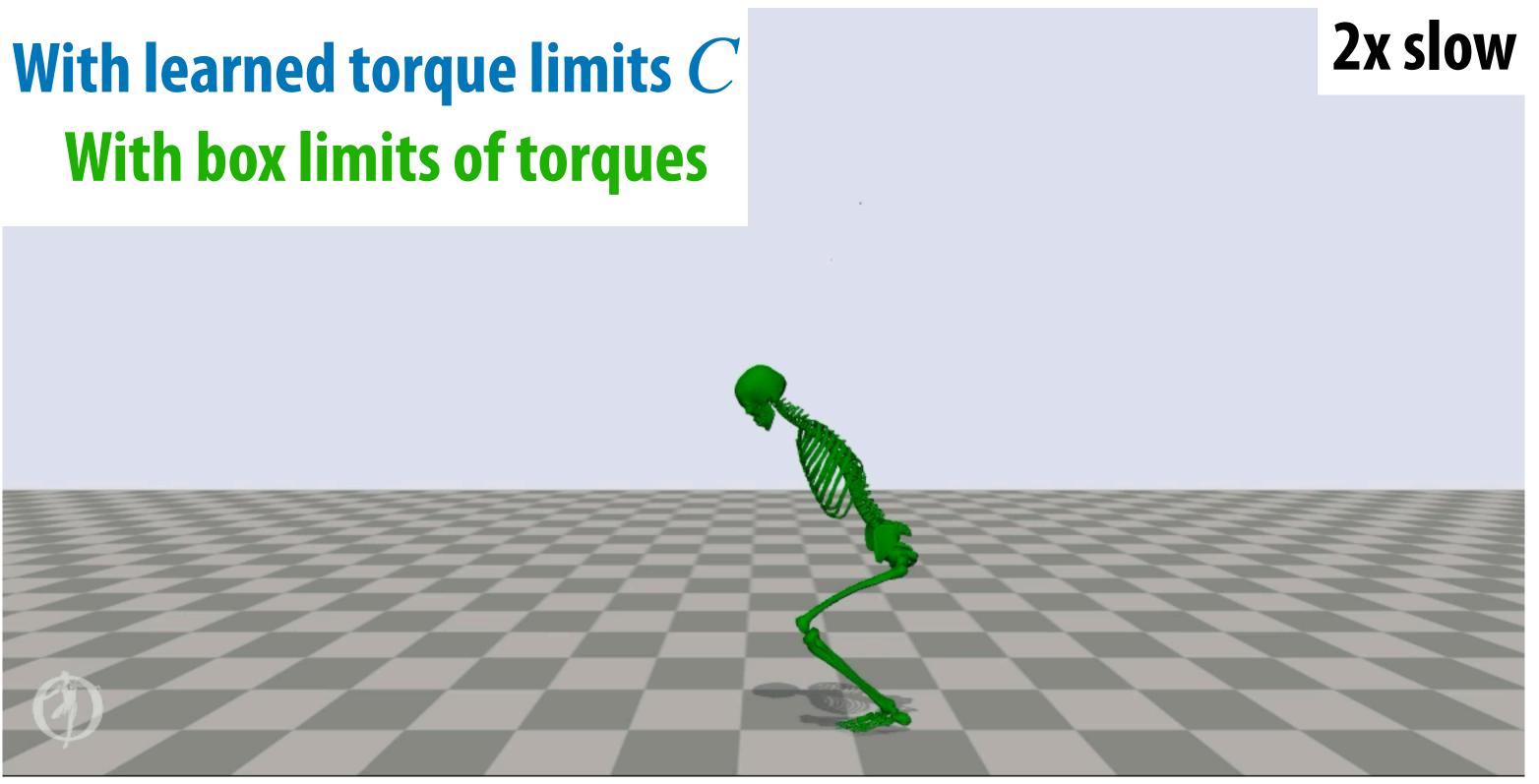
No Motion Control, Free-fall Simulation

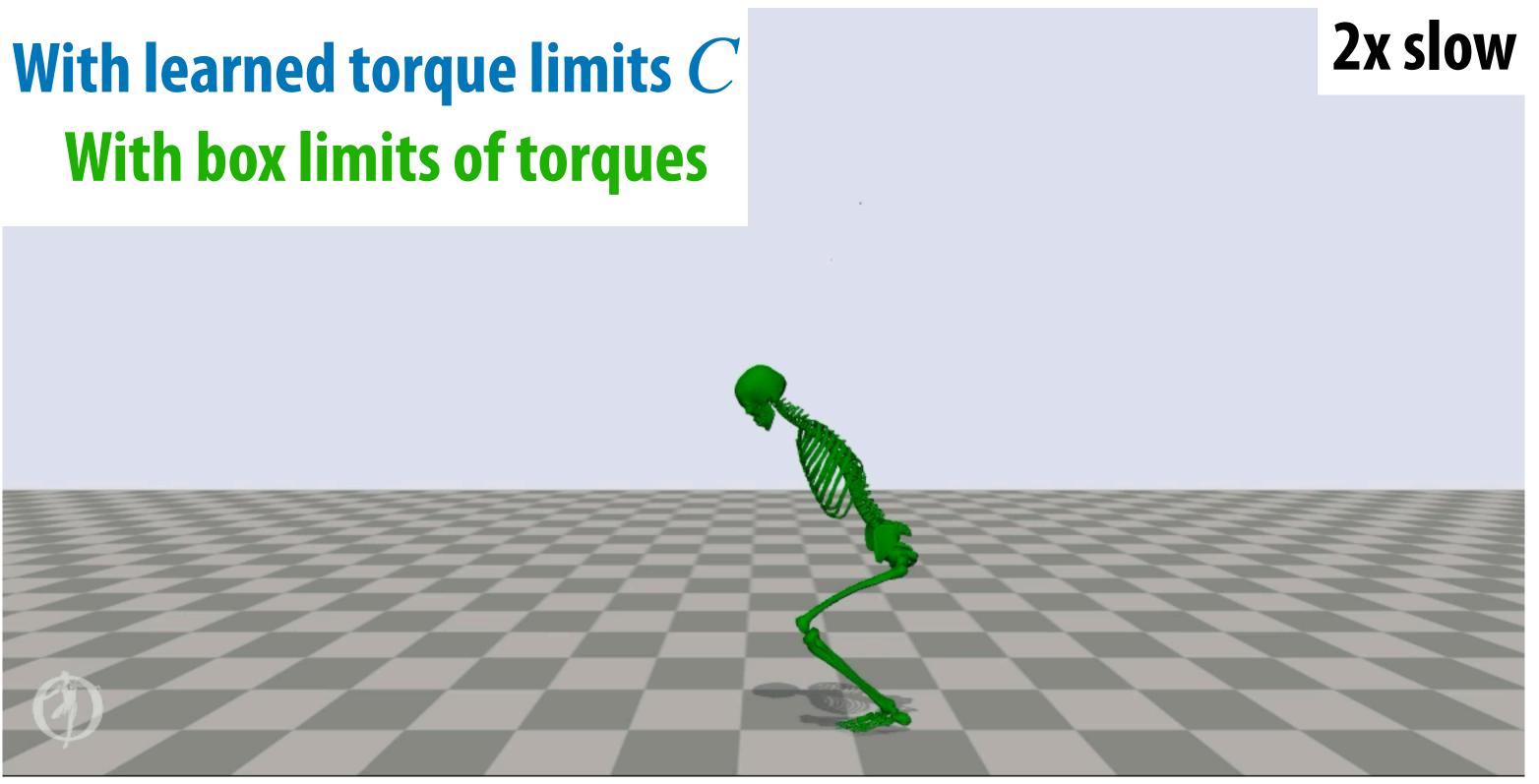


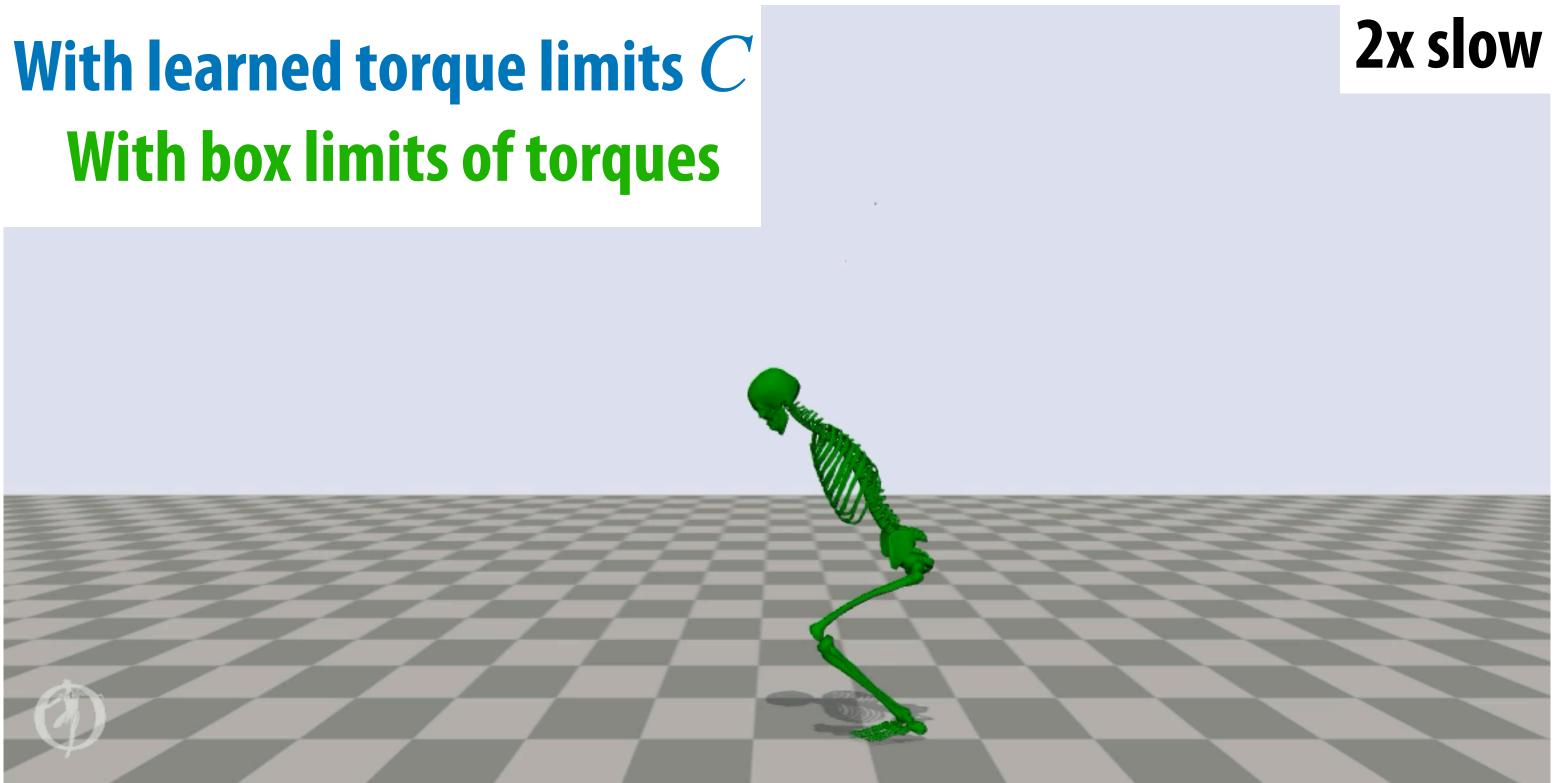
With learned L(q) > 0



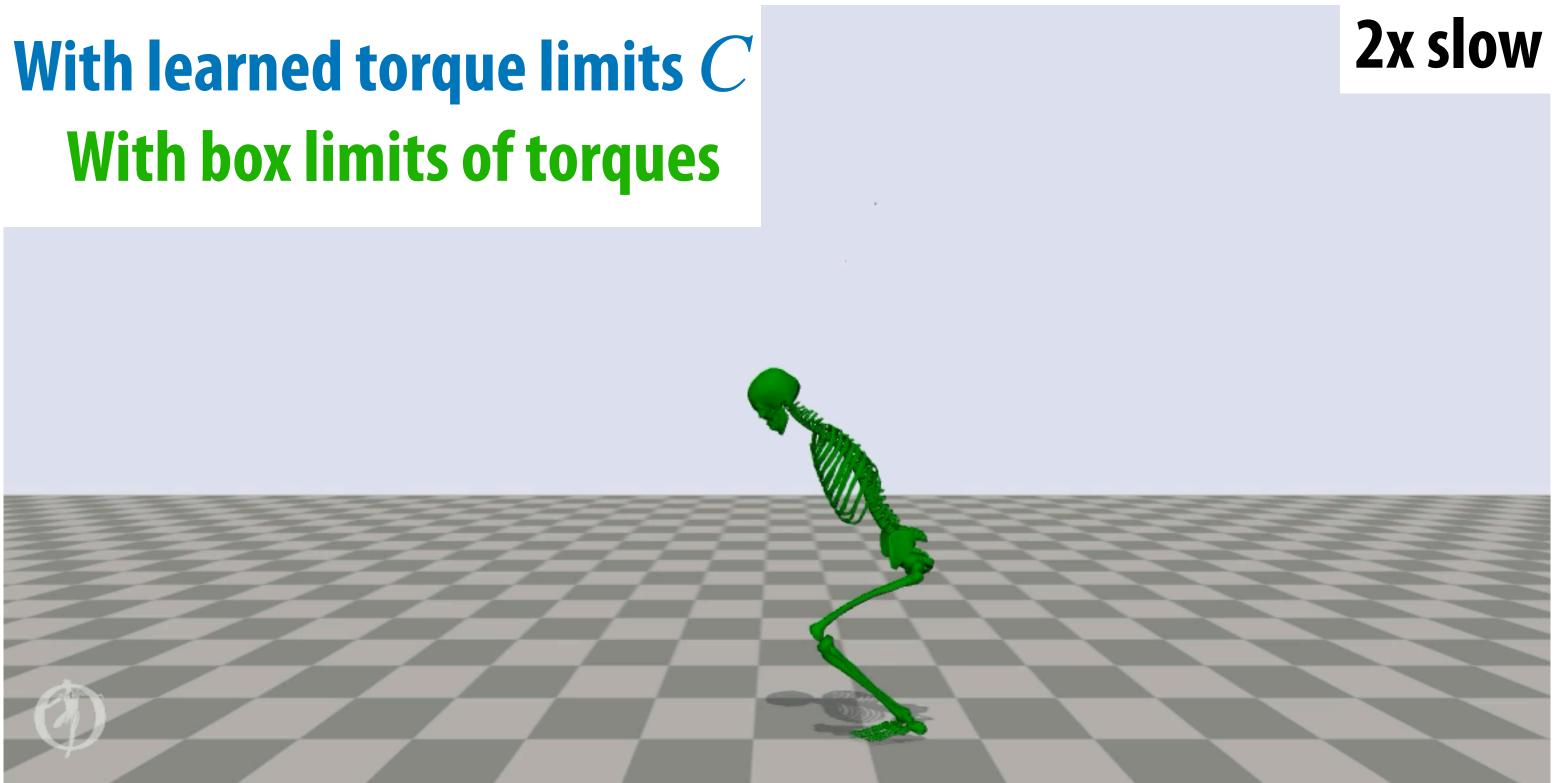
Without learned L(q) > 0



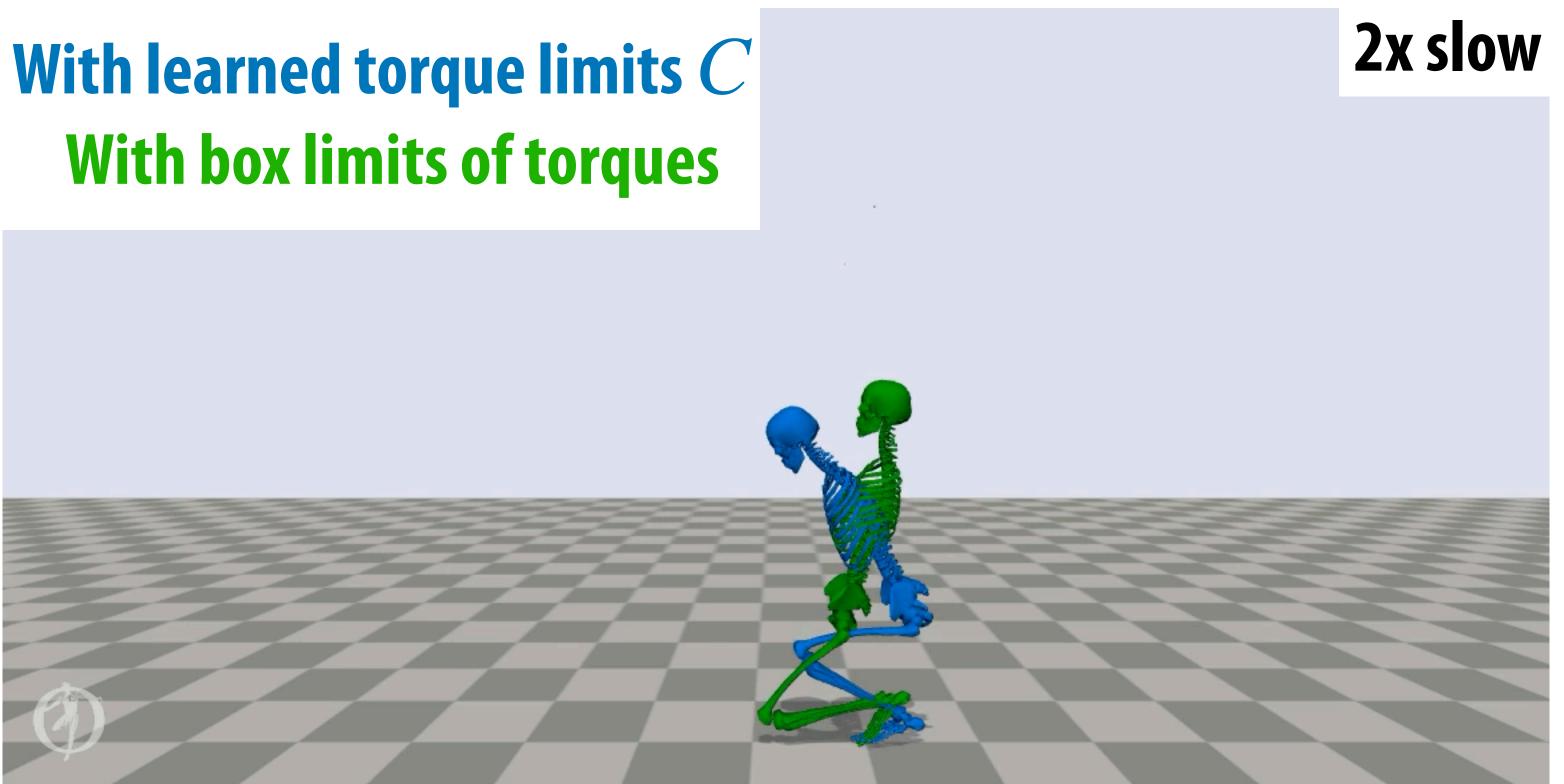




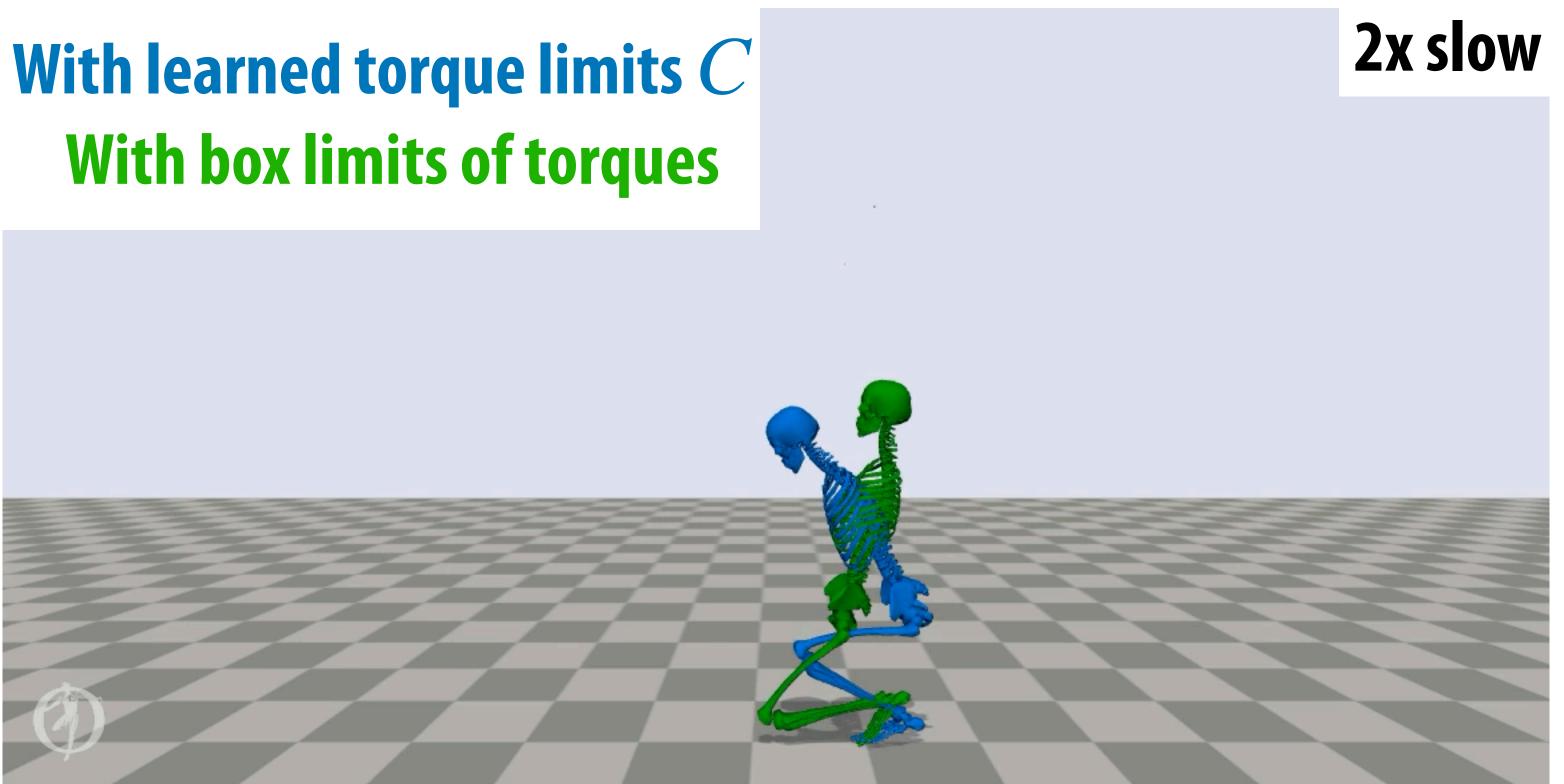
Can jump higher if bends down more



Can jump higher if bends down more



Humans don't do that because small torque limit during hyper-flexion



Humans don't do that because small torque limit during hyper-flexion

With learned torque limits CWith box limits of torques

Similarly, ours don't hyper-flex

With learned torque limits CWith box limits of torques

Similarly, ours don't hyper-flex

Almost identical solution compared with detailed muscle simulation Ours use 70% less computation & fewer iterations

Ours Detailed muscle models

Almost identical solution compared with detailed muscle simulation Ours use 70% less computation & fewer iterations

Ours Detailed muscle models

Biomechanically accurate, fast, and easier for solving control

Facilitate large-scale simulations, for training / synthetic data generation

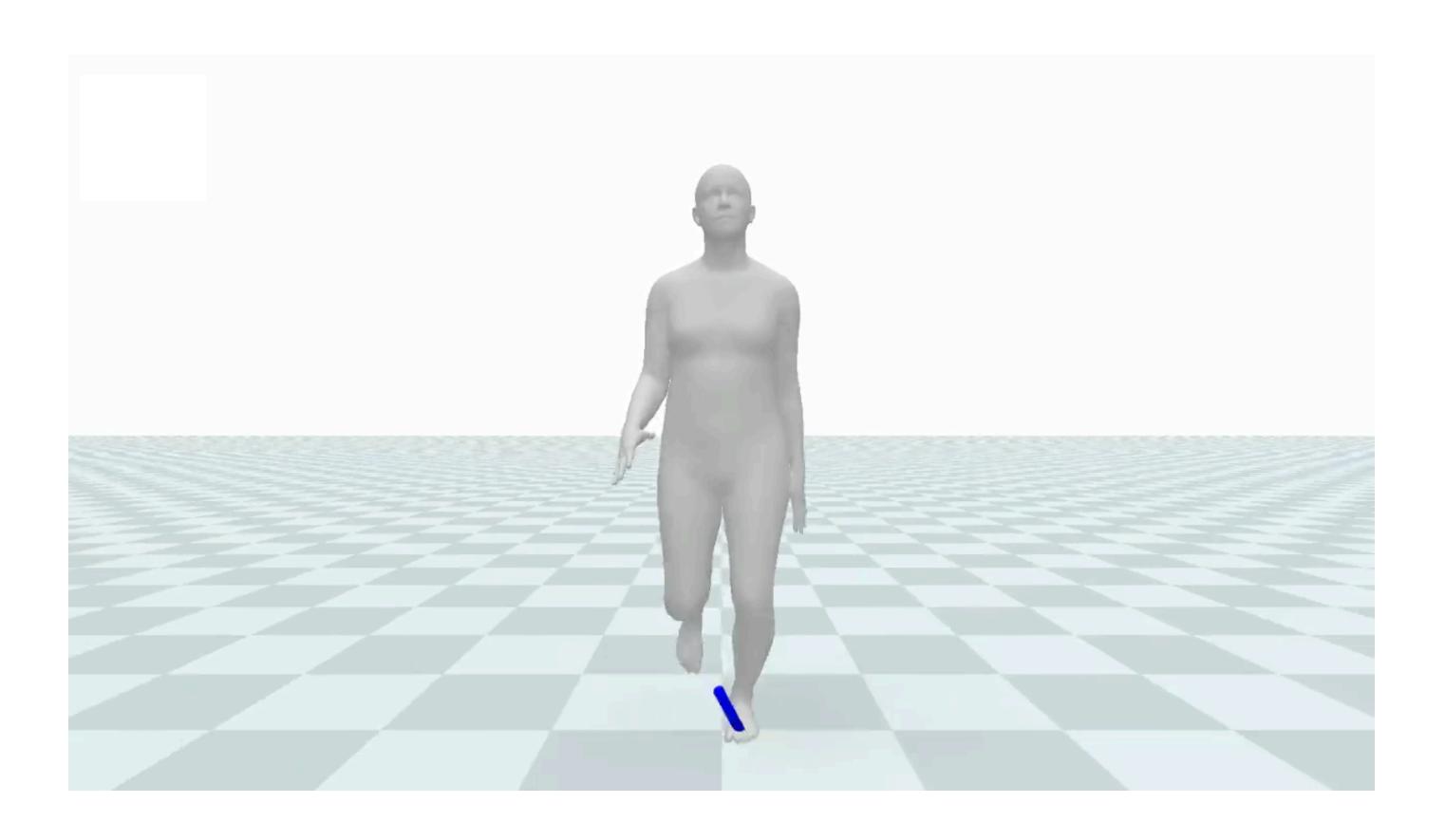
Learned anatomical functions to provably "compress" biomechanics knowledge

Simulation-augmented Generative Motion Model

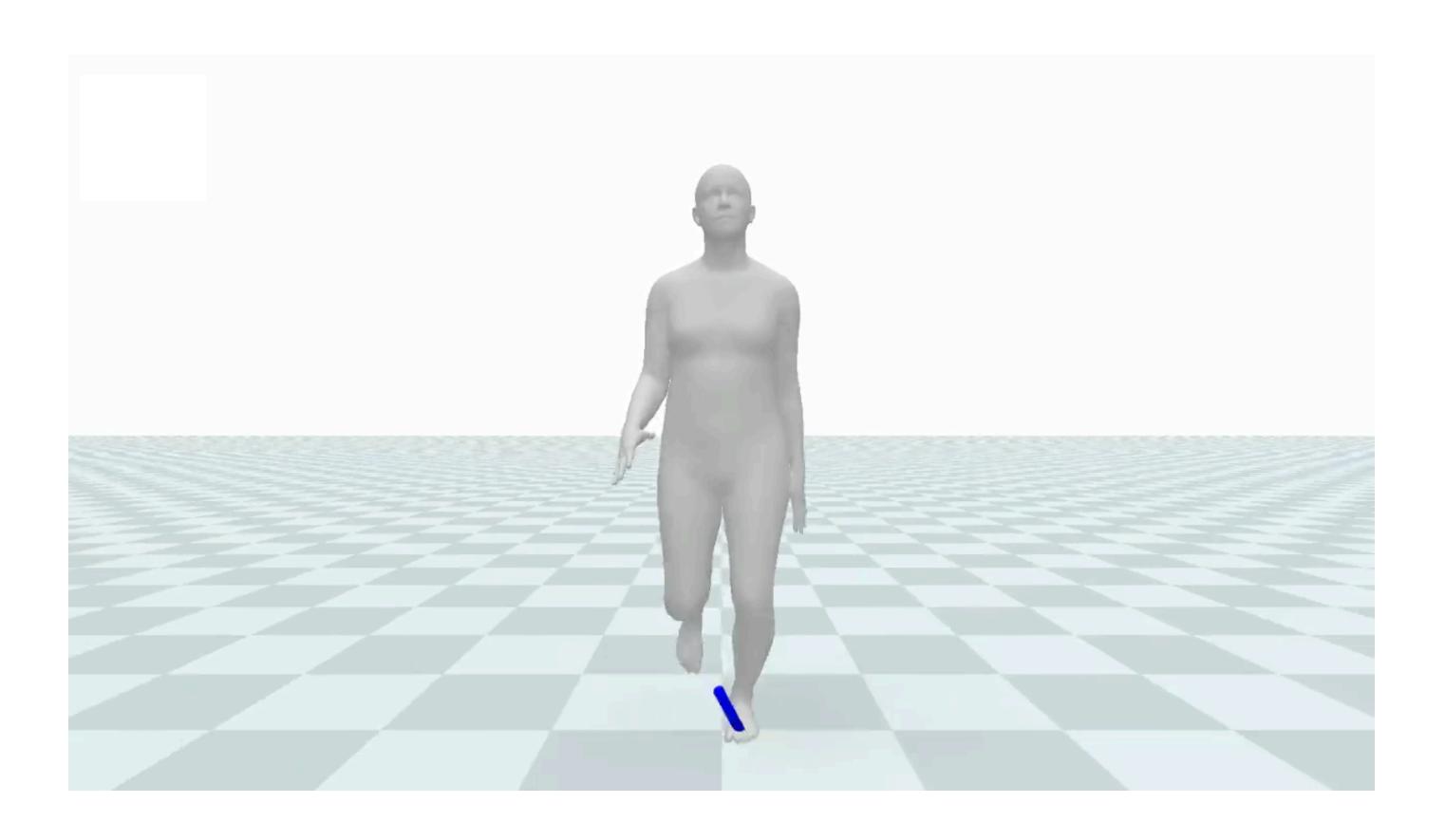
— How to build GenAl motion models that interactively reacts to physics

[Jiang et al] SIGGRAPH Asia '23

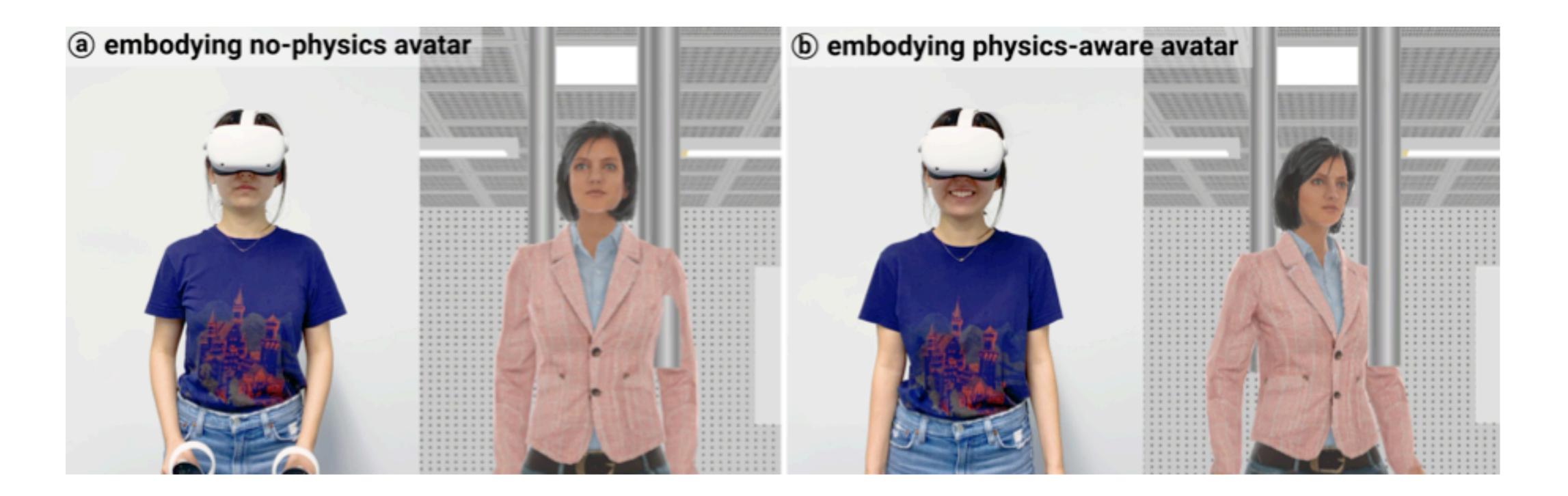
Digital Humans that Understands and Responds to Intuitive Physics



Digital Humans that Understands and Responds to Intuitive Physics



Physics-aware Digital Humans Can:



Improve immersion in AR/VR

Physics-aware Digital Humans Can:

Help train robots / embodied Al agents in simulation

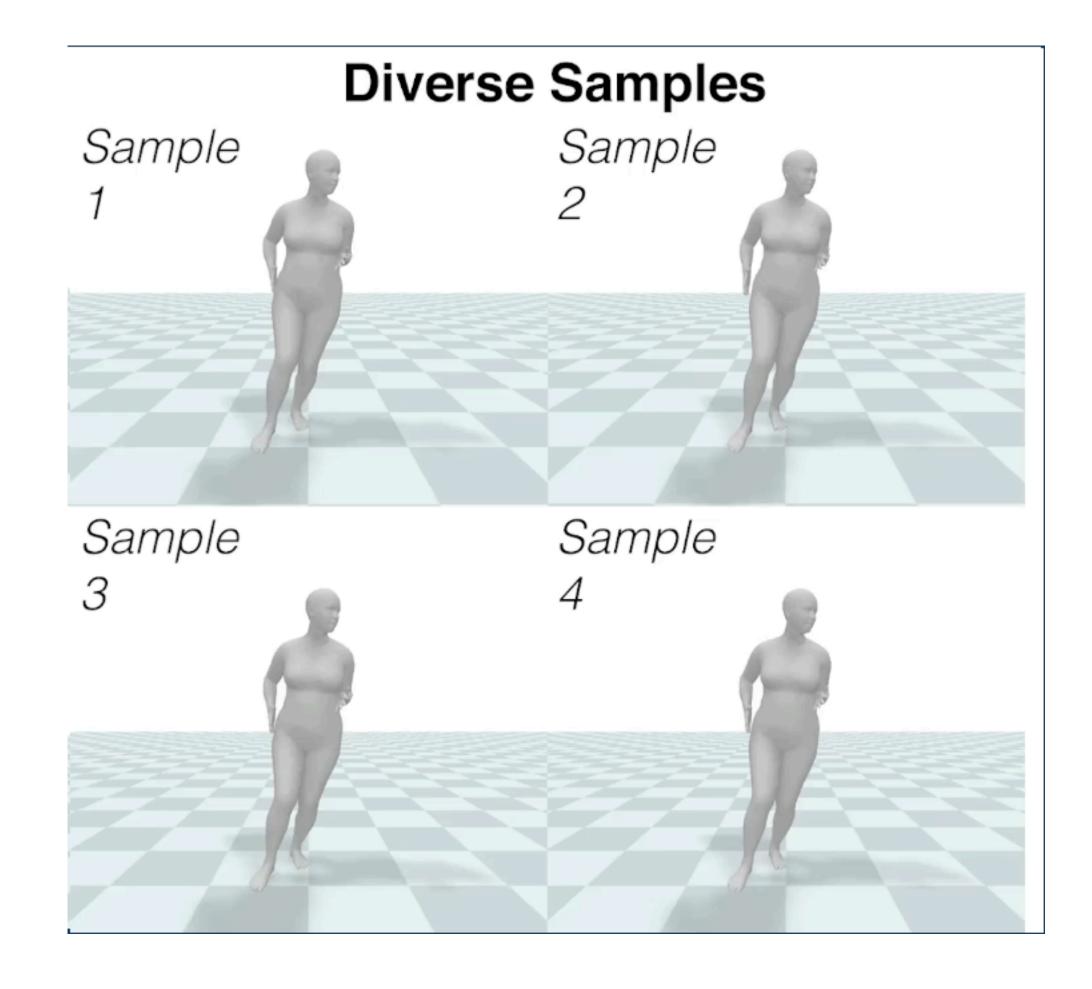
Habitat 3.0, 2023

Physics-aware Digital Humans Can:

Help train robots / embodied Al agents in simulation

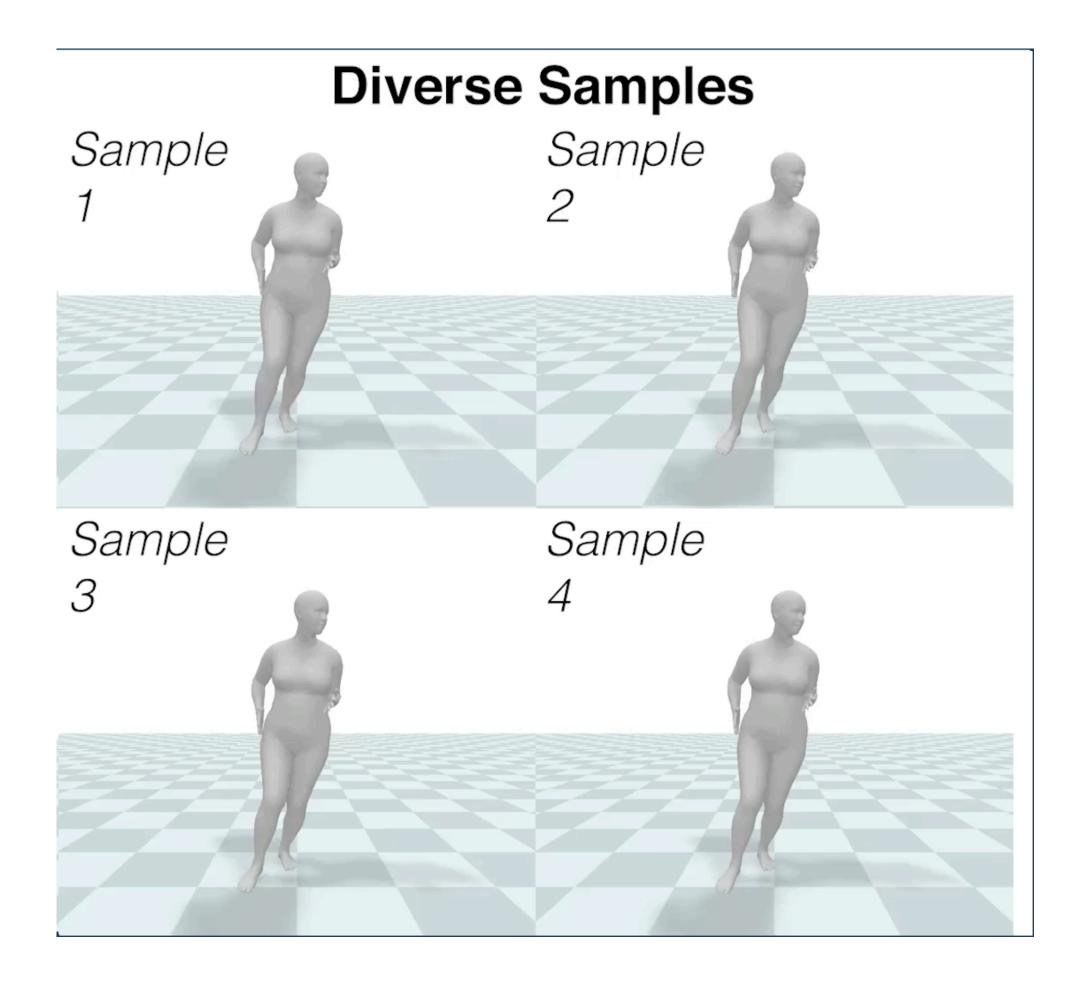
Habitat 3.0, 2023

Generative Models, for Motion



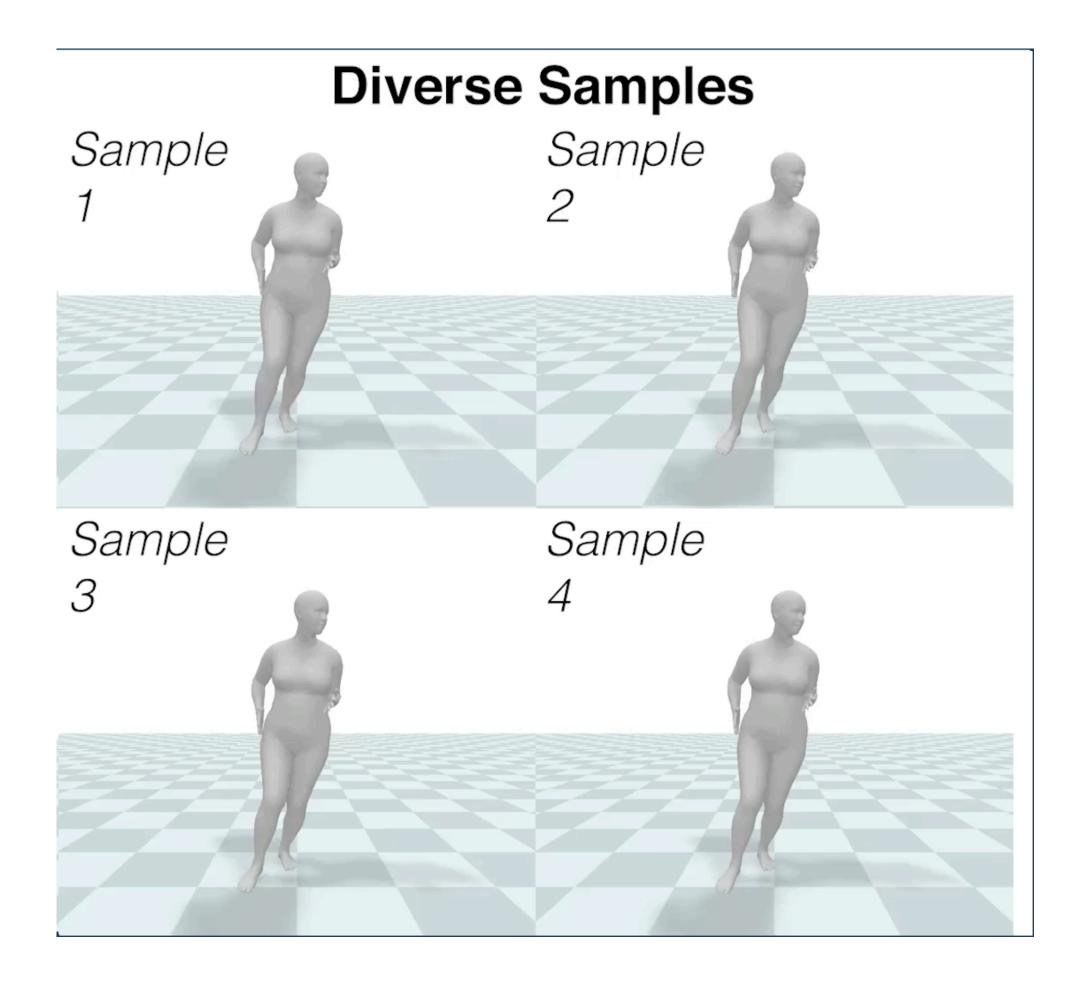
Rempe et al ICCV'21

Same Input, Diverse Output



Rempe et al ICCV'21

Same Input, Diverse Output



Rempe et al ICCV'21

Yes, but does not respond to physical events

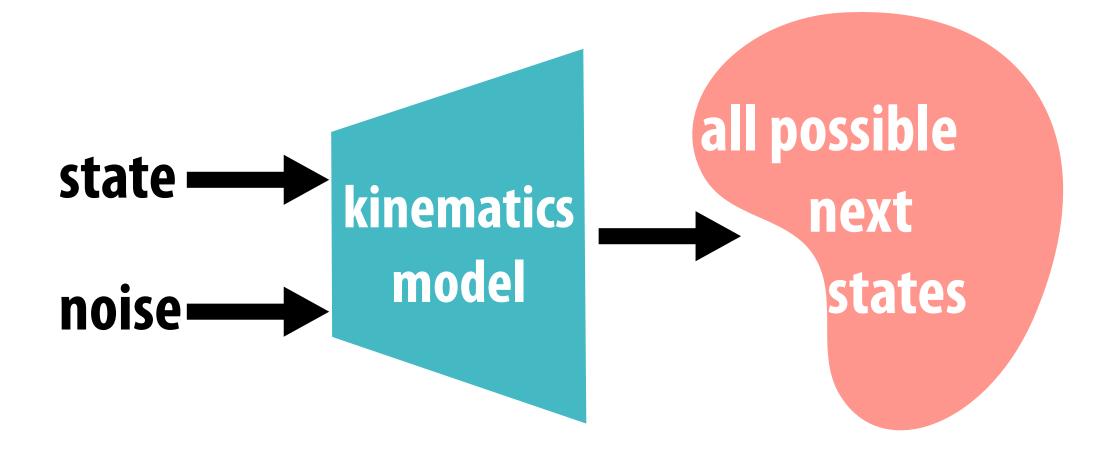
However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

Yes, but does not respond to physical events

However, the character does not respond to the environment, such as being hit by an object or stumbled upon an obstacle

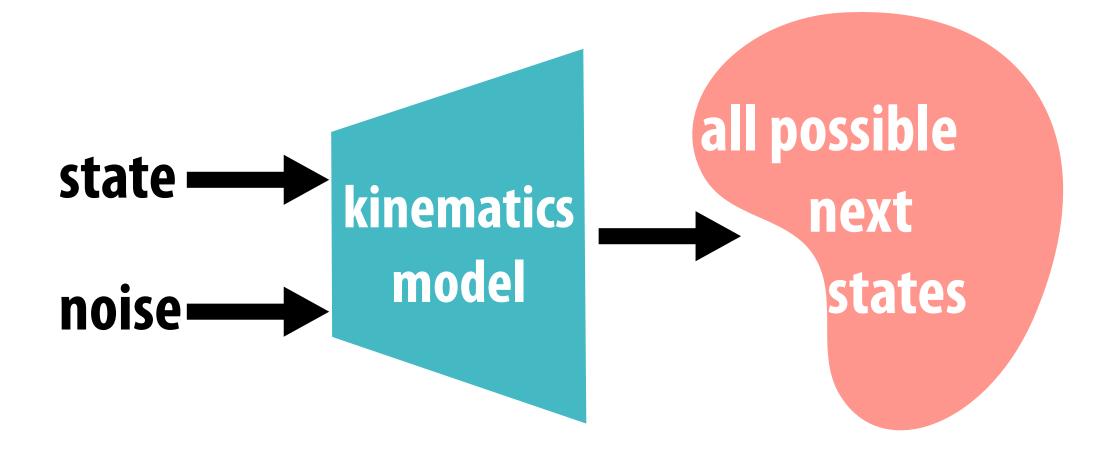
Challenges

1. Formulation does not consider physics



Challenges

Formulation does not consider physics 1.



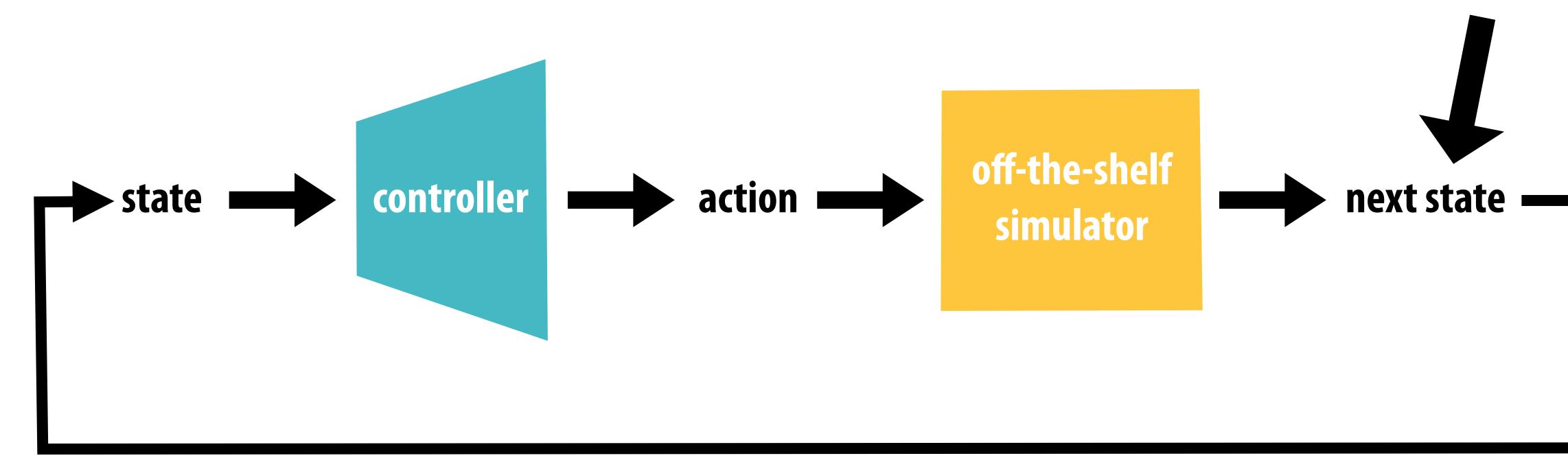
Physical responses data unsafe to capture 2.

Challenges

Formulation does not consider physics 1.

Physical responses data unsafe to capture 2.

Commonly, Off-the-shelf Simulation in Training Loop



Reinforcement / Supervised Learning

Commonly, Off-the-shelf Simulation in Training Loop

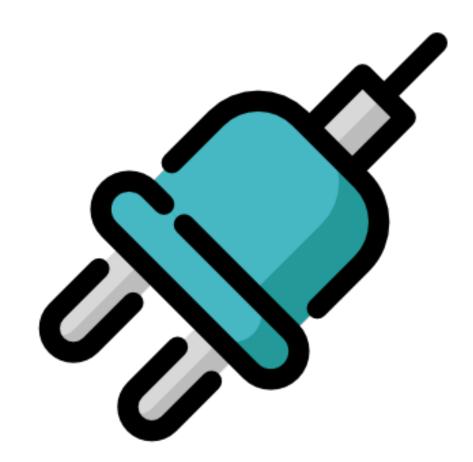
Harder to scale up to diverse motor skills, compared with pure kinematics models

Reinforcement / Supervised Learning

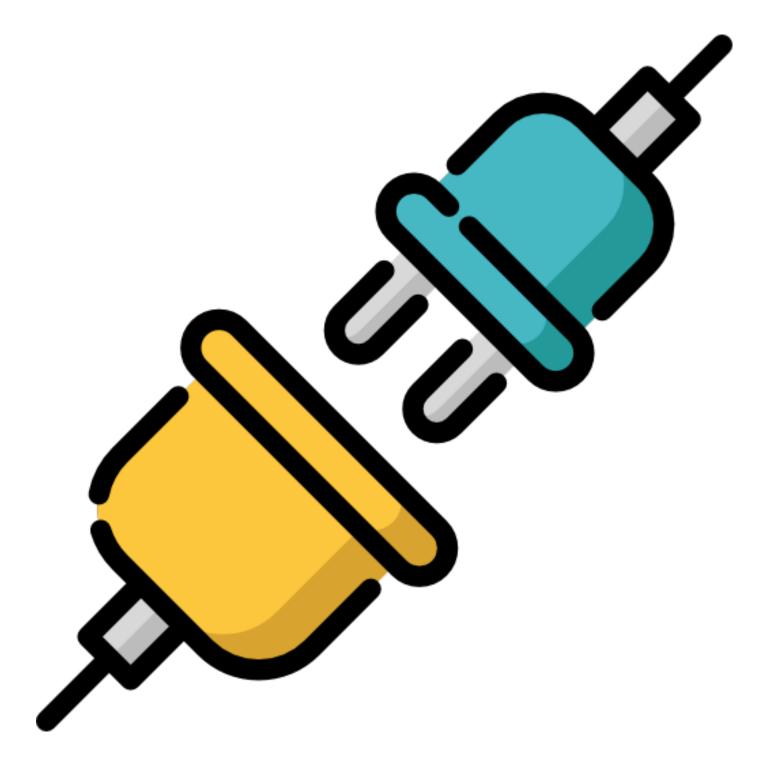
Physics plugin so that no further training is needed?

Physics plugin so that no further training is needed?

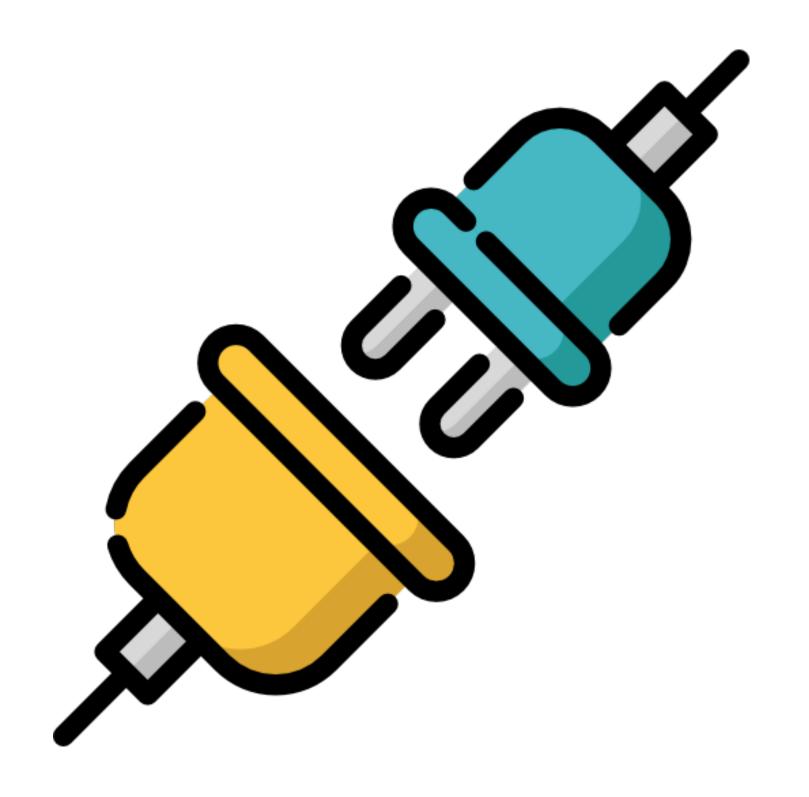
Pre-trained Kinematics Generative Model

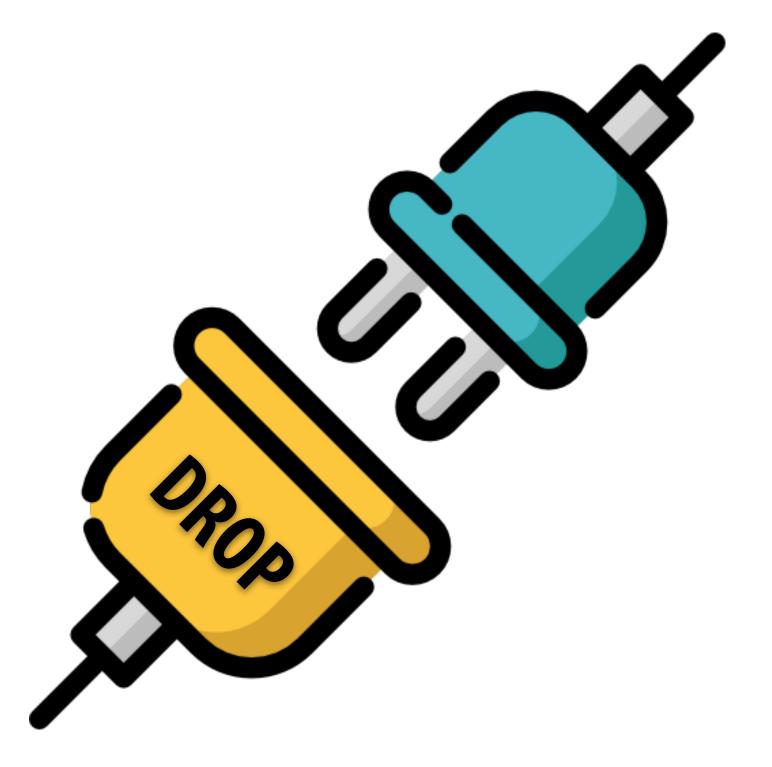


Physics plugin so that no further training is needed?



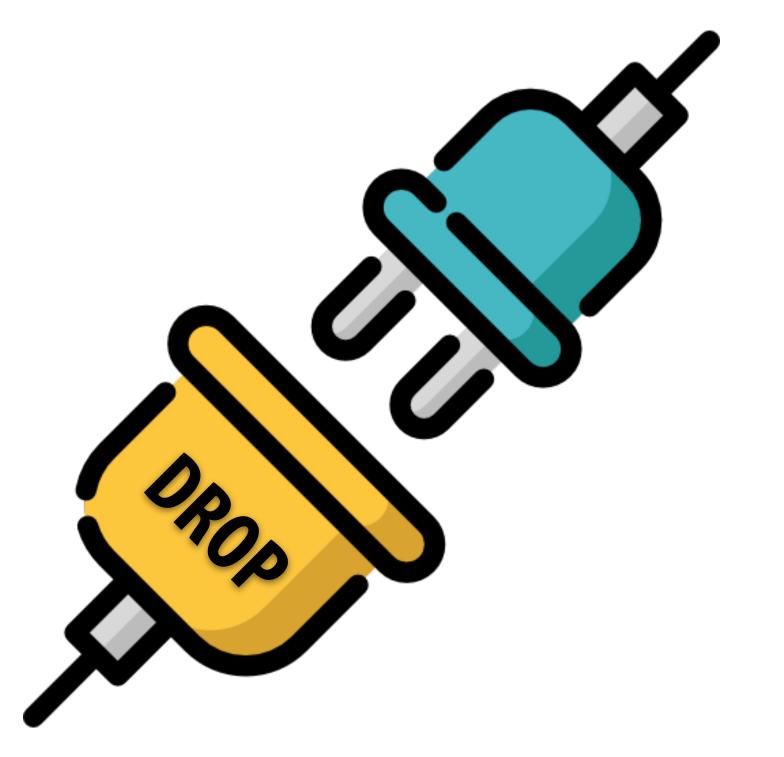
Pre-trained Kinematics Generative Model



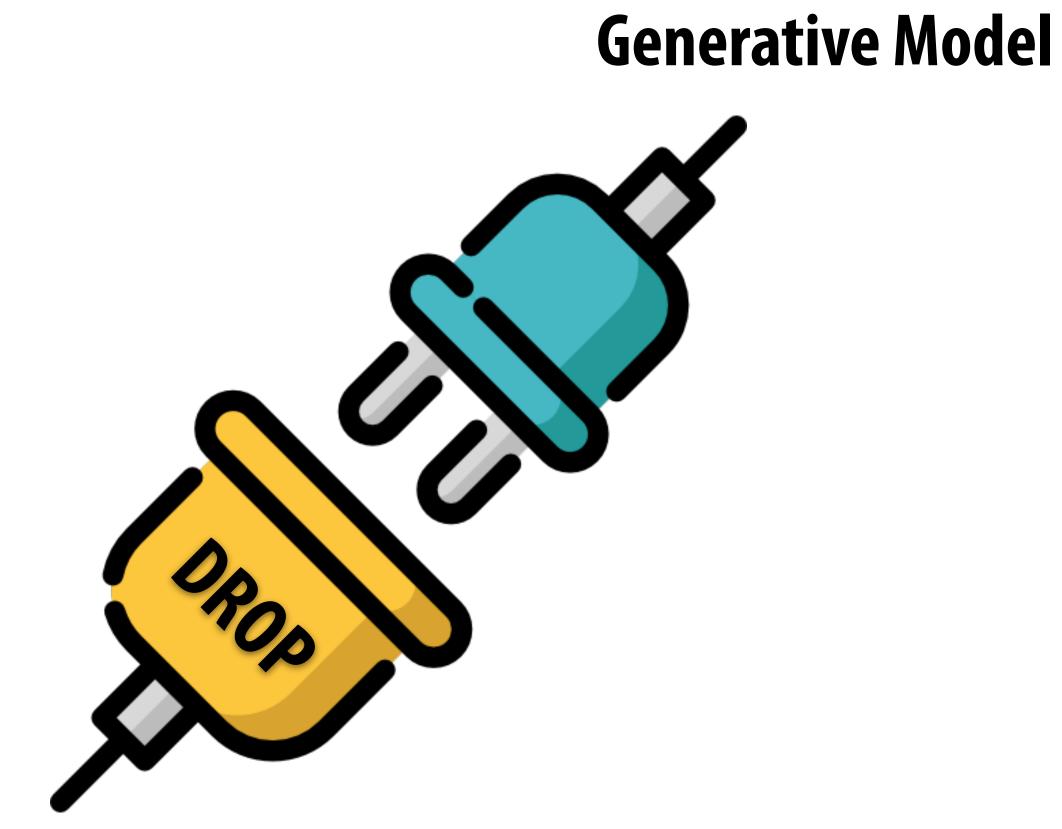


Pre-trained Kinematics Generative Model

Pre-trained Generative Model

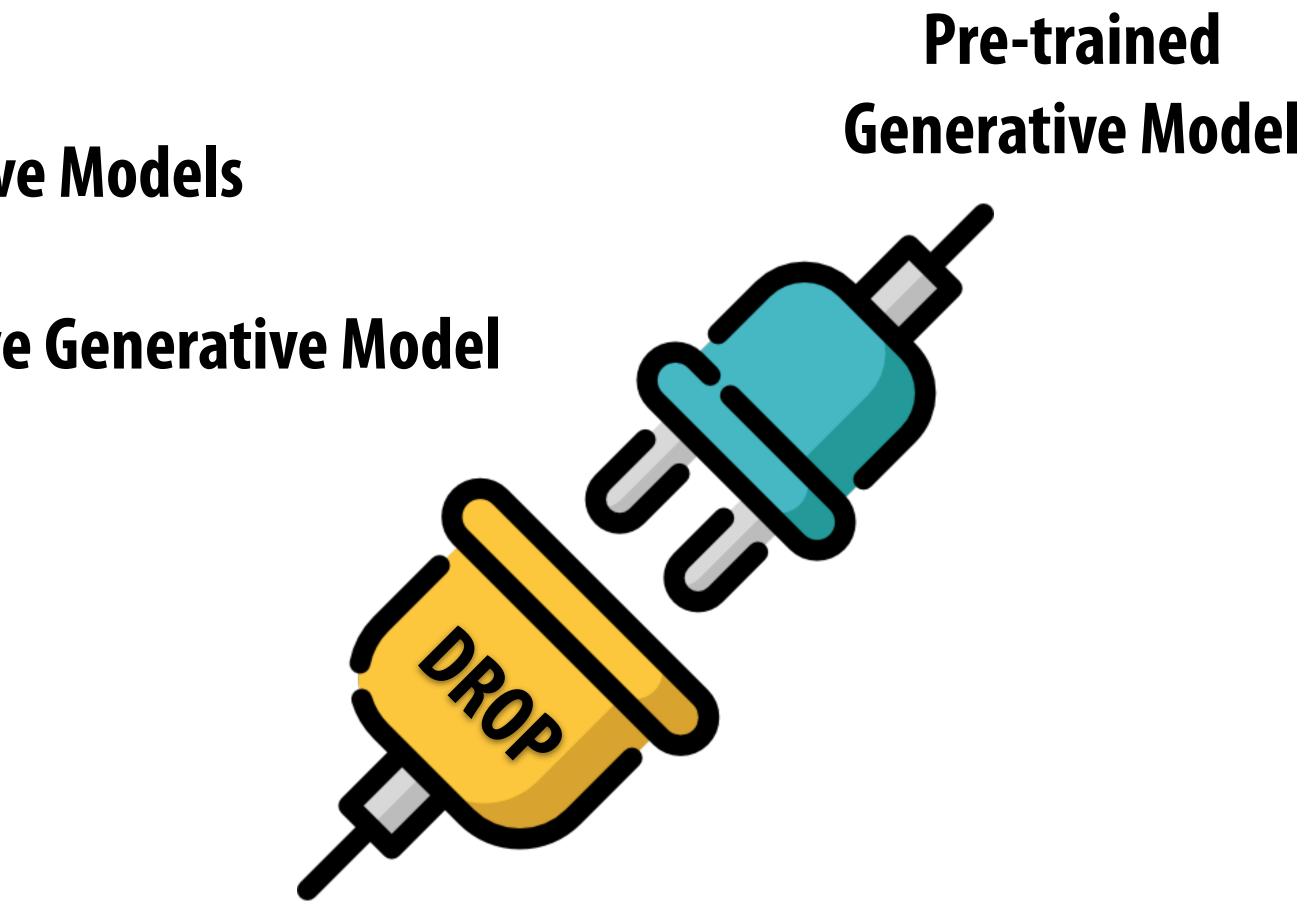


Minimal Sim designed to fit Generative Models



Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

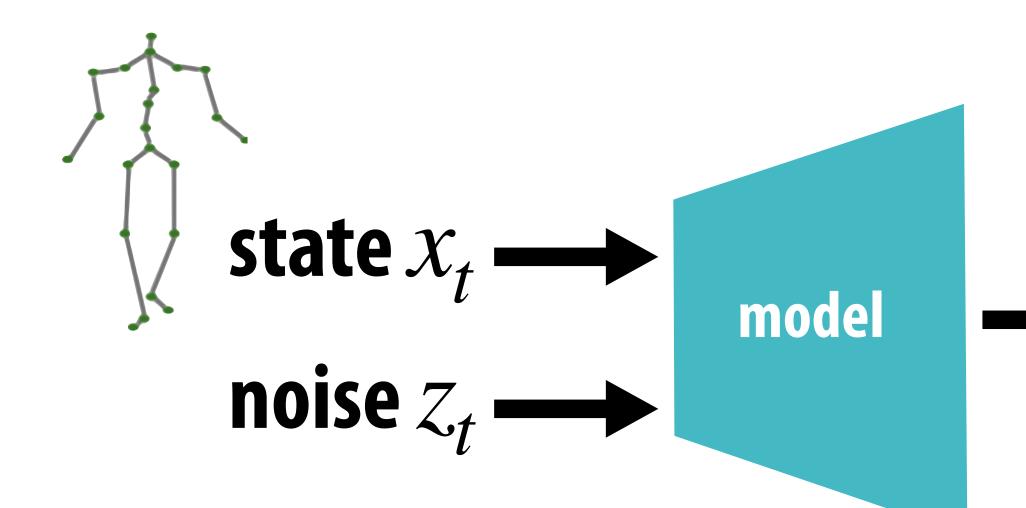


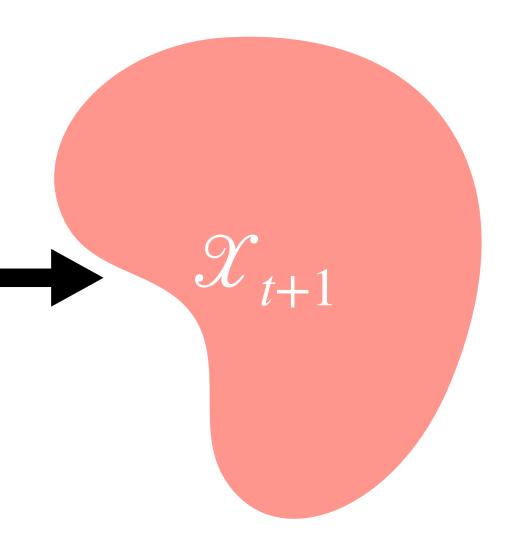
Minimal Sim designed to fit Generative Models

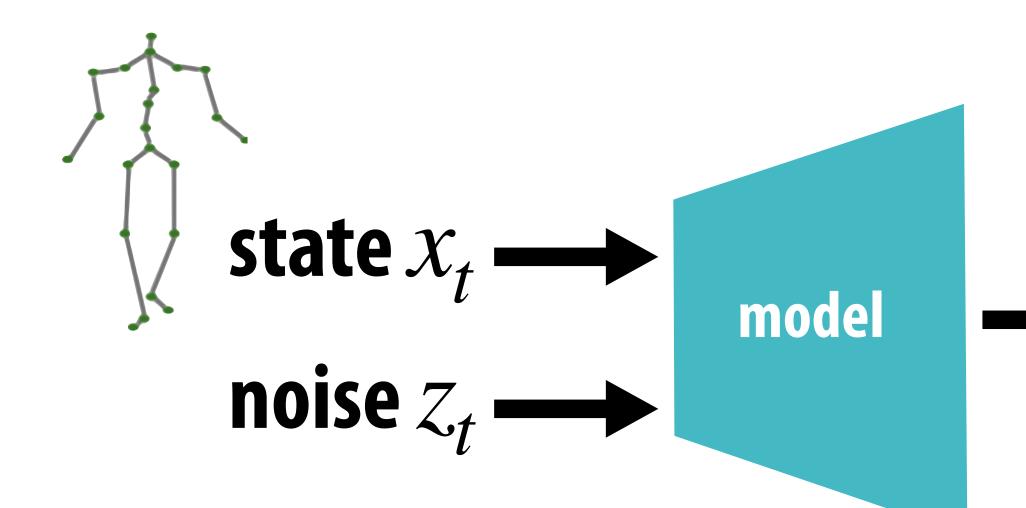
Plug in any pre-trained autoregressive Generative Model

Scalability fully inherited from Generative Model

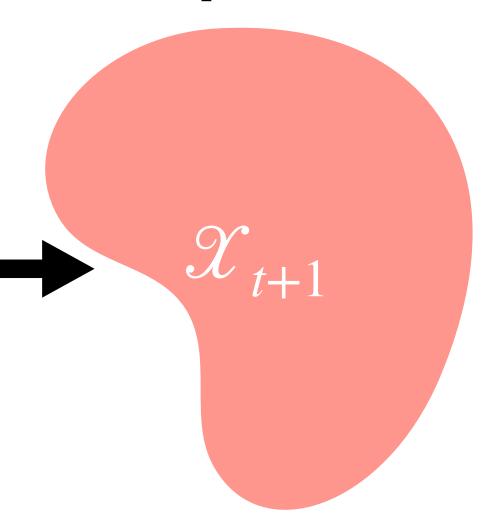
Pre-trained Generative Model

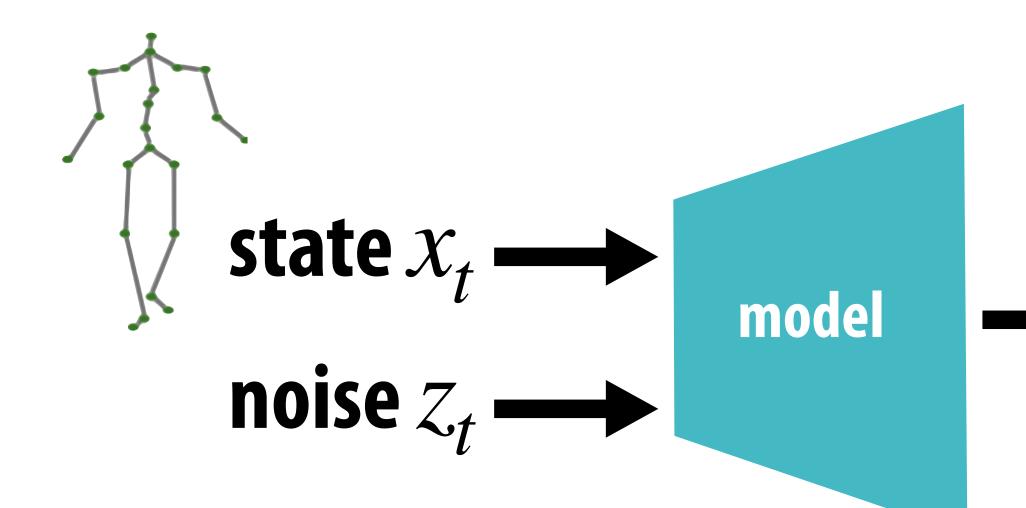




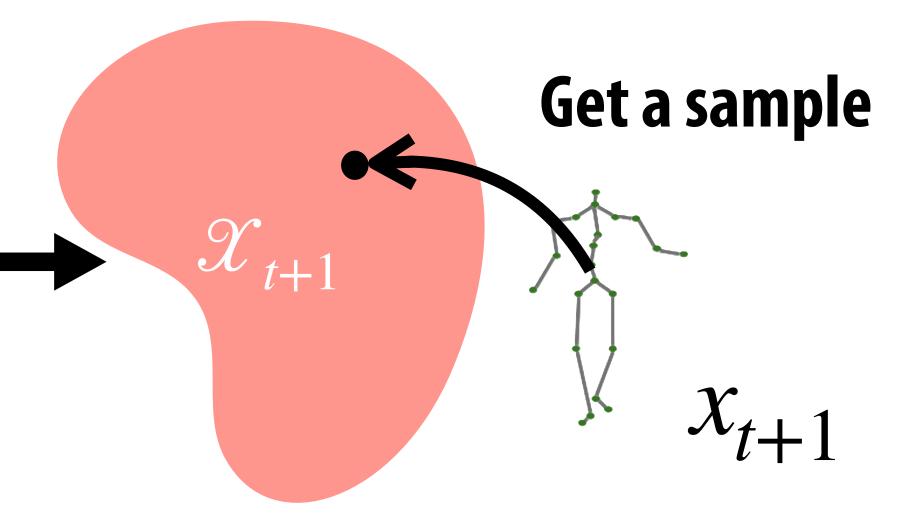


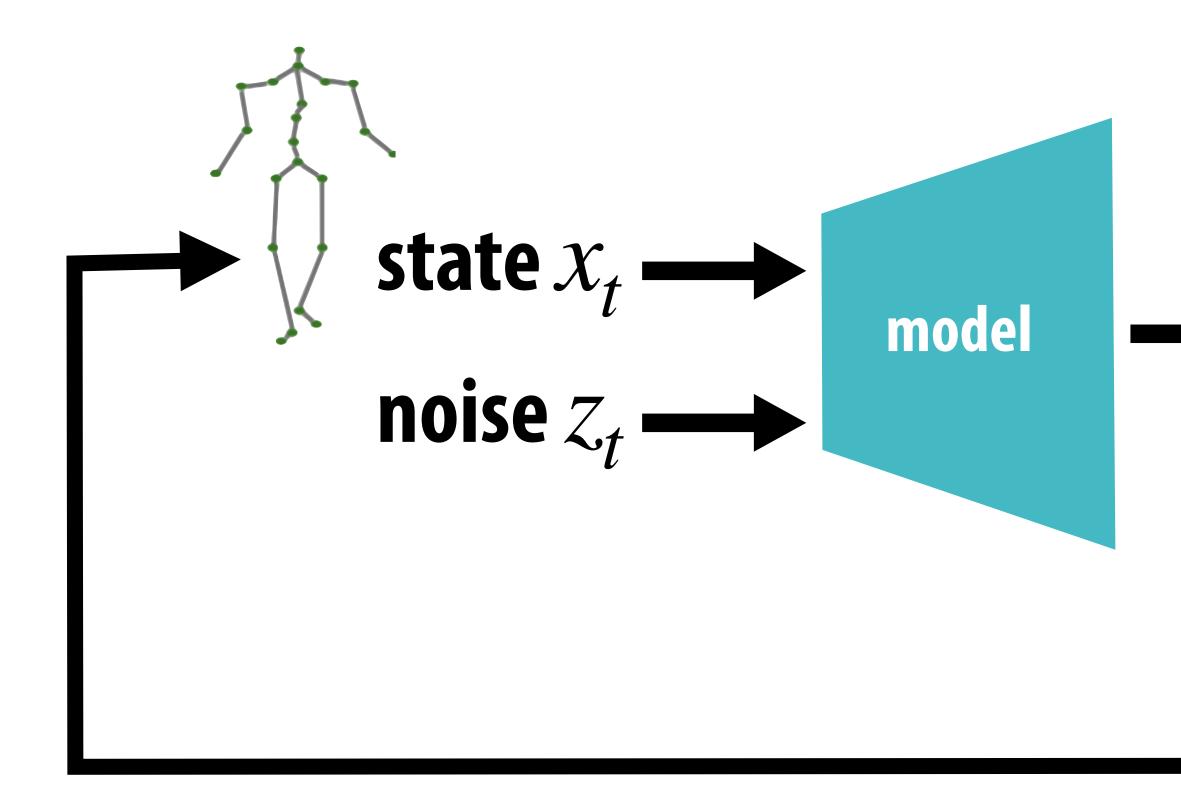
manifold of all possible next states



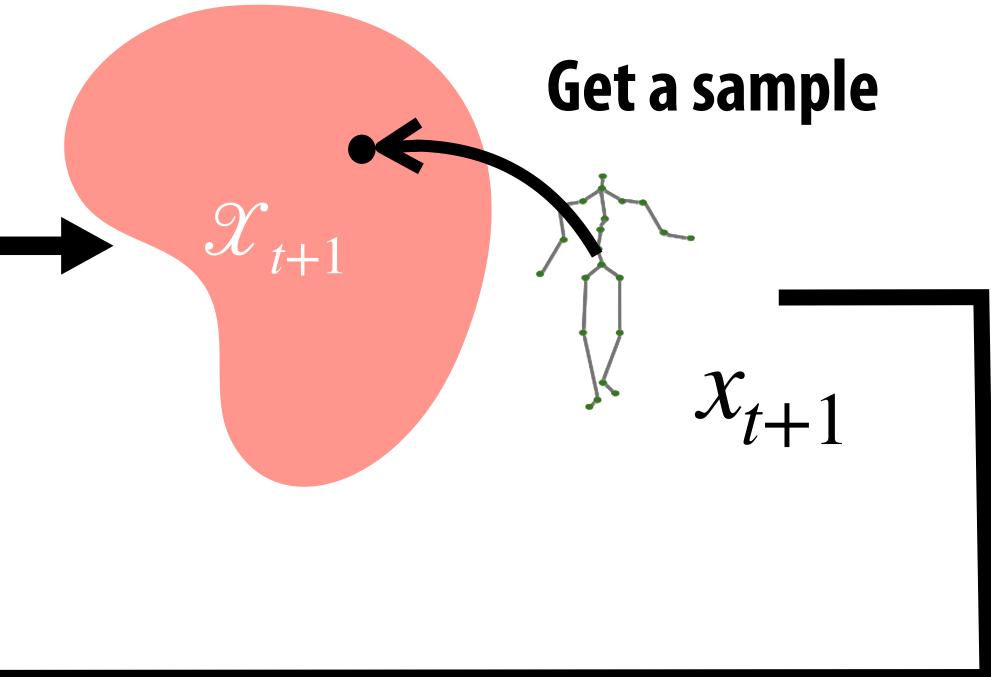


manifold of all possible next states

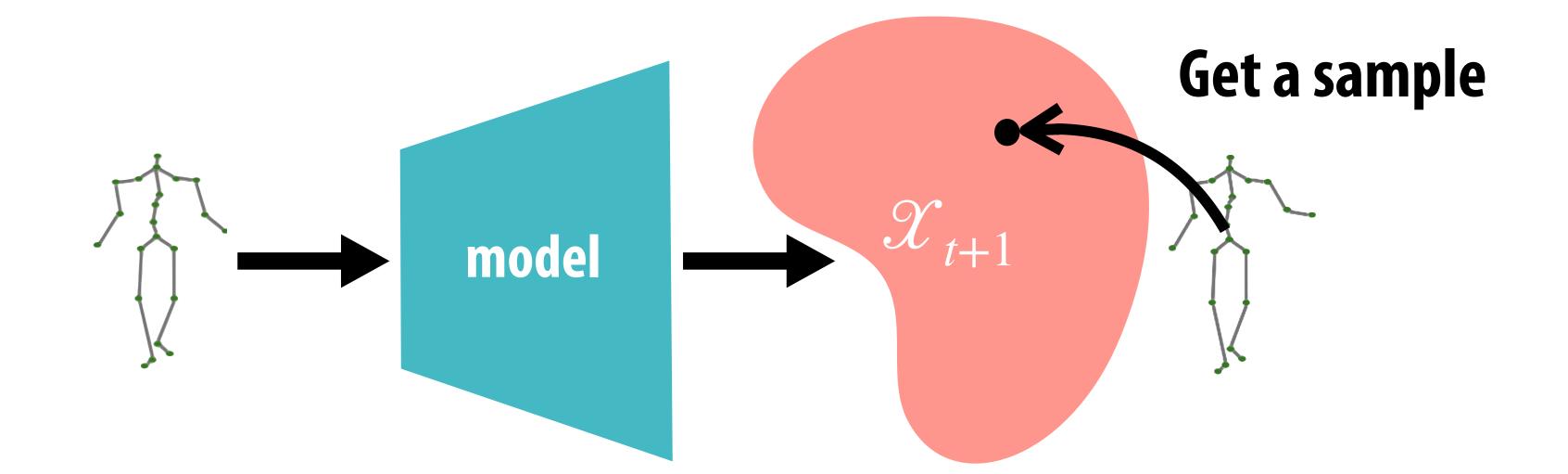




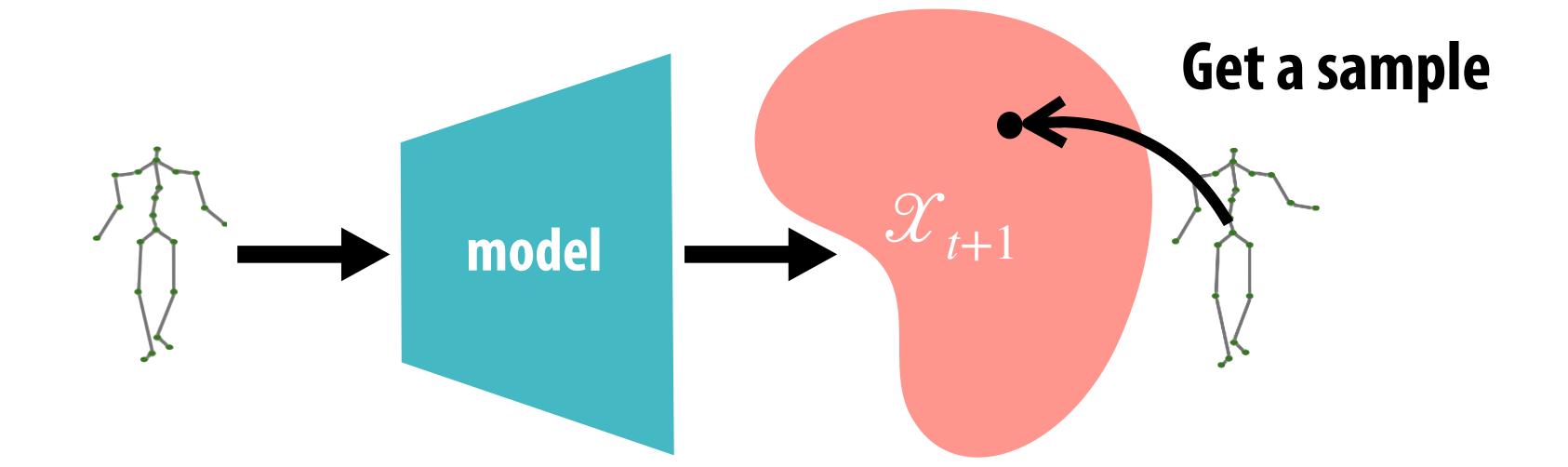
manifold of all possible next states

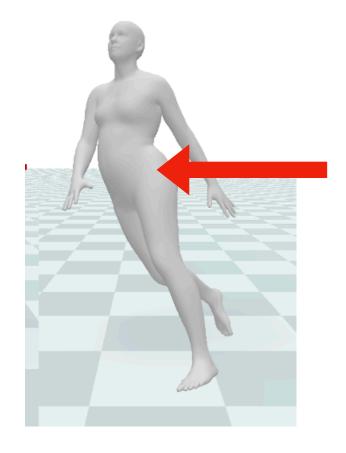


Naively, Physics as Post-processing...

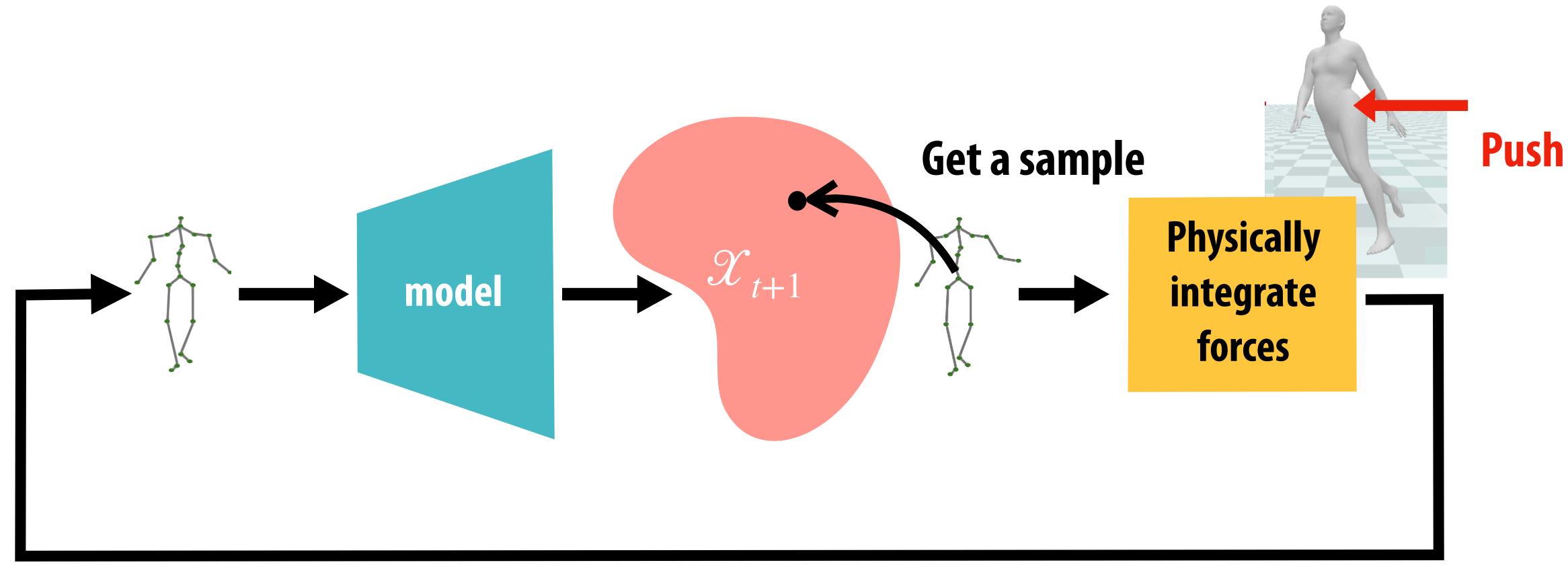


Naively, Physics as Post-processing...





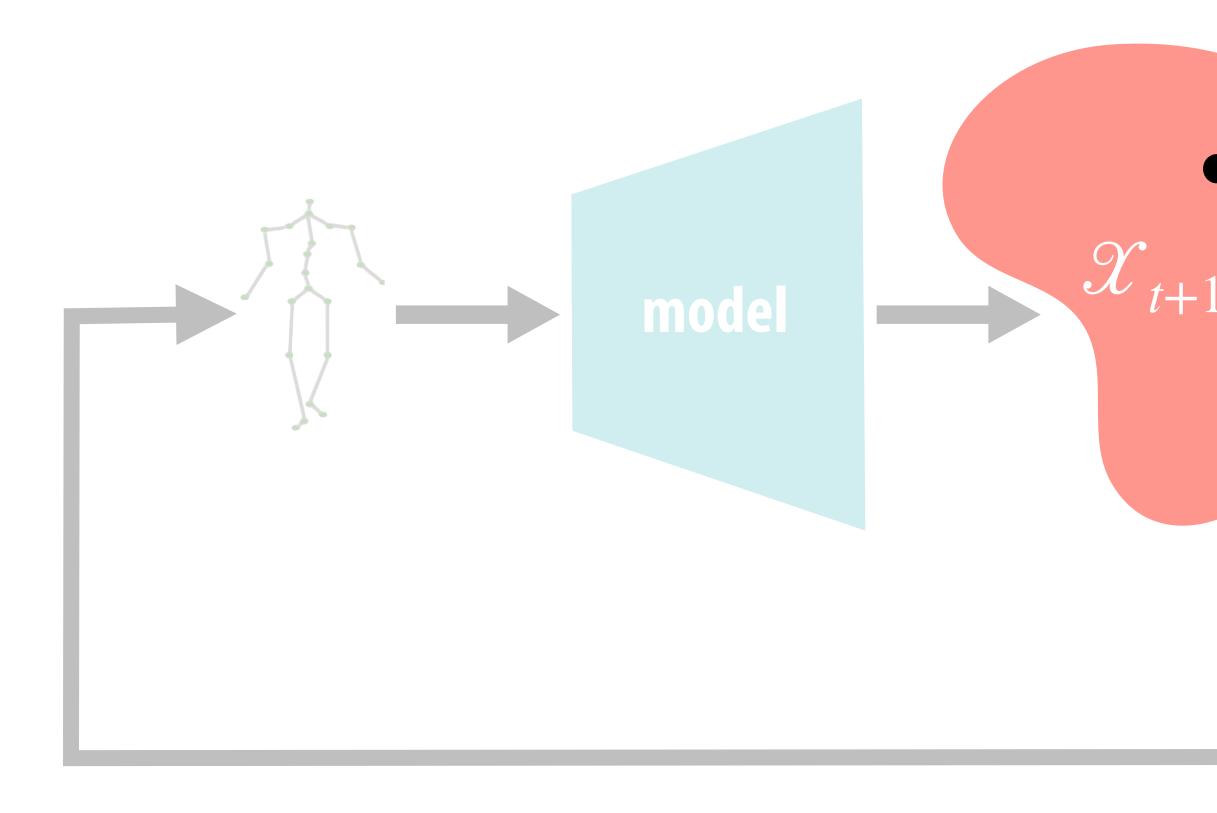
Naively, Physics as Post-processing...



Can Lead to Model Drifting Out of Distribution

Can Lead to Model Drifting Out of Distribution

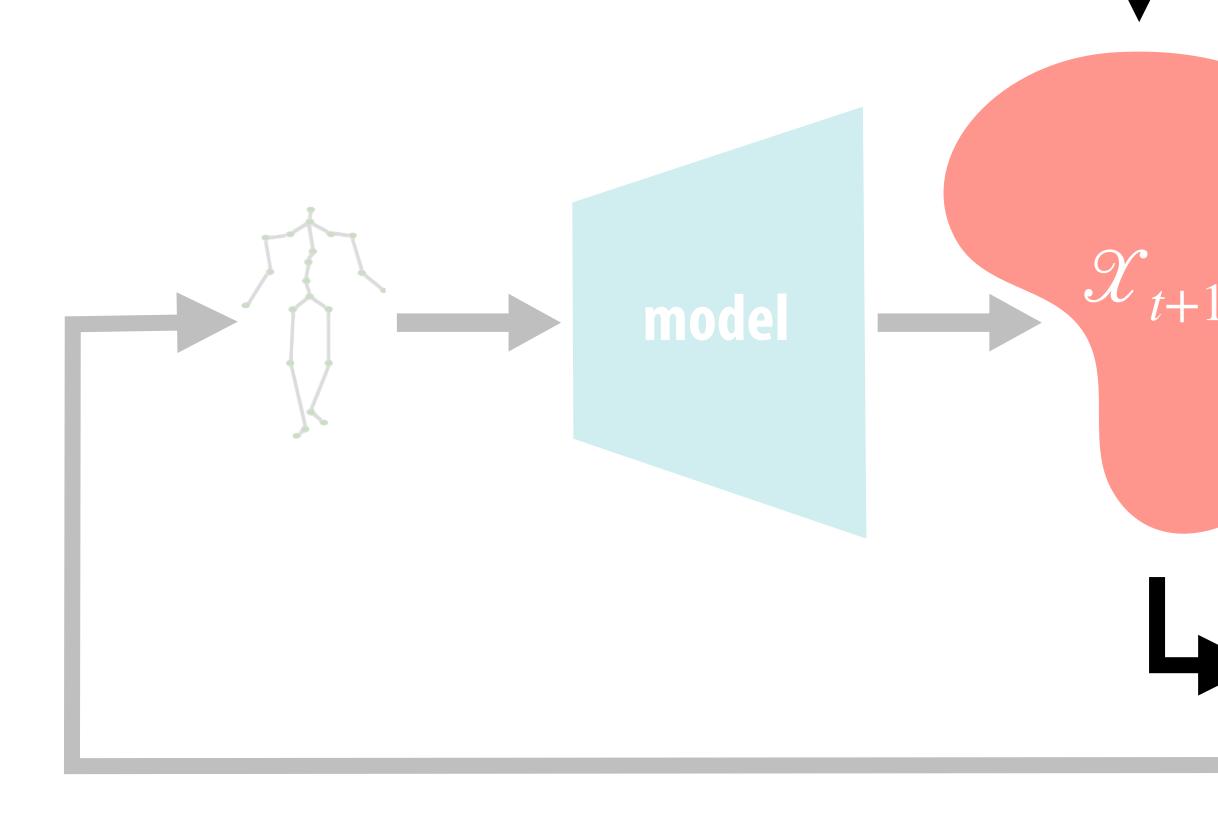
Instead of Isolated Sampling and Physics Post-processing



Get a sample

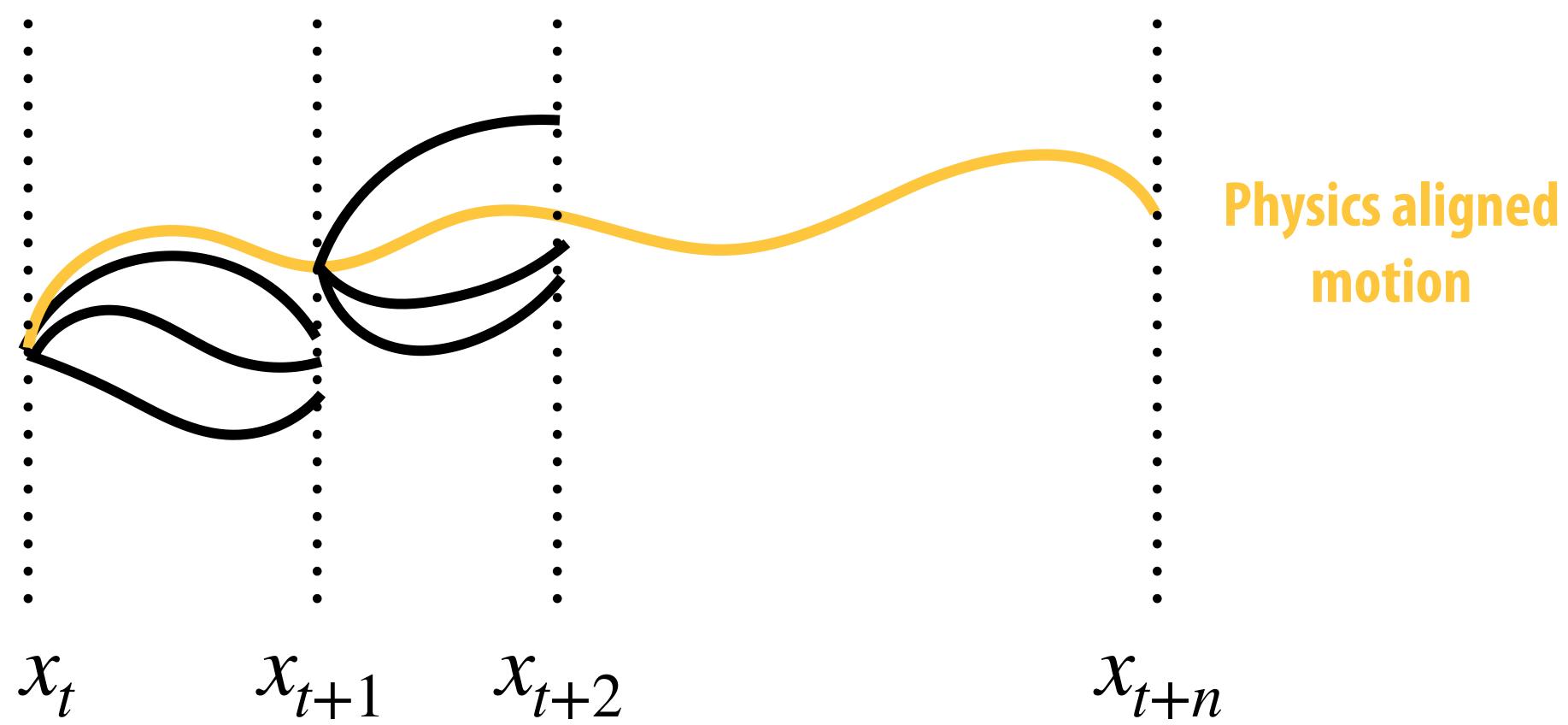
Physically integrate forces

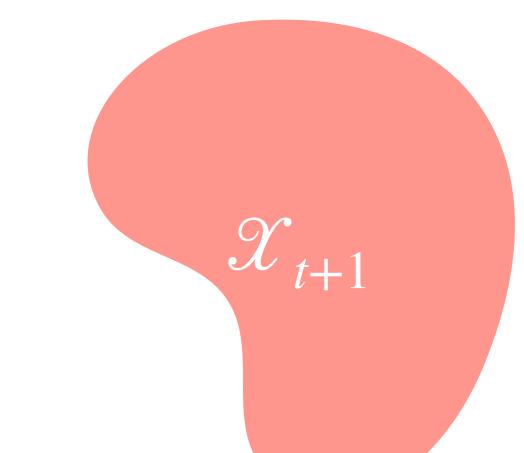
Manifold-aware Simulation



Physics-aware sampling Simulation Stay close to \mathcal{X}_{t+1} when solving physics

Intuitively, Need to "Align" Model Generation to Physics



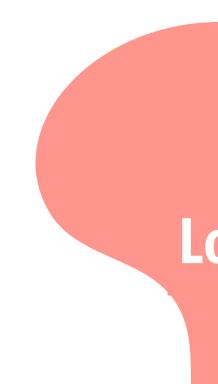


High Energy

High Energy

 $\mathbf{f} = -\nabla E$

Akin to a control force from Generative Model

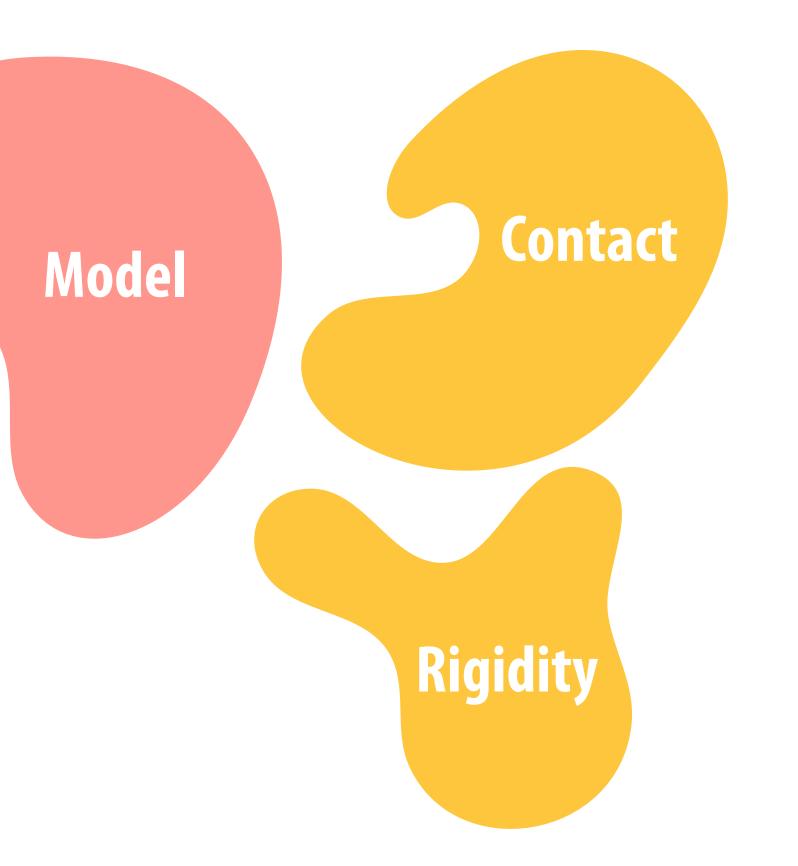


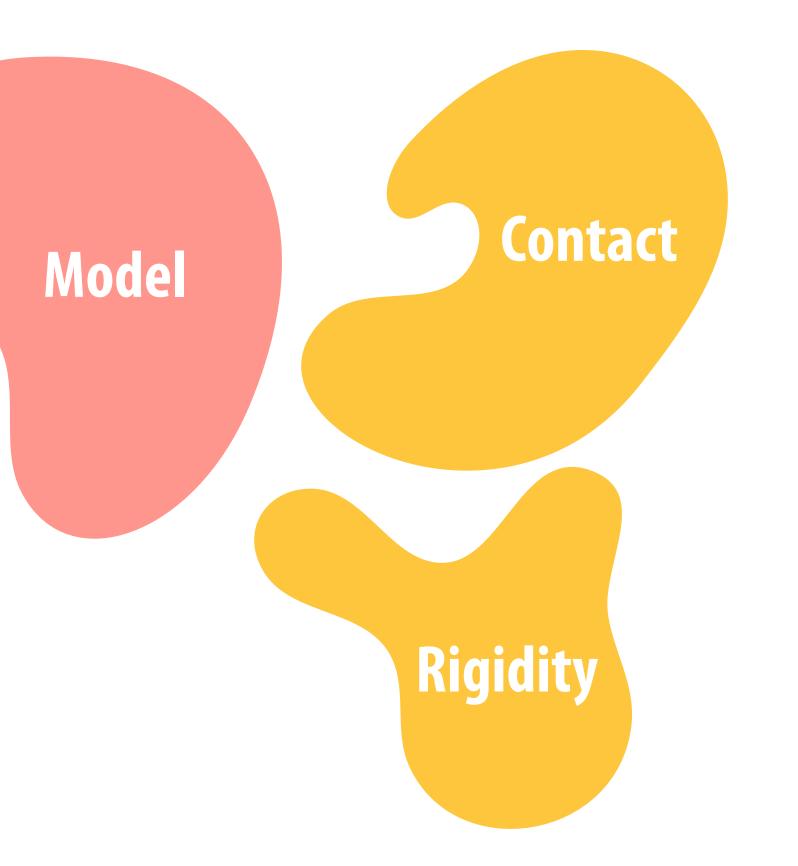
High Energy

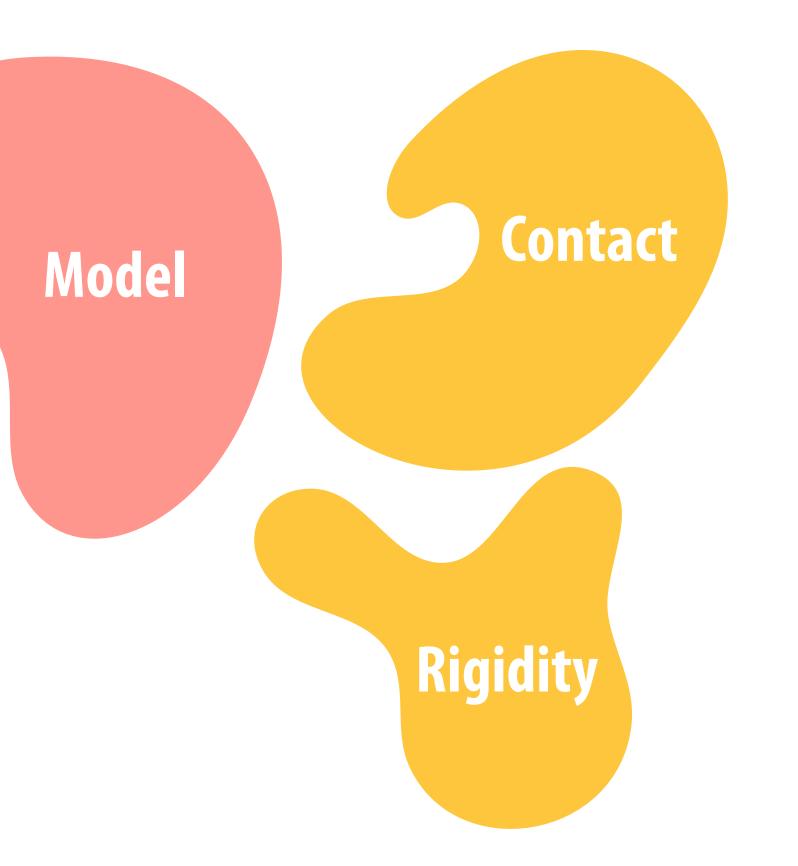
 $\mathbf{f} = -\nabla E$

Akin to a control force from Generative Model

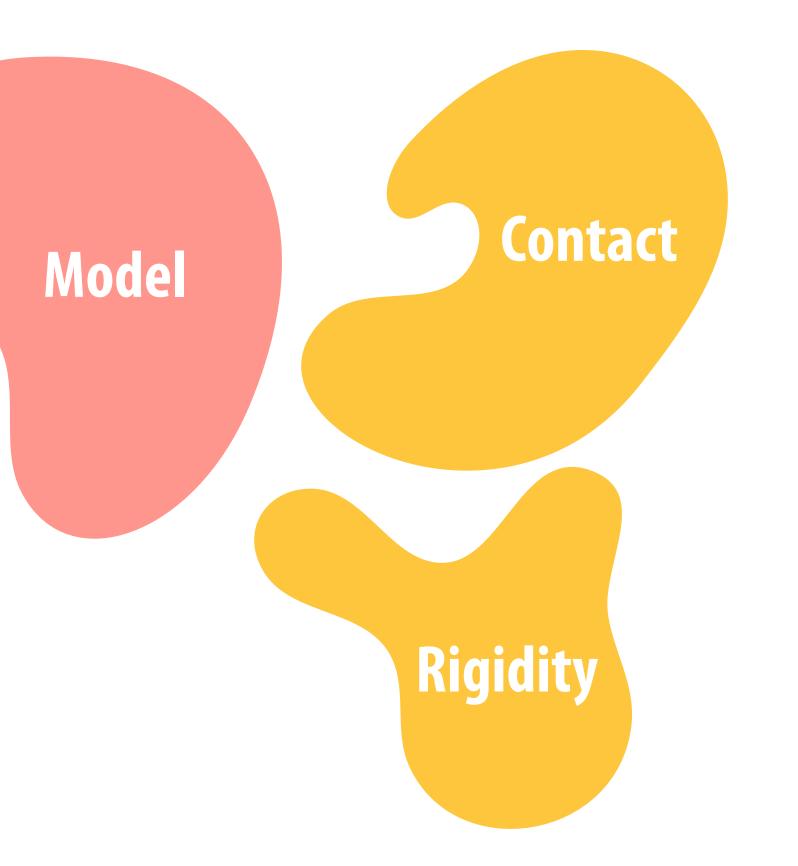
High Energy $f = -\nabla E$ Low Energy







See paper all energy terms



Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

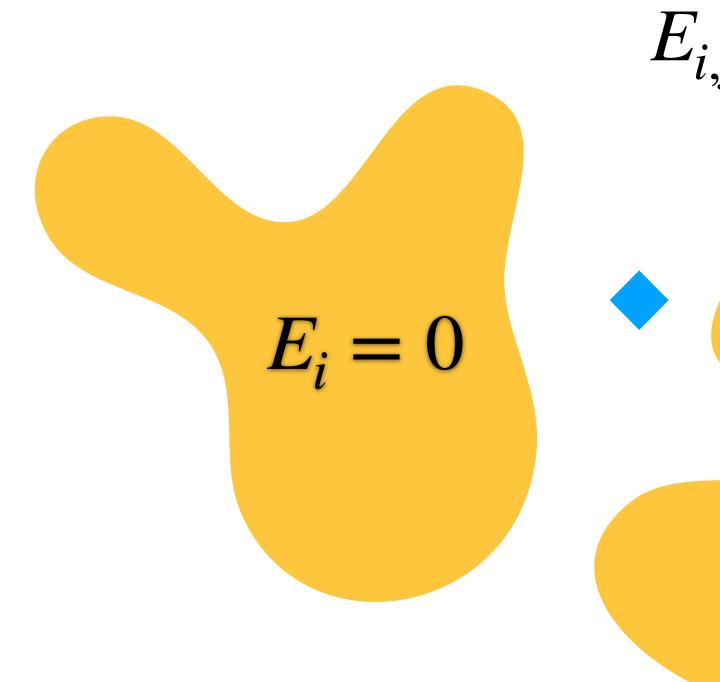
Generative Model Physical alignment **Implicit Euler integration**

Projective Dynamics for Simulation [Bouaziz 14]

Optimization-based (Variational) Integration:

Generative Model Physical alignment **Implicit Euler integration**

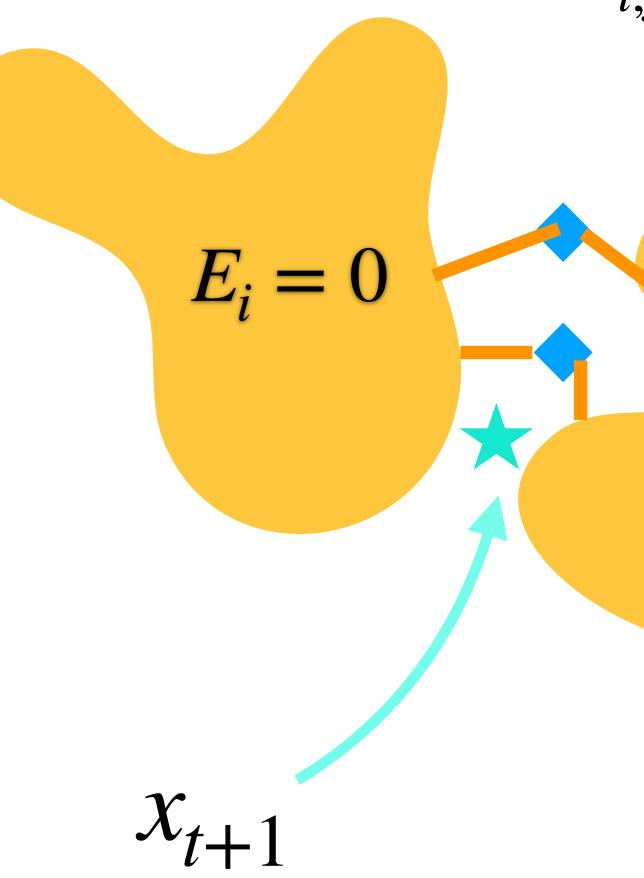
Projective Dynamics (PD) Naturally Support Manifolds

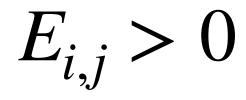


 $E_{i,j} > 0$

 $E_{j} \ge 0$

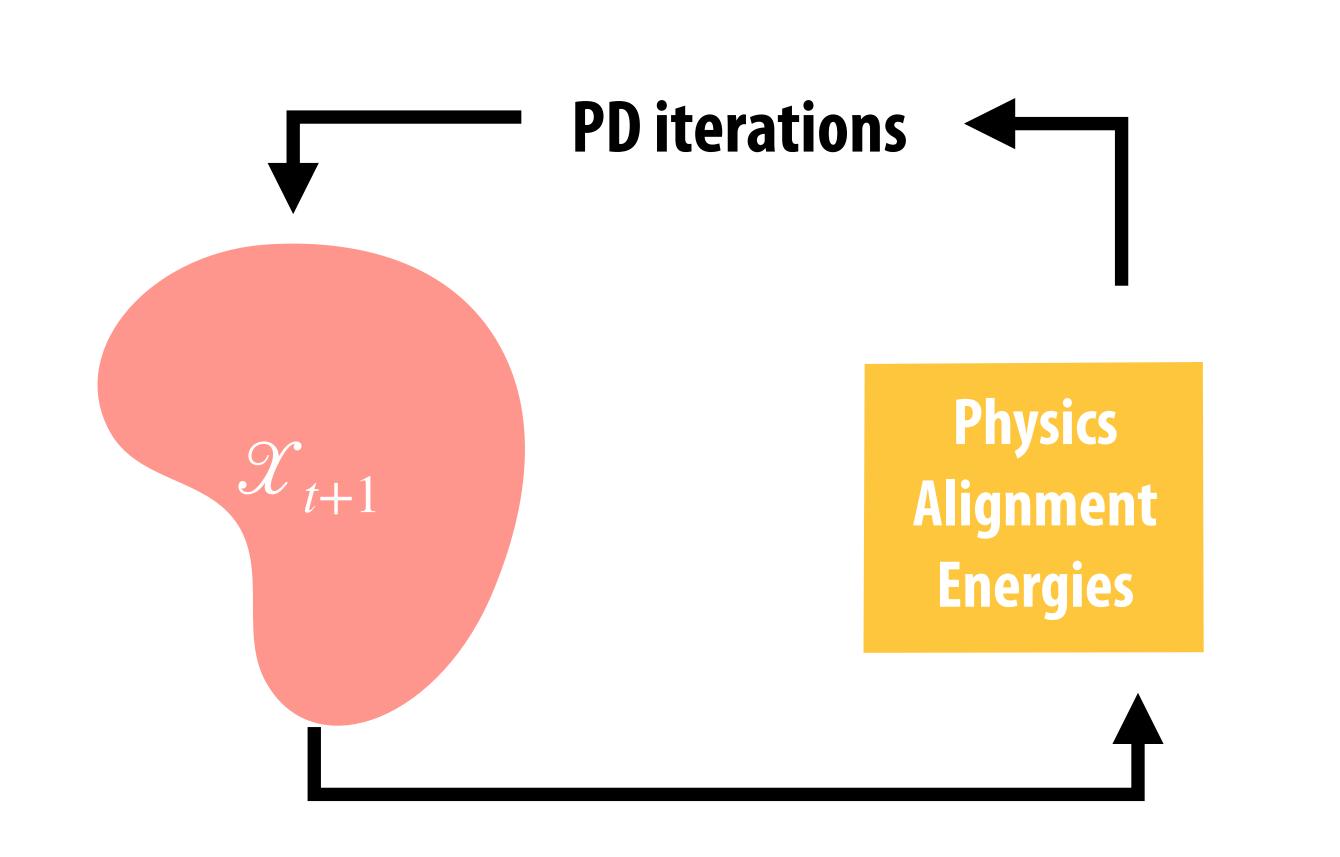
Projective Dynamics (PD) Naturally Support Manifolds



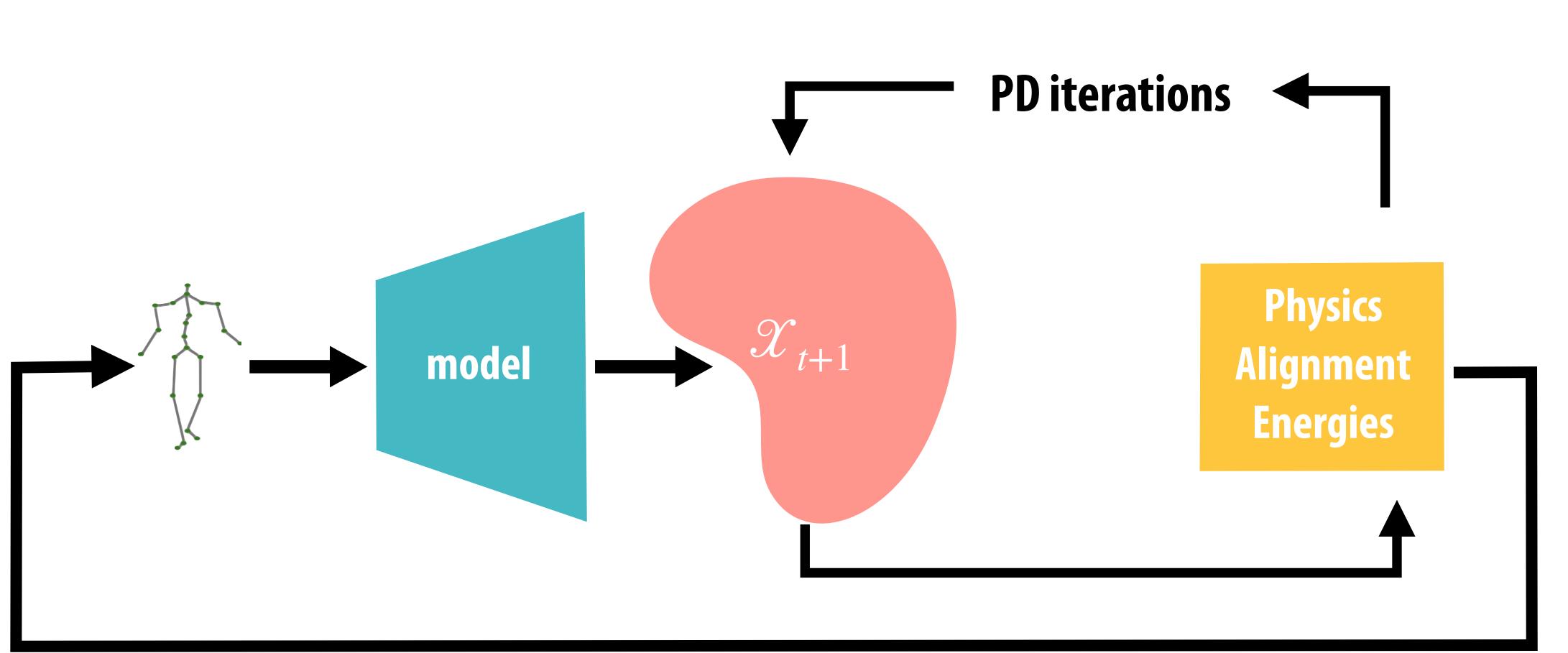


 $E_{j} \equiv 0$

Putting Things Together



Putting Things Together



Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Generative Model: HuMoR (ICCV'21) — trained on ~40h AMASS motion data

- Other models should work as well

Focus on showcasing dynamic responses

- That is, all demos are stress testing the low-data cases

Generative Model:

- Other models should work as well

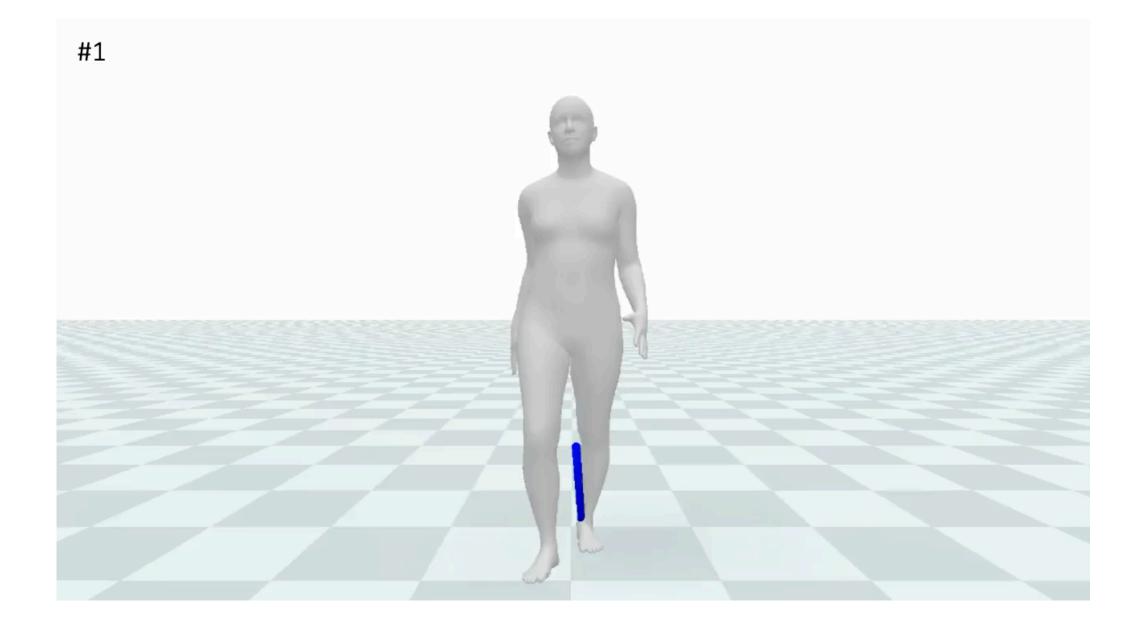
Focus on showcasing dynamic responses

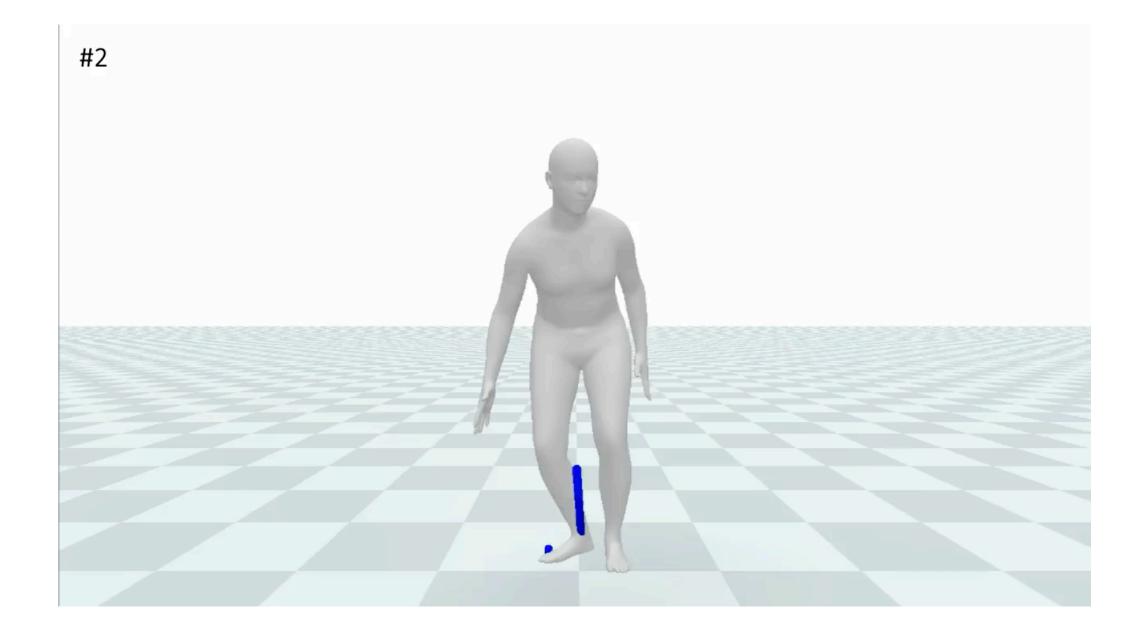
- That is, all demos are stress testing the low-data cases

All demos are stochastically created without high-level motion planning

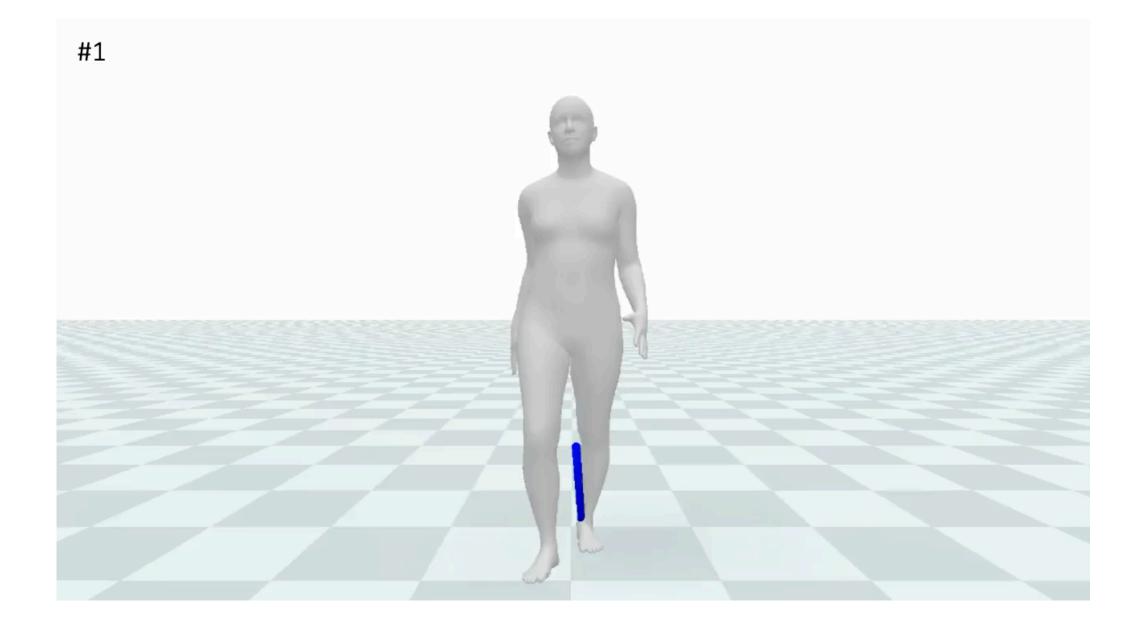
HuMoR (ICCV'21) — trained on ~40h AMASS motion data

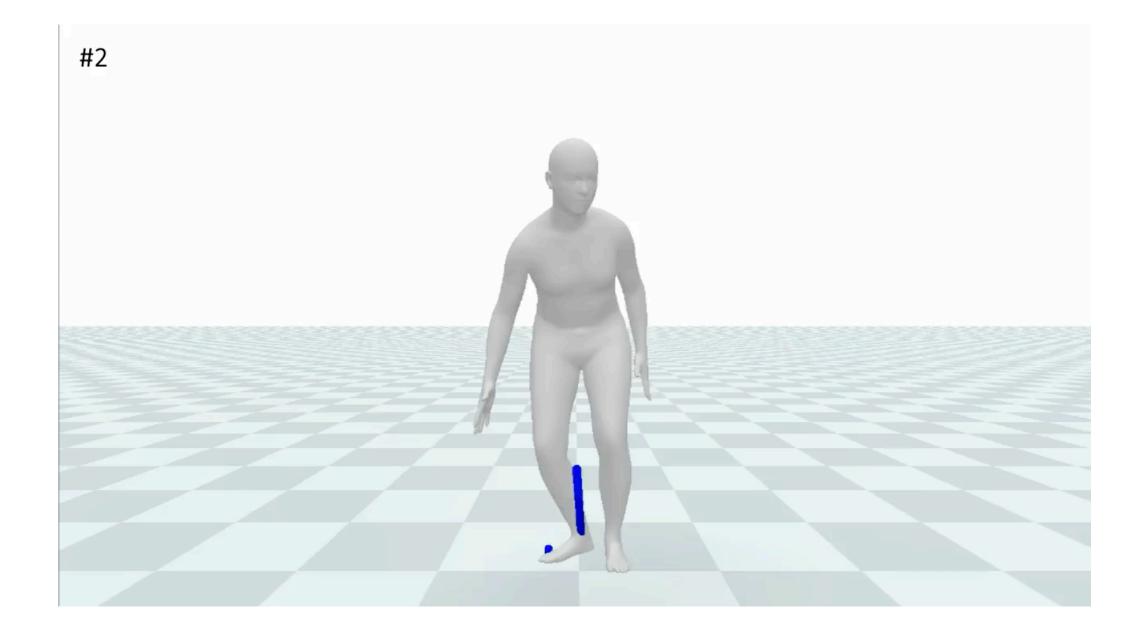
Being Thrown with Objects



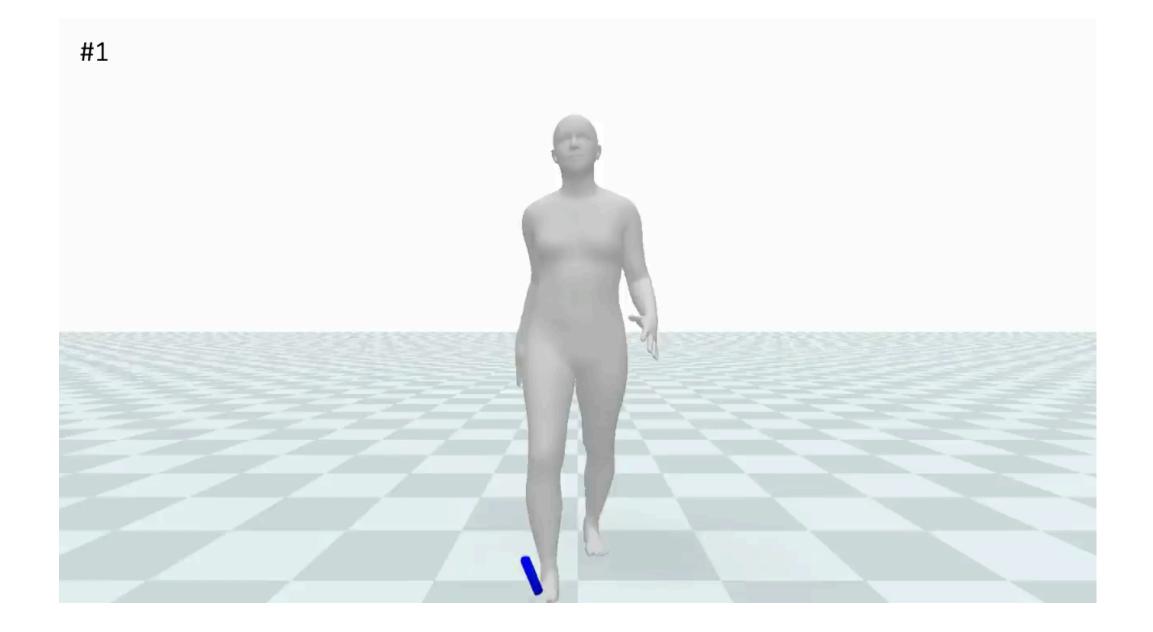


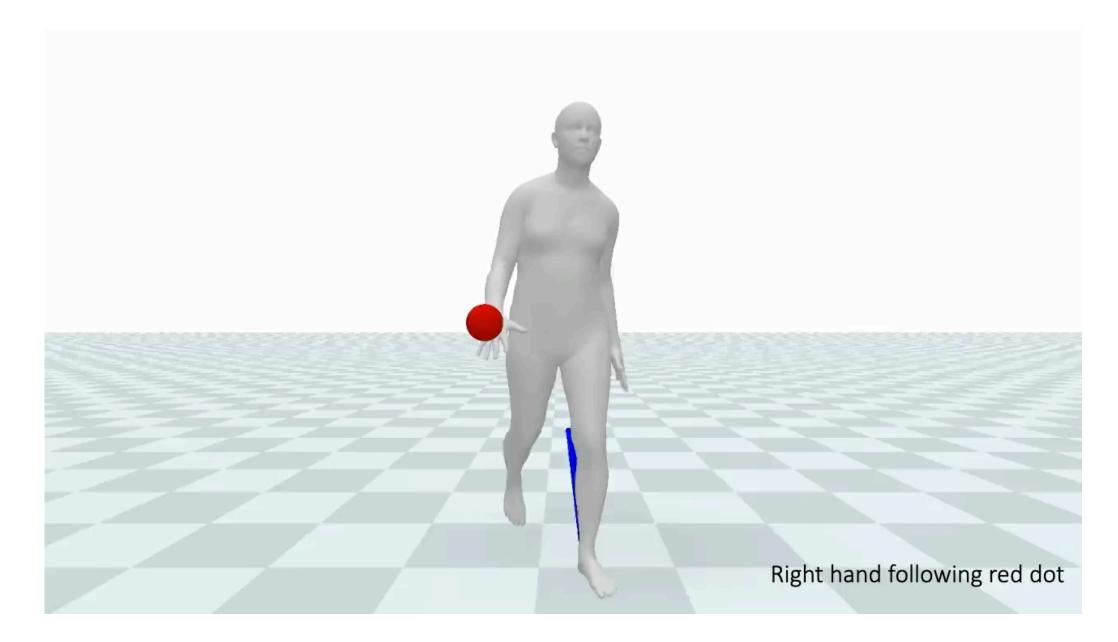
Being Thrown with Objects



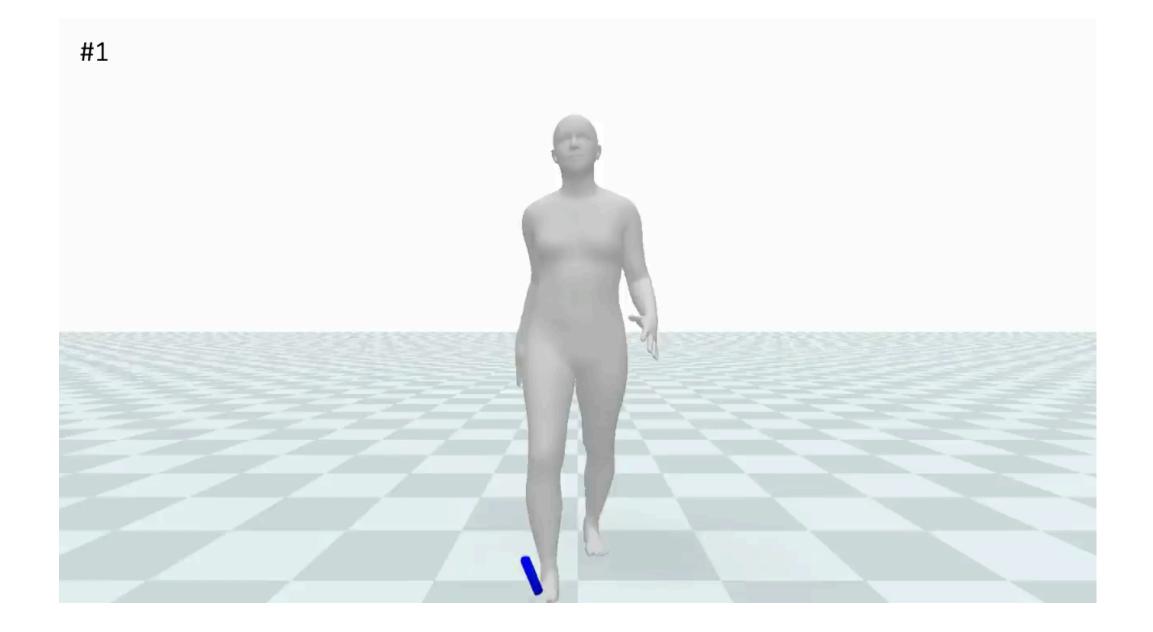


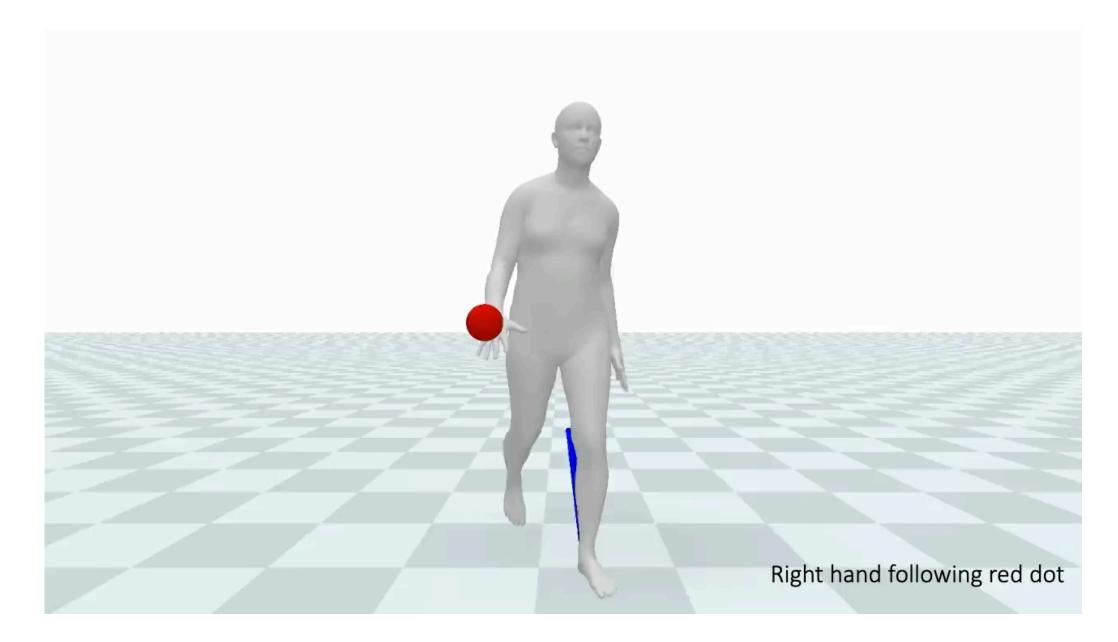
Flexible Framework Enabling Diverse Downstream Tasks





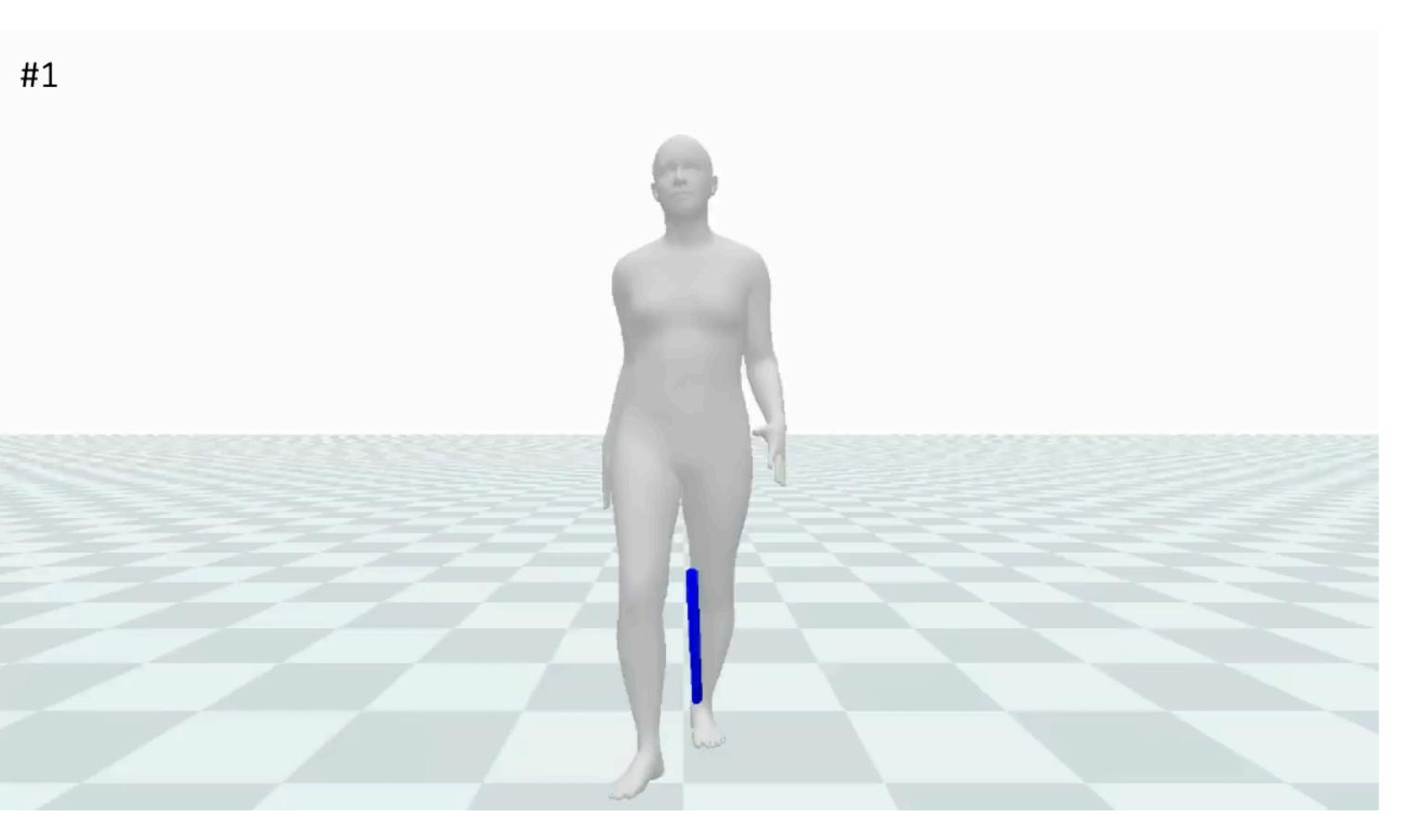
Flexible Framework Enabling Diverse Downstream Tasks





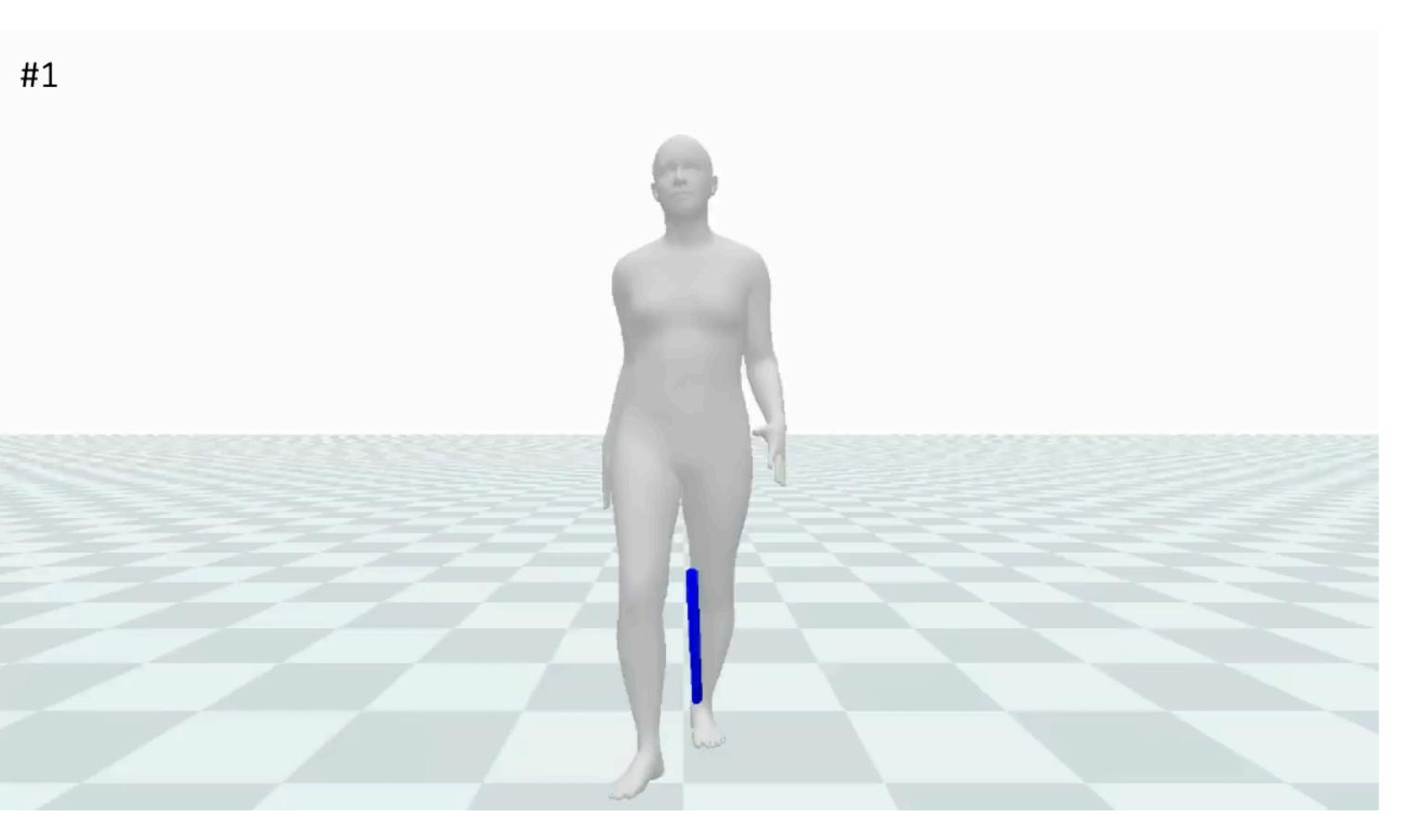
Emergent Behavior

#1



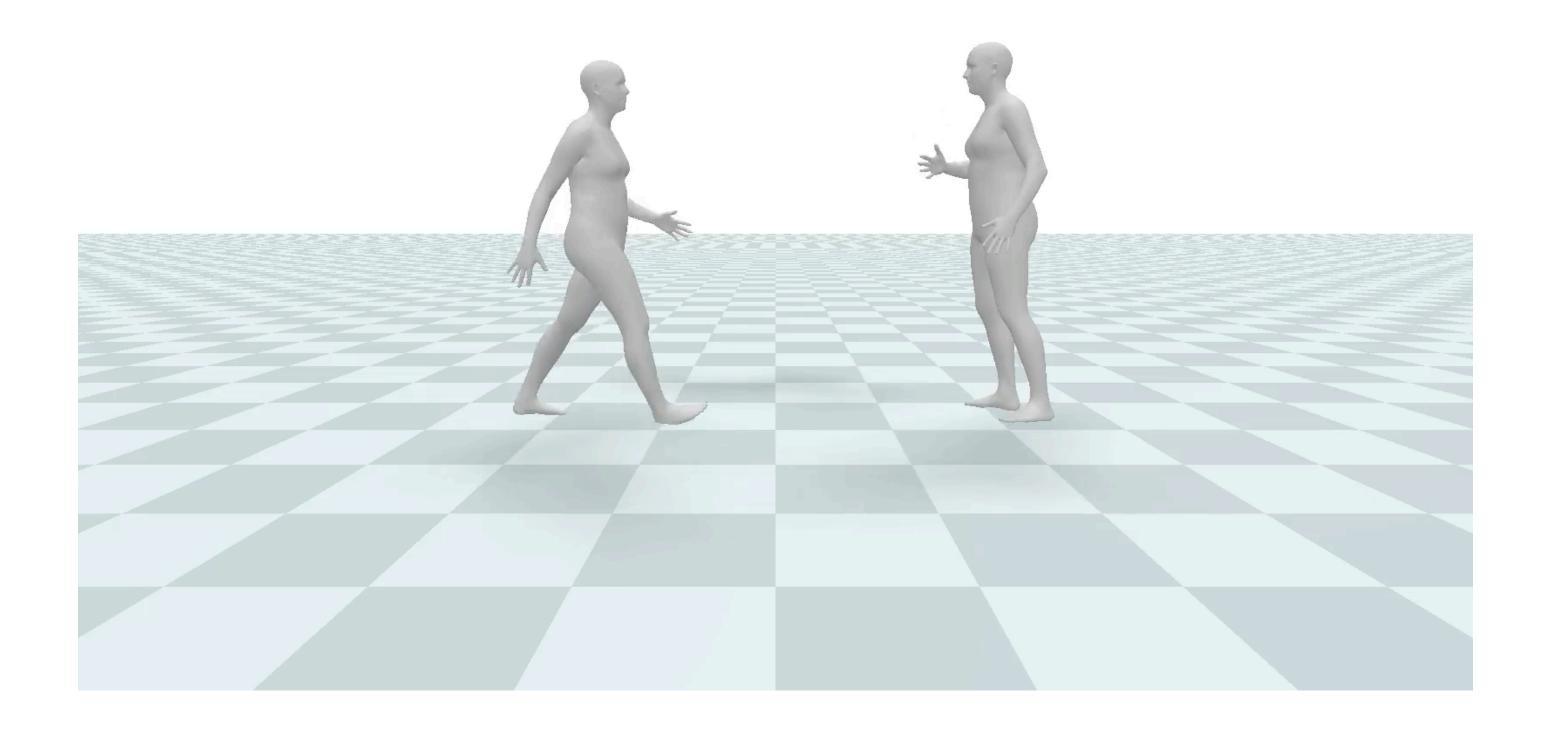
Emergent Behavior

#1



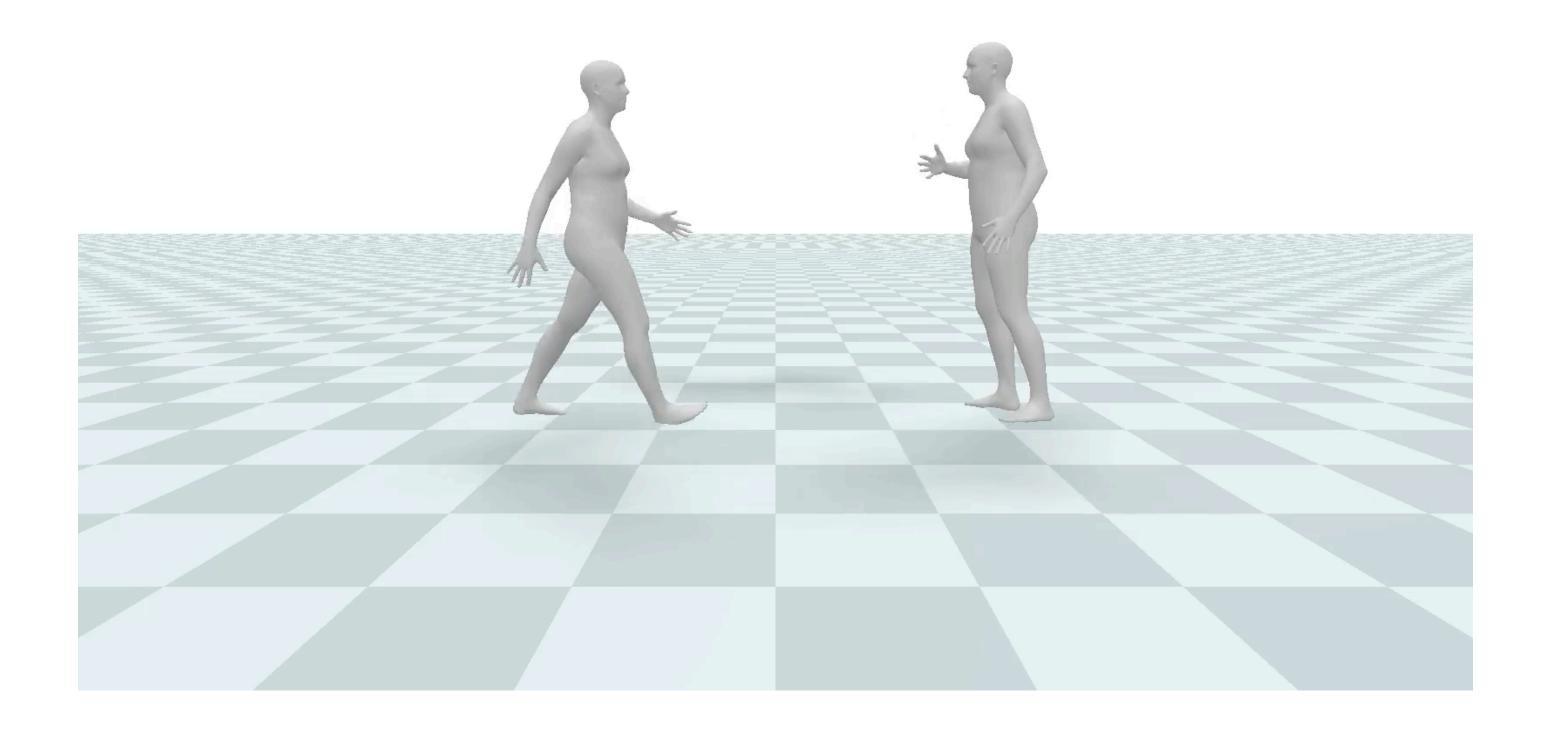
Two-character Interactions

#1

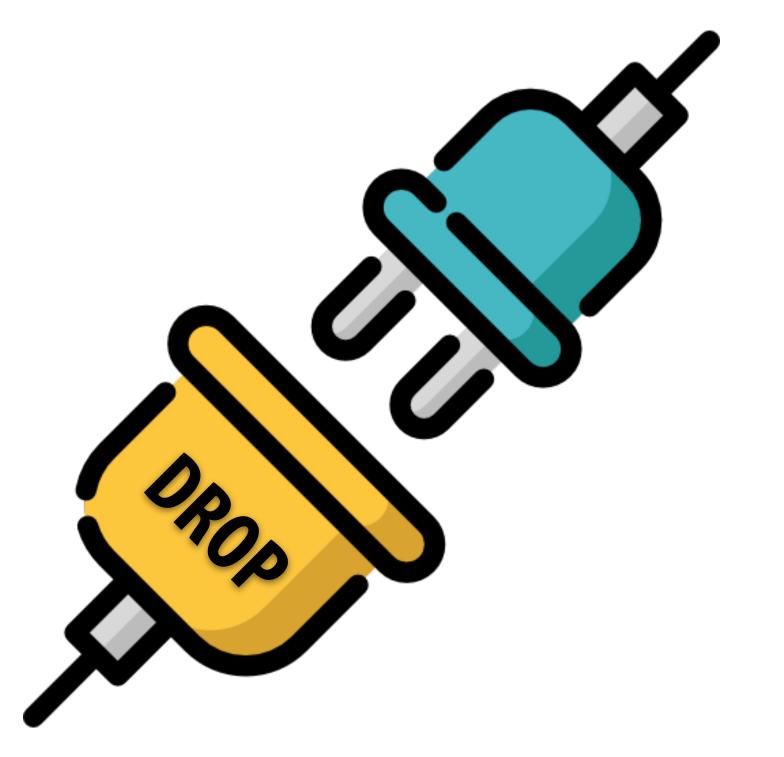


Two-character Interactions

#1

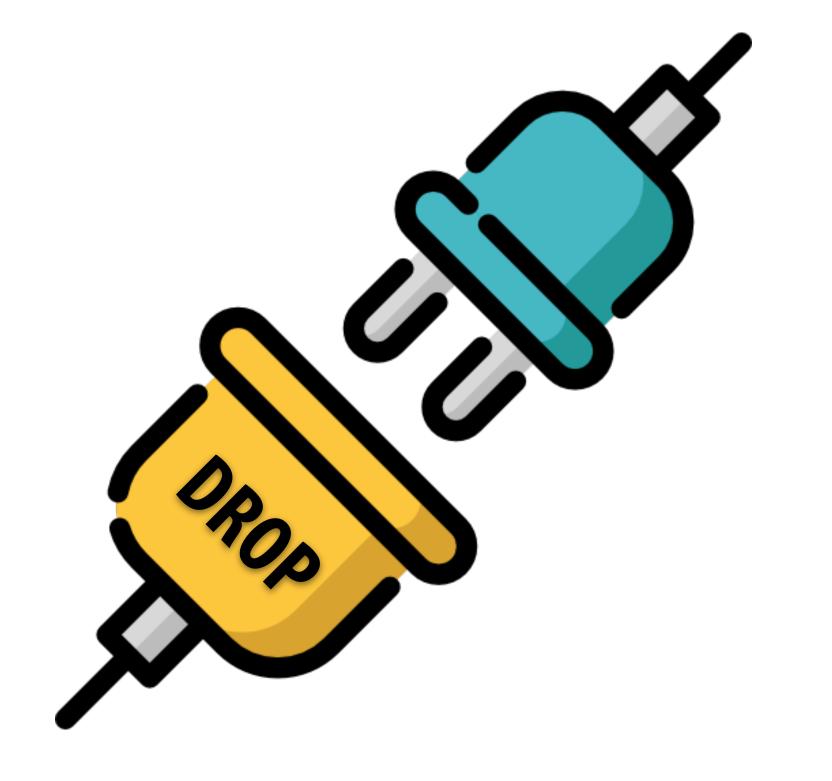


Pre-trained Generative Model



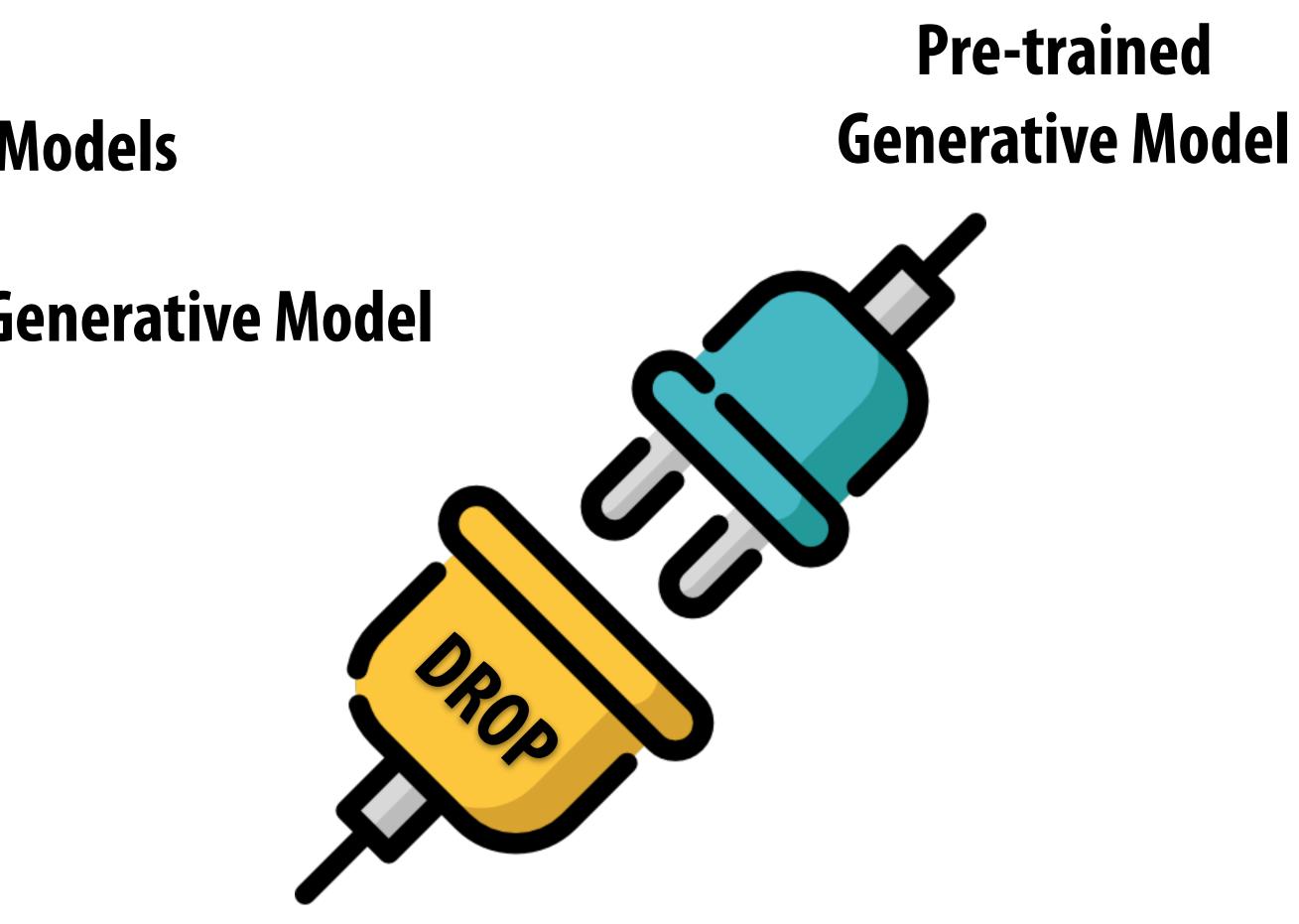
Minimal Sim designed to fit Generative Models

Pre-trained Generative Model



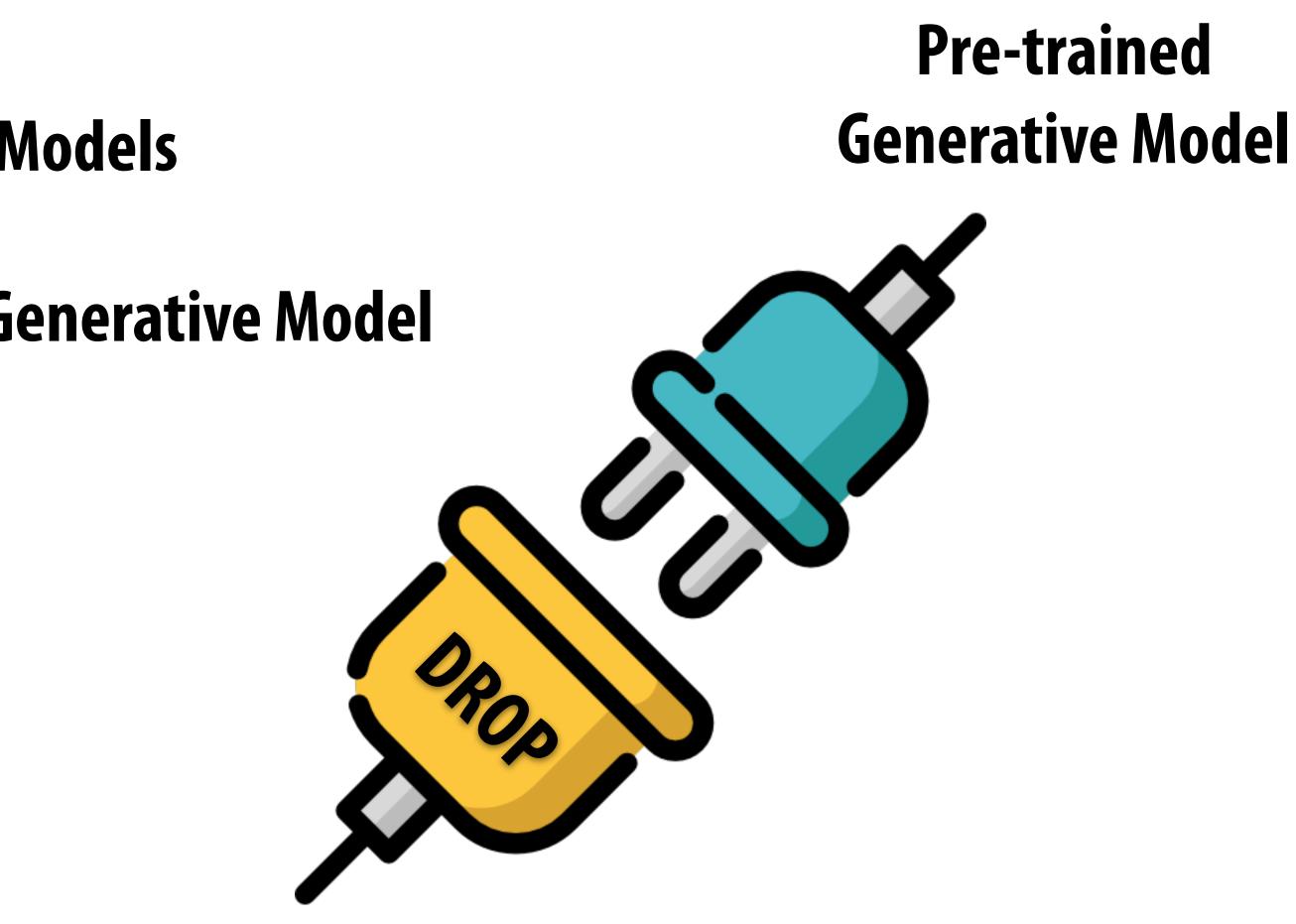
Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model



Minimal Sim designed to fit Generative Models

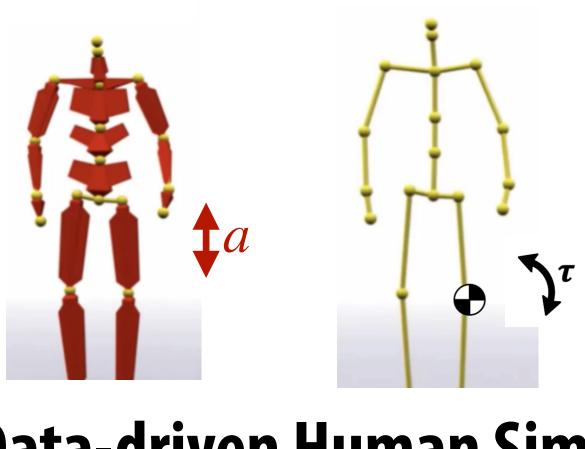
Plug in any pre-trained autoregressive Generative Model Diverse physical motions at scale



Scalable Physical Human Data Capture

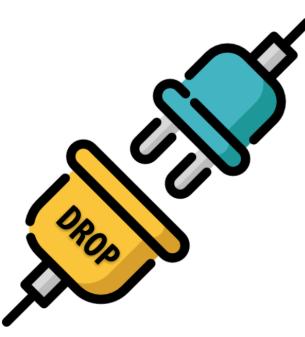
— How motion & physics prior can help scale up human data

[Jiang et al] SIGGRAPH Asia'22, [Lee, Jiang, Liu] SIGGRAPH'23



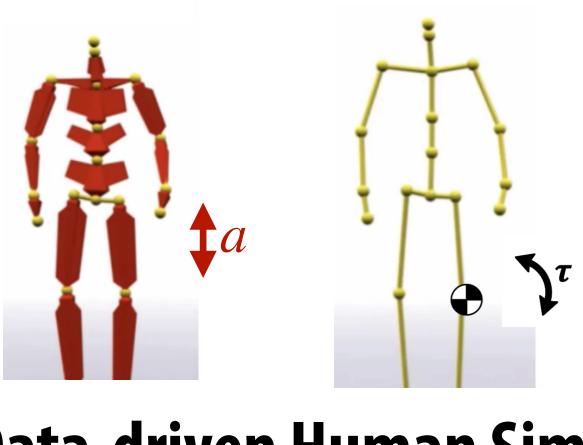
Data-driven Human Sim

Pre-trained Generative Model



Sim-augmented GenAl model

So far...

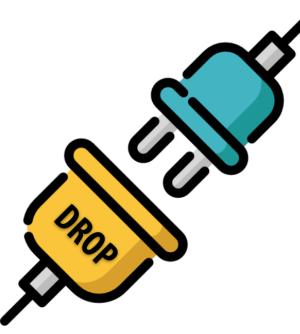




Motion Data Engine

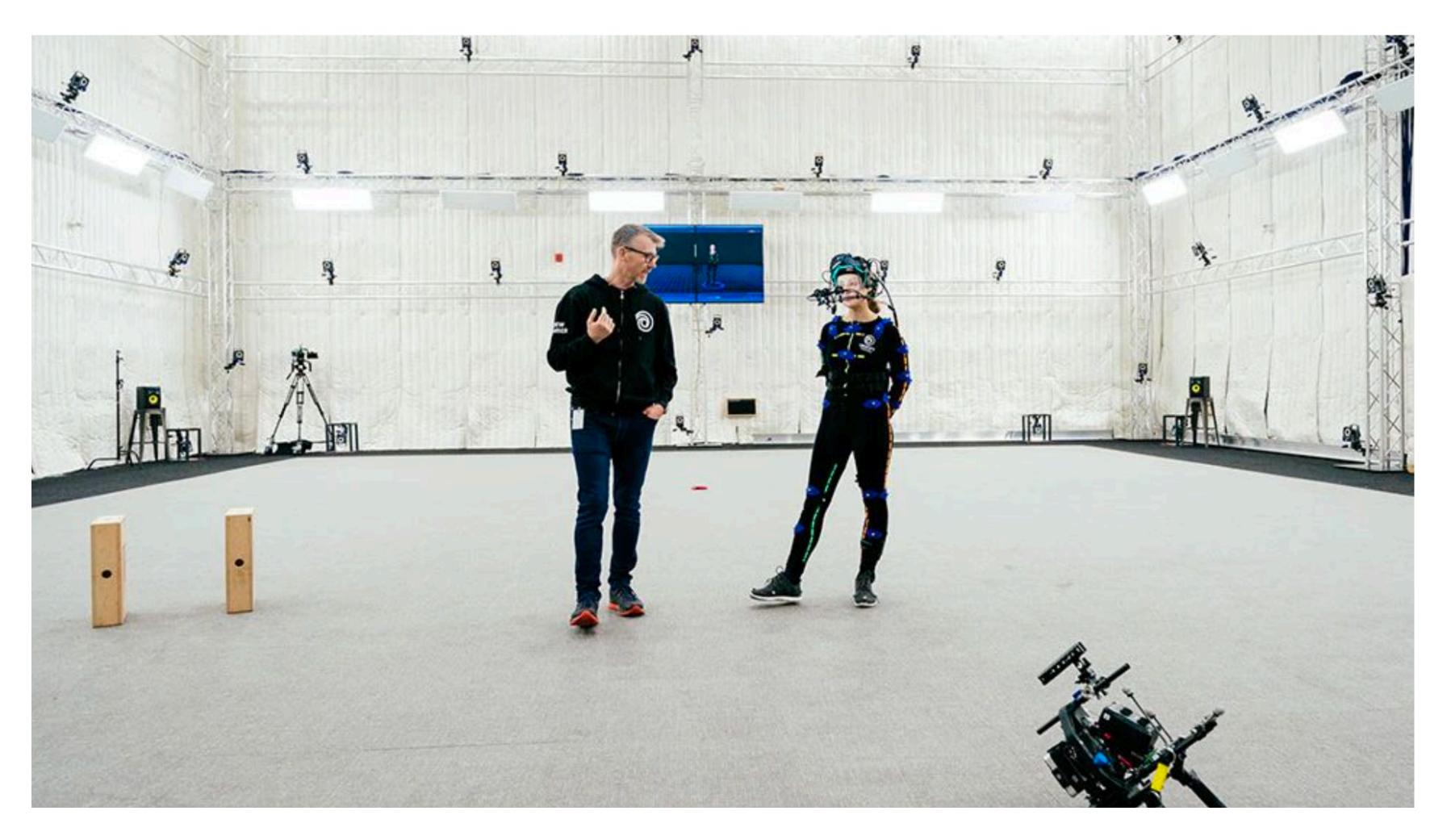
Data-driven Human Sim

Pre-trained Generative Model

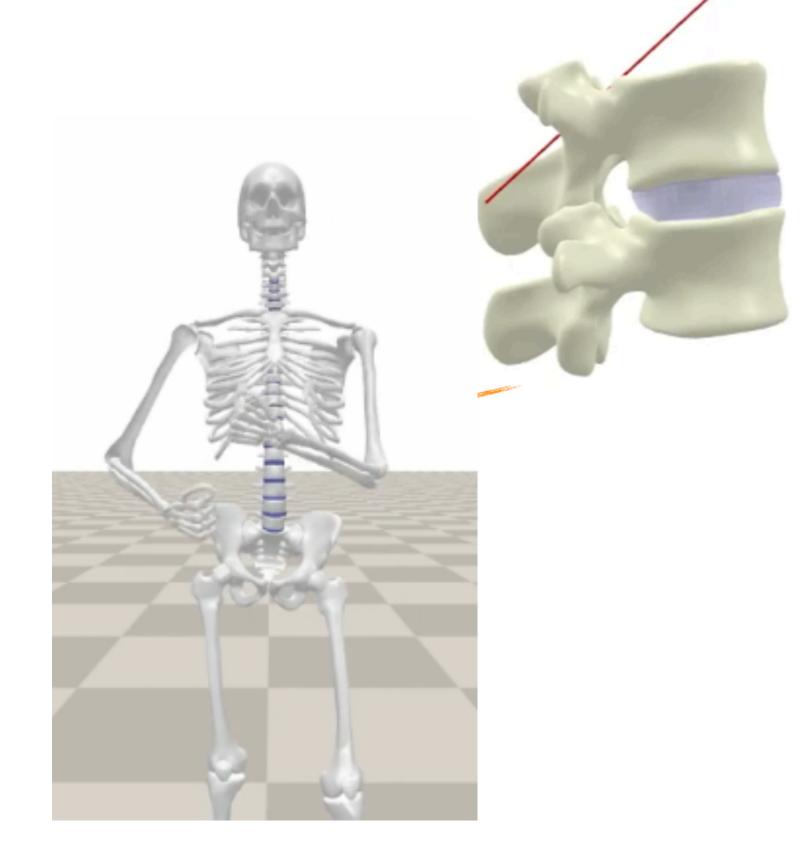


Sim-augmented GenAl model

Motion capture can be tedious



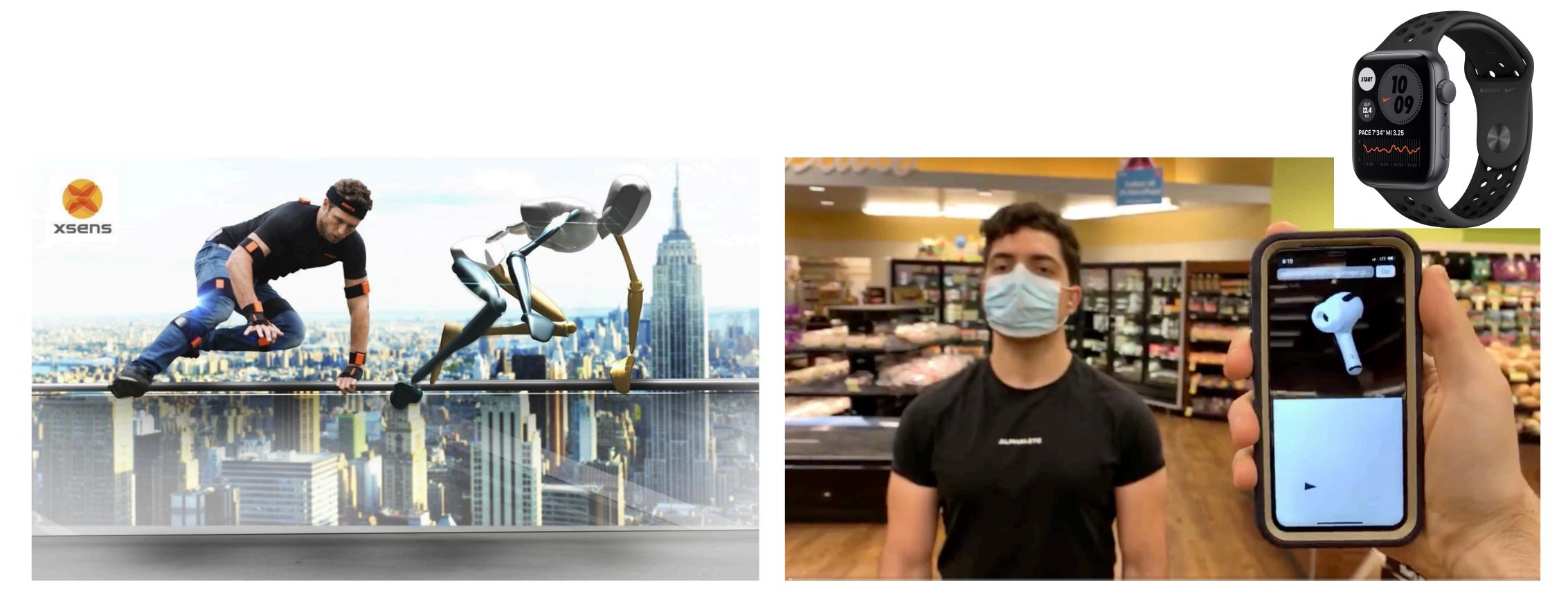
Cannot Fully Observe All Quantities



e.g. detailed shoulder and spine movements

First, how might we capture human data costeffectively, to scale up the process?

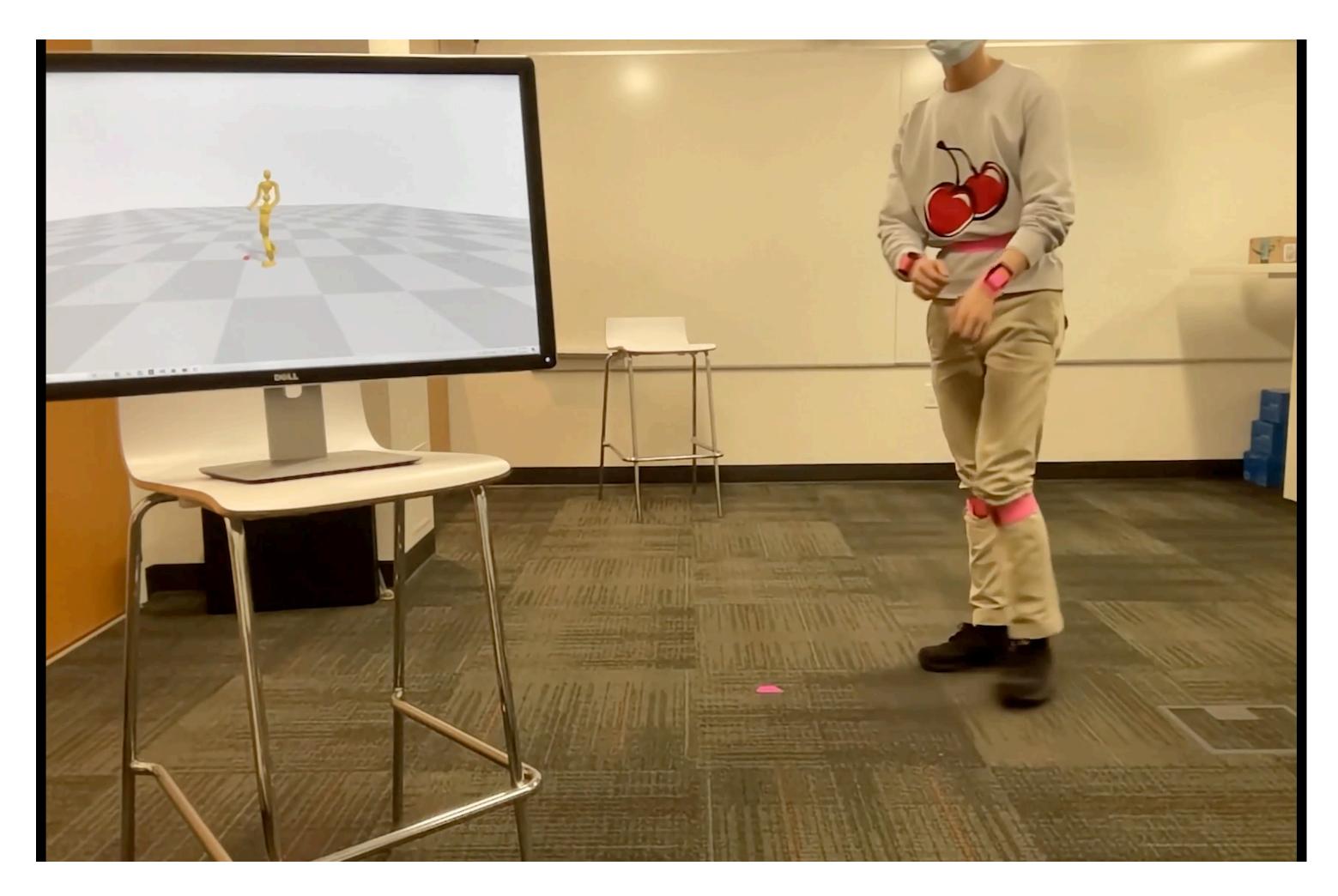
Wearable IMUs for Inexpensive Motion Capture



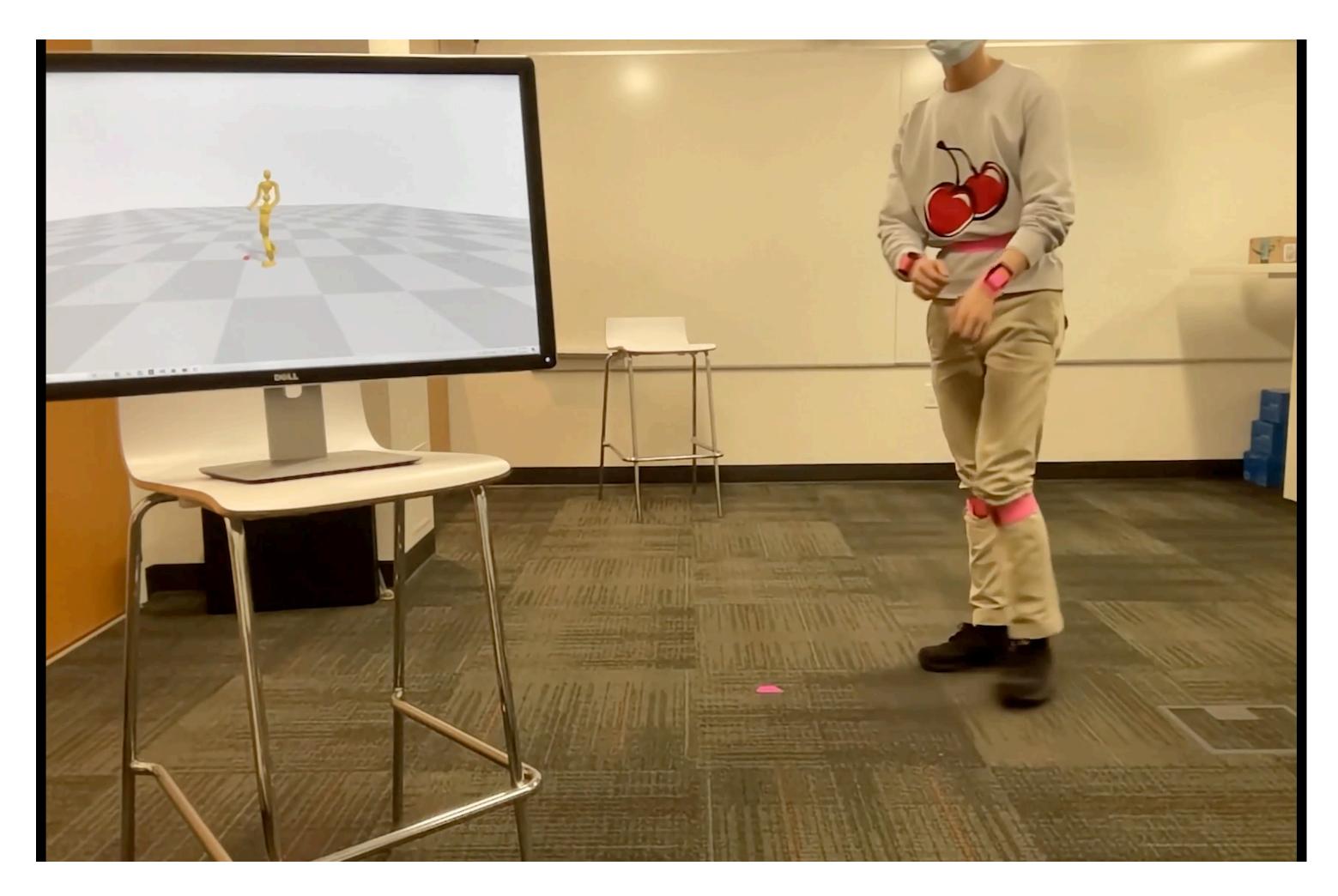
Xsens Awinda (17 IMUs) https://www.xsens.com/

Apple Airpods https://twitter.com/ConcreteSciFi/status/1311332262131113984

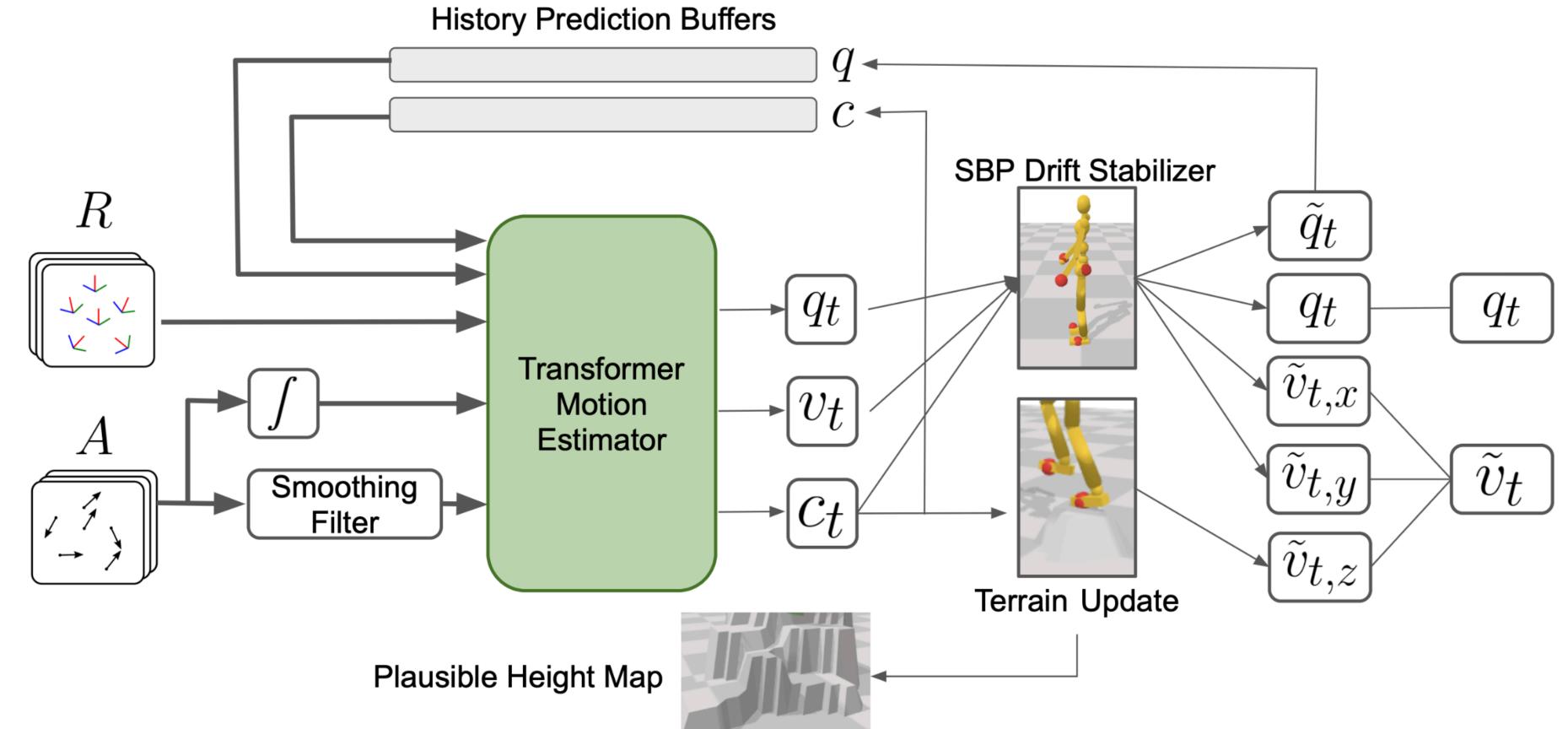
Only 6 Sparse IMUs — Minimized User Friction



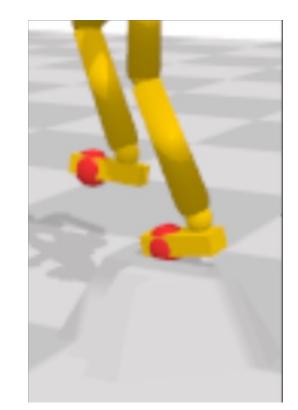
Only 6 Sparse IMUs — Minimized User Friction



Transformer-Decoder Based Model, Pretrained on Large Motion Data



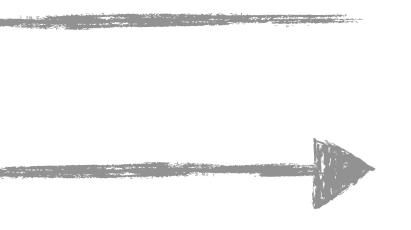
Simultaneous Terrain Map Generation



Predict plausible terrains

Predicted Motion

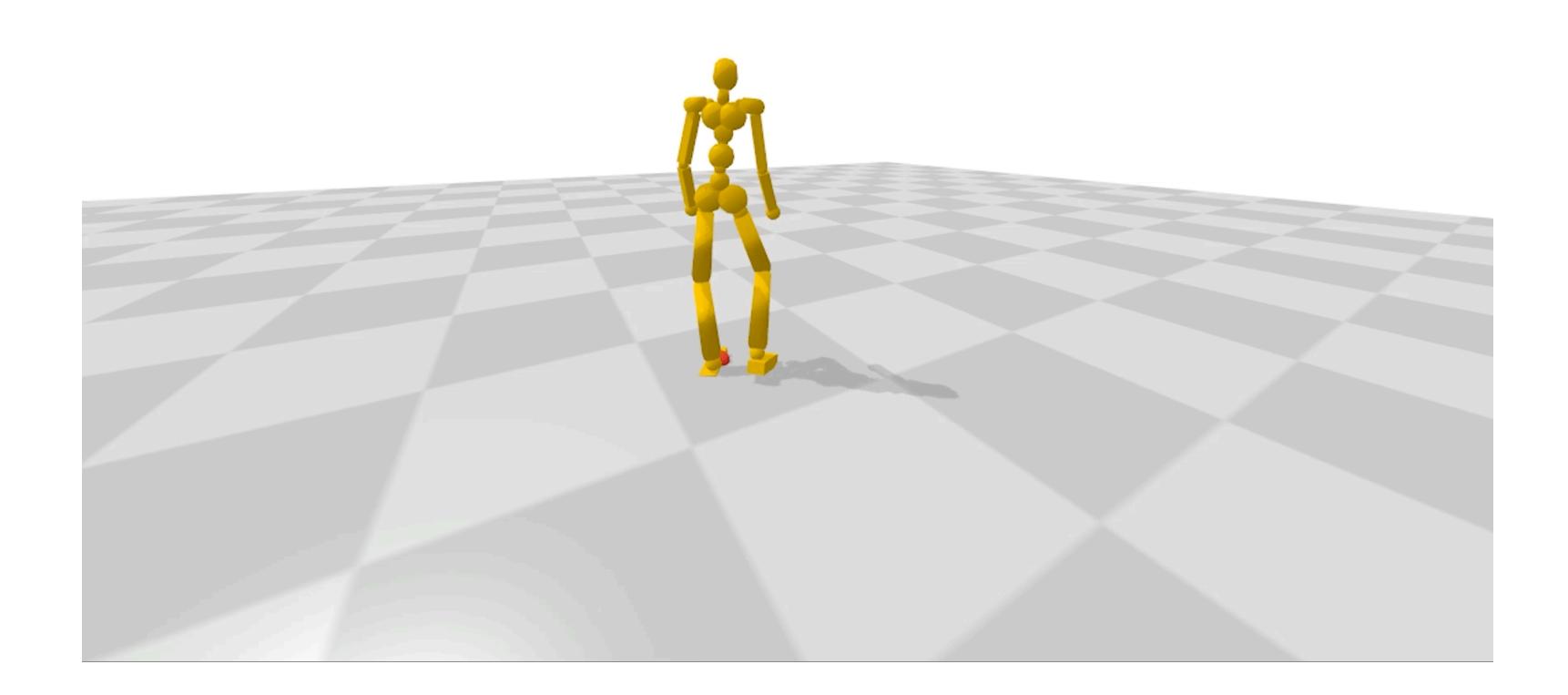
Correct slow drift

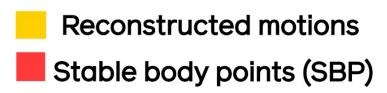


Height Map

Results: Terrain Being One of the Infinitely Many Possibilities

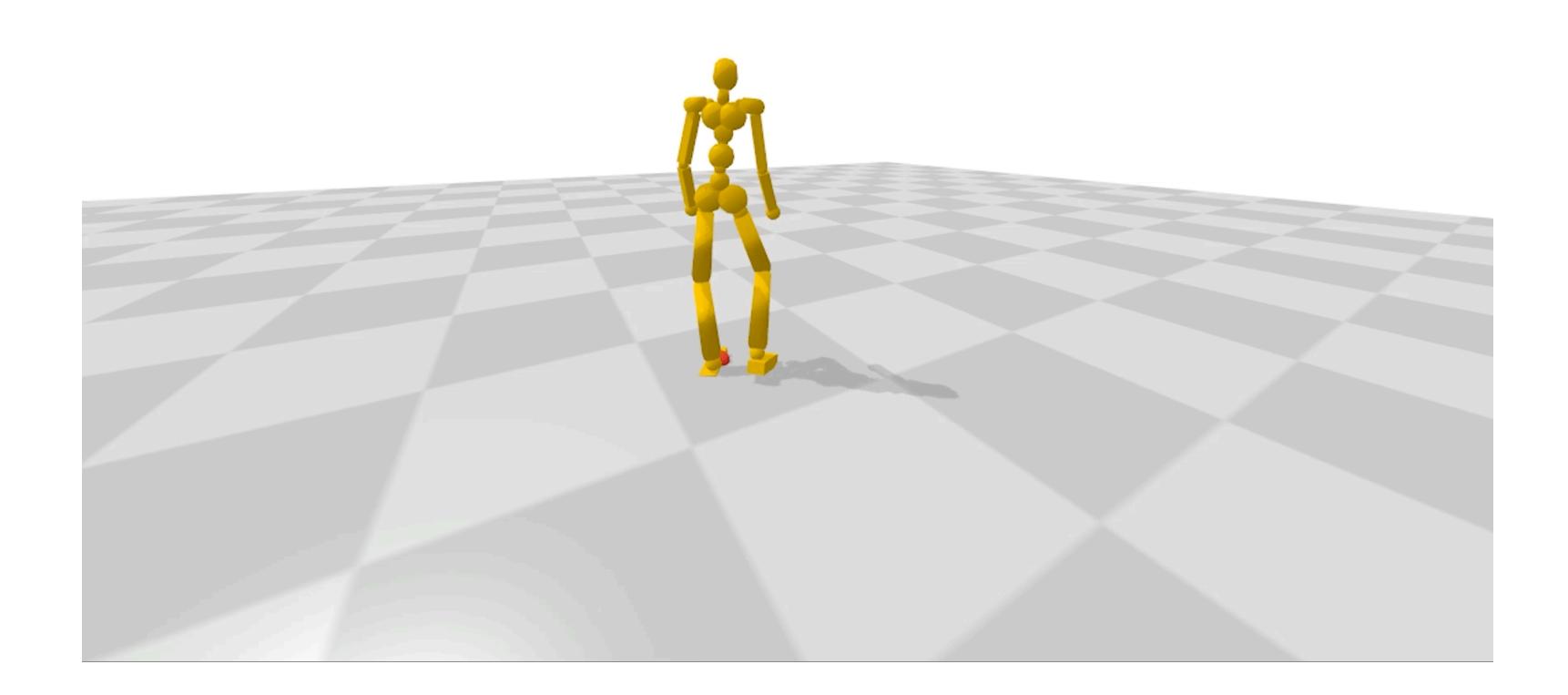
Speed: 1x

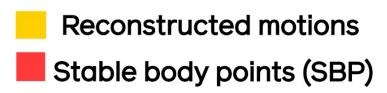




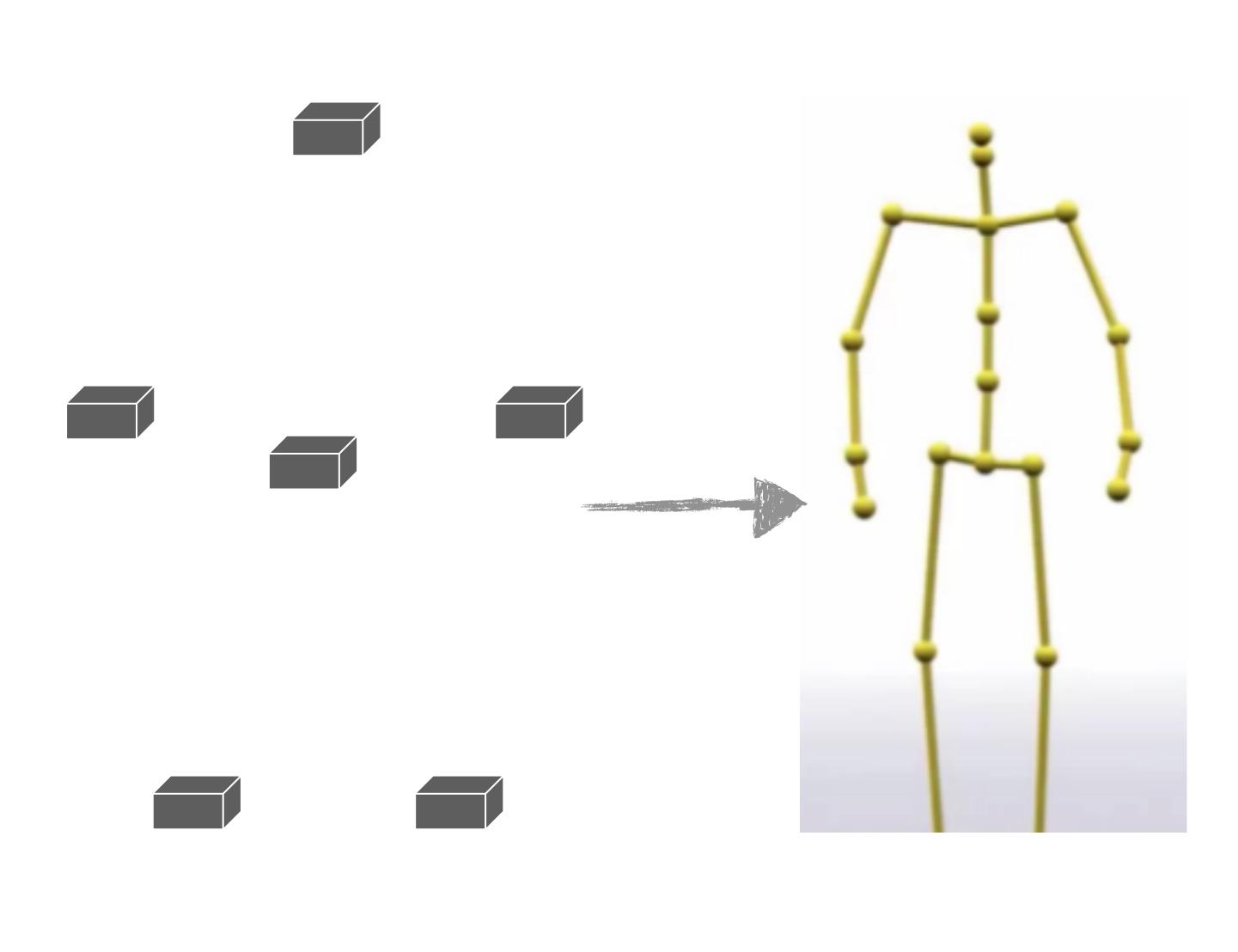
Results: Terrain Being One of the Infinitely Many Possibilities

Speed: 1x



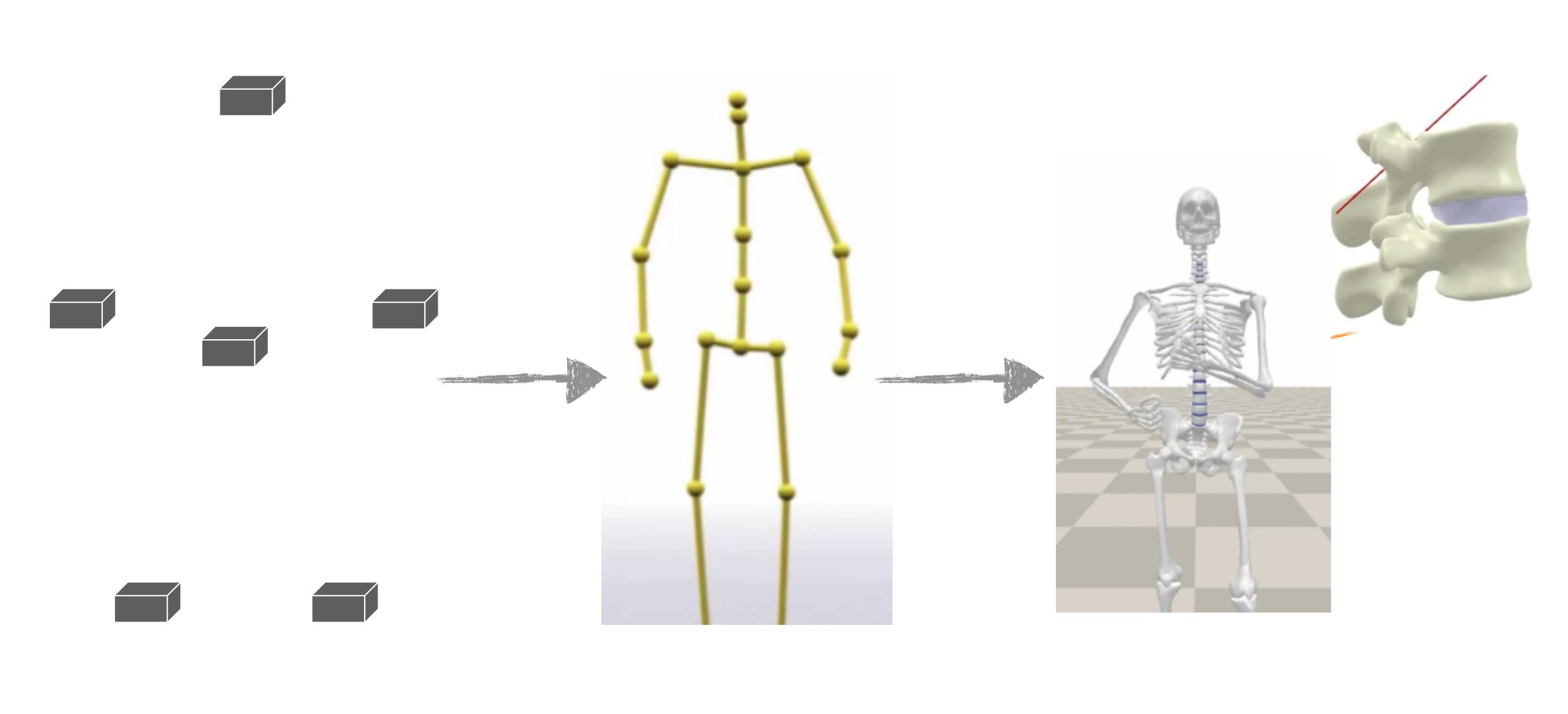


If we can collect full-body motion data at scale, what more could we do?



Sparse Sensors

Full-body Motion Estimates

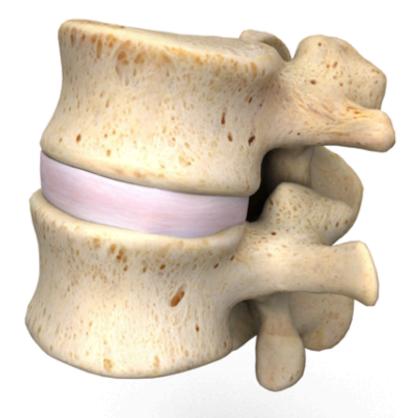


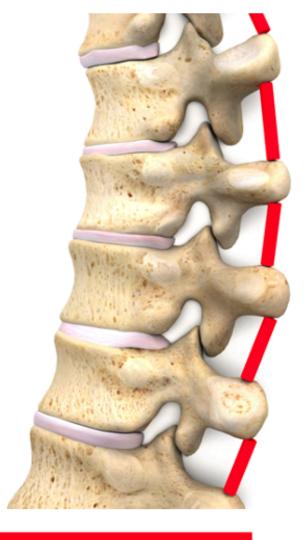
Sparse Sensors

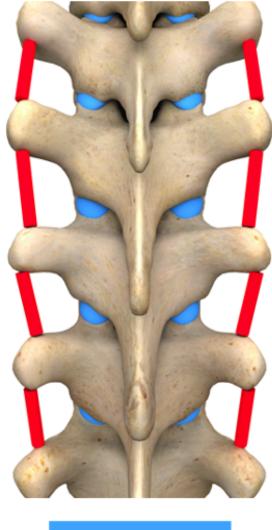
Full-body Motion Estimates

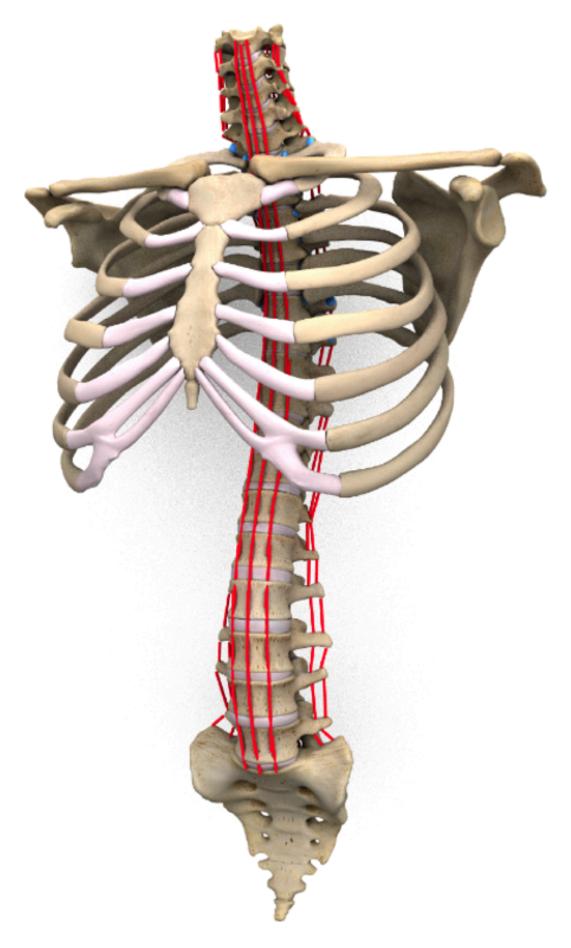
Detailed Spine Motion?

First, we built a detailed torso simulator

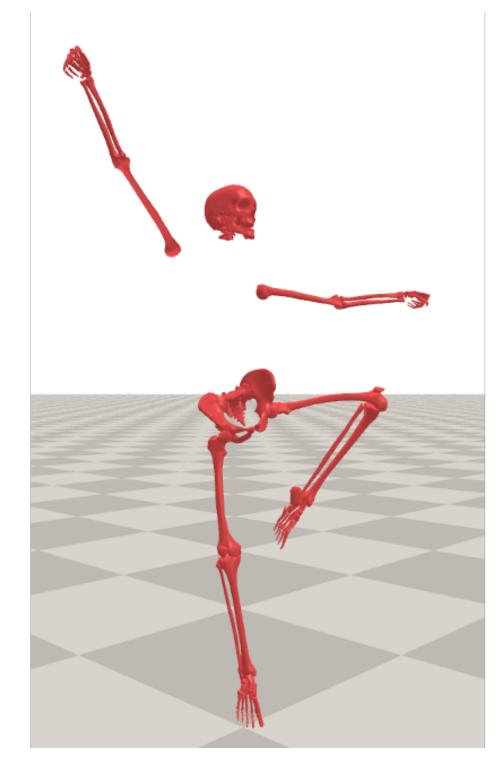






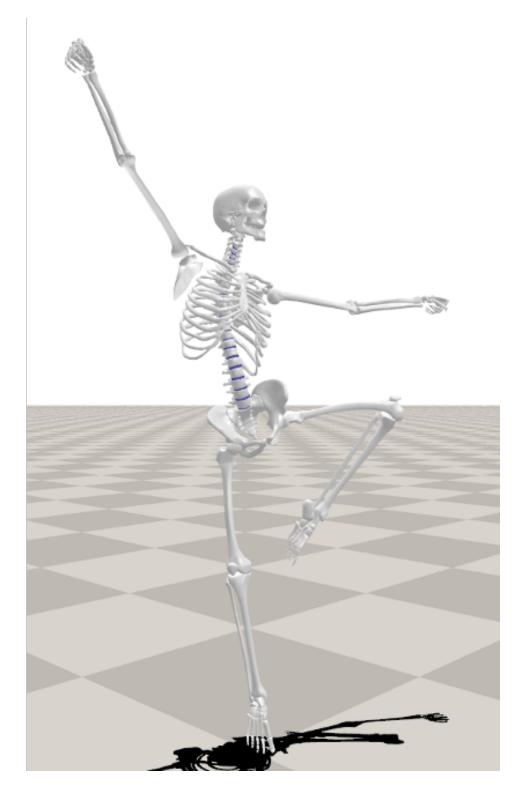


Use Simulator to "In-paint" Unobserved Spine Movements



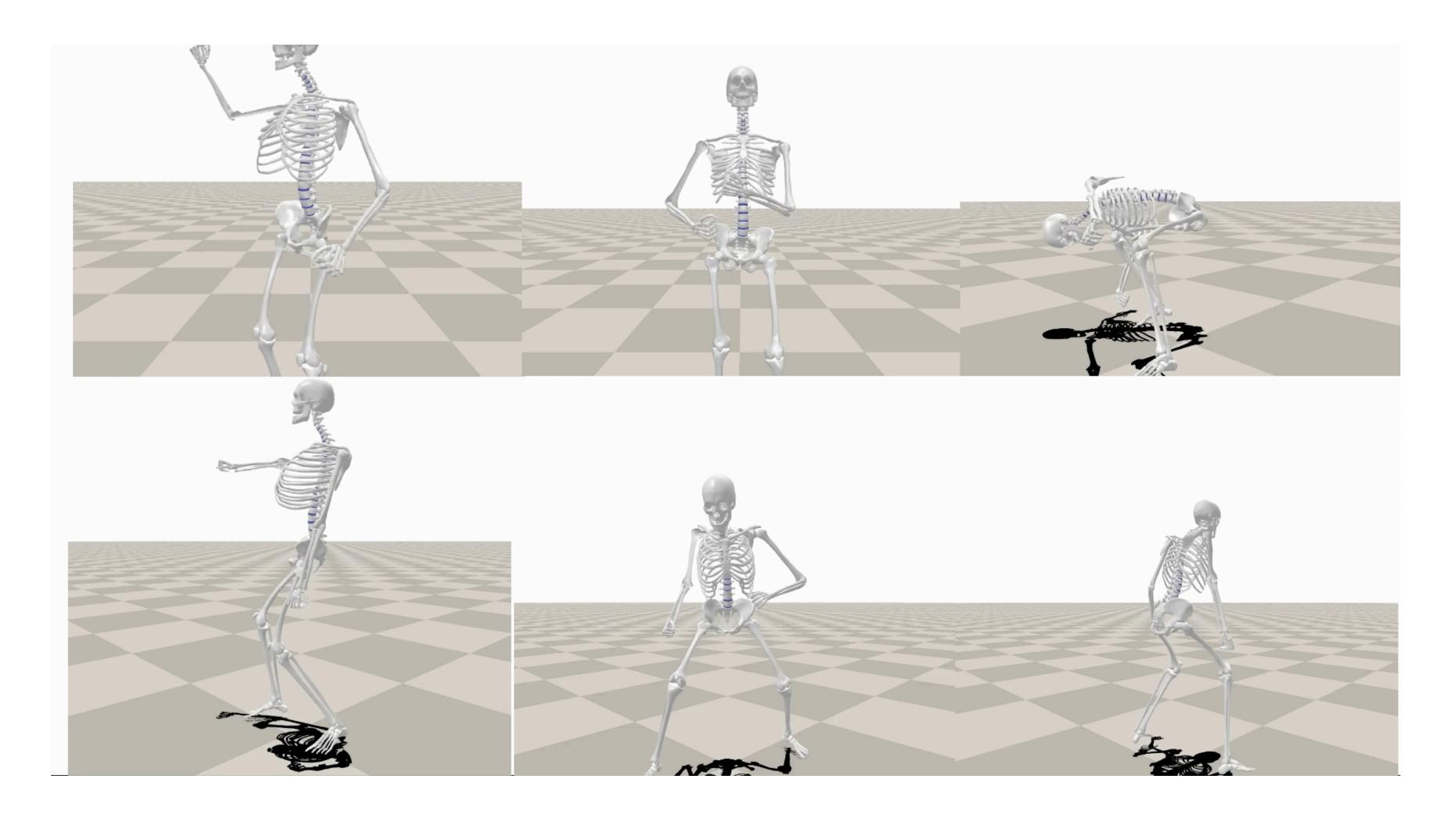
Given sparse locations of head, humerus, pelvis

Simulate to static equilibrium

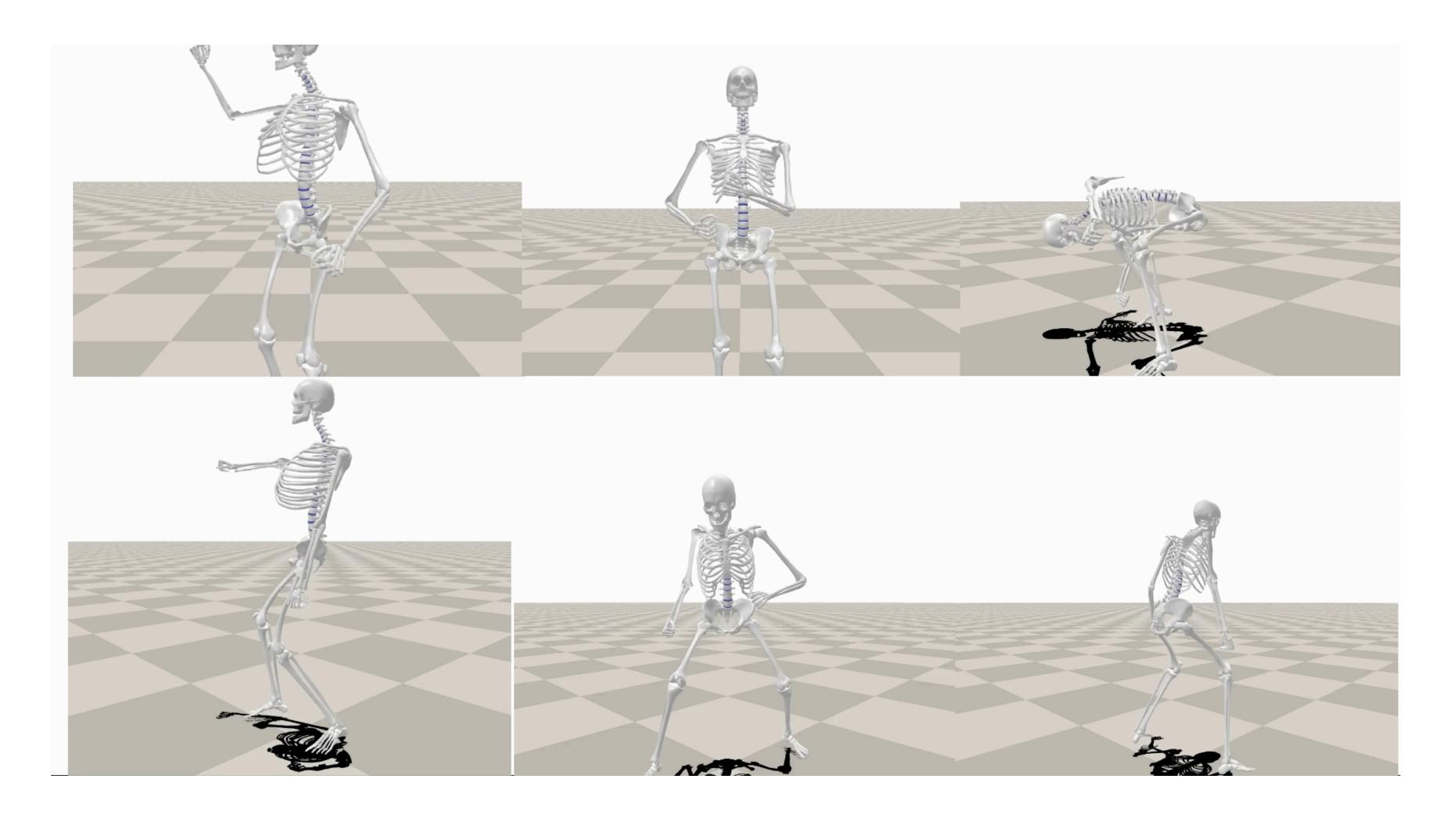


Detailed torso states

Results: In-painting a Large Dataset without Detailed Spines



Results: In-painting a Large Dataset without Detailed Spines



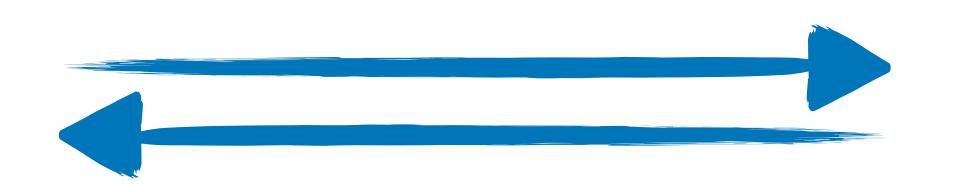
Cost-effective, scalable motion capture from IMUs and Smart Glasses

Augmenting coarse motion data with fine-grained spine movements

Theme: Motion Prior (Transformer, Diffusion, etc.) and Biophysical Prior help bridging

the gap between insufficient sensing and detailed human states

Concluding Thoughts



Physical Digital Human & World

The role of scalable simulation is irreplaceable for GenAl to continue to scale up: Prior knowledge of physics/experts are very more dense in information Simulation (synthesized data) brings expert knowledge to GenAl systems

Bio/Physics Simulation

