
Physical Digital Humans in the Era of GenAI

May 2 @ GAMES Seminar 

Yifeng Jiang 
Ph.D. Candidate 

Stanford University



2D Generative AI (of humans)



3D GenAI for XR/Spatial Computing/Simulation



3D GenAI Digital Humans

Full controllability of appearance and motions
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2D Gen-AI 3D Gen-AI Physical 3D Gen-AI

From Digital to Physical-world Applications

More challenging to obtain large-scale high-quality data
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Modern Deep Learning Physics Simulation
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Part 2:  Simulation-augmented Generative Motion Model 

Part 3:  Scalable Physical Human Data Capture

Modern Deep Learning Physics Simulation



Scalable Human Simulation with Learned Components 

— How to accurately simulate human without explicit anatomy details

[Jiang et al] SIGGRAPH’19



Standard Simulation Model

e.g. SMPL

23 ball-and-socket joints 

Easy to simulate,  
but not biomechanically accurate



Detailed Biomechanics Models & Simulations

Slow (sometimes less robust) 

How long does it take?

Harder to control (more inputs)

https://www.frontiersin.org/files/Articles/469805/fnbot-13-00090-HTML/image_m/fnbot-13-00090-g001.jpg

Not fast & robust enough for 
large-scale training & synthetic 
data generation



The Tale of Two Simulation Spaces

Simple, abstractDetailed, Anatomical
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Simple, abstractDetailed, Anatomical

Lossless/Equivalent 
Transform?

The Tale of Two Simulation Spaces



Current discrepancies?



Example #1: joint limit (RoM) depends on other joints

Smaller elbow range when the arm is behind the back.



Example #1: joint limit (RoM) depends on other joints

Heuristic Boxed Limits Realistic “state-dependent“ Joint Limits



Example #2: torque capability is state-dependent

Self-defense

Heuristic Boxed Limits State-dependent Joint Limits



Example #2: torque capacity also depends on other joints

Each muscle spans multiple joints, and 
multiple muscles interplay at each joint 



Example #3: metabolic rate is state dependent

“Same torque, different effort”

Pull-up Chin-up



Standard Motion Control Formulation in “SMPL” Space

General to any task and 

task objective ctask



Control / Energy 

Regularization

Standard Motion Control Formulation in “SMPL” Space



In Comparison to Detailed Anatomical Simulation

a

Expectedly, discrepancies in defining energy cost and constraints (e.g. capability limits)



Why Learning? A “Lift-up” in Simulation Space

Abstract space of simpler sim

Detailed Simulation space   

ML to supply “compressed” 
anatomical details 

Faster to simulate &  
Easier to solve control 

Detailed Anatomical Space

Simpler Abstract Space



Intuition: why simple sim can be as accurate as detailed sim?

If final output is still skeletal motion 

Anatomical space is redundant 
- 90 leg muscles -> 10 DoFs 
- Many bones -> a few DoFs at shoulder

Simpler Abstract Space

Detailed Anatomical Space



“State-dependency” to Bridge Simulation Spaces

Learning “state-dependent” functions

Simpler Abstract Space

Detailed Anatomical Space



a

Learned RoM, Torque limit, Metabolic energy Functions
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Learn from real data

Learn from detailed muscle simulator

[Acktar, Black CVPR’15]
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Learn from real data

Learn from detailed muscle simulator

[Acktar, Black CVPR’15]

Learned RoM, Torque limit, Metabolic energy Functions



a

We can prove both control problems now have 
a same optimal value (equivalency)

Augmented with learned 
state-dependent functions 



Results



No Motion Control, Free-fall Simulation

With learned  L(q) > 0 Without learned  L(q) > 0
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Motion Control 2: Swing as Far as You Can
With learned torque limits  

  With box limits of torques
C

Similarly, ours don’t hyper-flex 
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Ours 
Detailed muscle models

Ours use 70% less computation & fewer iterations 
Almost identical solution compared with detailed muscle simulation

Motion Control 2: Swing as Far as You Can
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Ours use 70% less computation & fewer iterations 
Almost identical solution compared with detailed muscle simulation

Motion Control 2: Swing as Far as You Can



Recap

Biomechanically accurate, fast, and easier for solving control 

Facilitate large-scale simulations, for training / synthetic data generation 

Learned anatomical functions to provably “compress” biomechanics knowledge



Simulation-augmented Generative Motion Model 

— How to build GenAI motion models that interactively reacts to physics

[Jiang et al] SIGGRAPH Asia ’23



Digital Humans that Understands and Responds to Intuitive Physics
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Physics-aware Digital Humans Can:

Improve immersion in AR/VR

Tao et al CHI’23



Help train robots / embodied AI agents in simulation

Habitat 3.0, 2023
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Habitat 3.0, 2023

Physics-aware Digital Humans Can:



Generative Models, for Motion

Rempe et al ICCV’21



Same Input, Diverse Output

Rempe et al ICCV’21
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1. Formulation does not consider physics
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all possible 
next 
states
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state

noise

all possible 
next 
states

kinematics 
model

Challenges
2. Physical responses data unsafe to capture

Simulation could help with both!

1. Formulation does not consider physics



Commonly, Off-the-shelf Simulation in Training Loop  

state actioncontroller
off-the-shelf 

simulator
next state

Reinforcement /Supervised Learning



Commonly, Off-the-shelf Simulation in Training Loop  

state actioncontroller
off-the-shelf 

simulator
next state

Reinforcement /Supervised Learning

Harder to scale up to diverse motor skills, compared with 
pure kinematics models 
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Introducing DROP

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Scalability fully inherited from Generative Model 

Pre-trained   
Generative Model

DROP
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model 𝒳t+1

Get a sample

Naively, Physics as Post-processing…

Push

Physically 
integrate 

forces



Can Lead to Model Drifting Out of Distribution

Ling et al SIGGRAPH’20
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model 𝒳t+1

Get a sample

Physically 
integrate 

forces

Instead of Isolated Sampling and Physics Post-processing



model

Manifold-aware Simulation

𝒳t+1

Physics-aware 
sampling

Simulation

Stay close to  
when solving physics 

𝒳t+1



Intuitively, Need to “Align” Model Generation to Physics

xt xt+1 xt+2 xt+n

Physics aligned 
motion



Energy-based Formulation for Model & Simulation

𝒳t+1
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Energy-based Formulation for Model & Simulation

𝒳t+1Low Energy

High EnergyAkin to a control force from 
Generative Model f = − ∇E

ff



Other Energies to Align Model Generations to Physics
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Other Energies to Align Model Generations to Physics

𝒳t+1Model

See paper all energy terms

Contact

Rigidity



Projective Dynamics for Simulation [Bouaziz 14]

Implicit Euler integration

+ Em

Physical alignment

+∑
i

Eixt+1 = argminx

Optimization-based (Variational) Integration:

Generative Model

Ekin
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Implicit Euler integration

+ Em

Physical alignment

+∑
i

Eixt+1 = argminx

Optimization-based (Variational) Integration:

Generative Model
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Ei = 0
Ej = 0

Project onto manifold
Global solve

Projective Dynamics (PD) Naturally Support Manifolds 

Ei,j > 0



Ei = 0
Ej = 0

Project onto manifold
Global solve

Projective Dynamics (PD) Naturally Support Manifolds 

Ei,j > 0

xt+1



Putting Things Together

𝒳t+1
Physics 

Alignment 
Energies

PD iterations



Putting Things Together

𝒳t+1
Physics 

Alignment 
Energies

PD iterations

model
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Setup

Generative Model:     HuMoR (ICCV’21) — trained on ~40h AMASS motion data 

- Other models should work as well

Focus on showcasing dynamic responses 

- That is, all demos are stress testing the low-data cases

All demos are stochastically created without high-level motion planning
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Recap

Minimal Sim designed to fit Generative Models

Plug in any pre-trained autoregressive Generative Model

Diverse physical motions at scale 

Pre-trained   
Generative Model

DROP



Scalable Physical Human Data Capture 

— How motion & physics prior can help scale up human data

[Jiang et al] SIGGRAPH Asia’22, 
[Lee, Jiang, Liu] SIGGRAPH’23



So far…
a

Data-driven Human Sim

Sim-augmented GenAI model



So far…
a

Data-driven Human Sim

Motion Data Engine Sim-augmented GenAI model



Motion capture can be tedious



Cannot Fully Observe All Quantities

e.g. detailed shoulder and spine movements



First, how might we capture human data cost-
effectively, to scale up the process?



Wearable IMUs for Inexpensive Motion Capture



Only 6 Sparse IMUs — Minimized User Friction
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Transformer-Decoder Based Model, Pretrained on Large Motion Data



Simultaneous Terrain Map Generation

Predicted Motion Height Map

Correct slow drift

Predict plausible terrains



Results: Terrain Being One of the Infinitely Many Possibilities
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If we can collect full-body motion data at scale, 
what more could we do?   



Sparse Sensors Full-body Motion Estimates



Sparse Sensors Detailed Spine Motion?Full-body Motion Estimates



First, we built a detailed torso simulator 



Use Simulator to “In-paint” Unobserved Spine Movements

Given sparse locations of head, 
humerus, pelvis

Detailed torso states

Simulate to static equilibrium



Results: In-painting a Large Dataset without Detailed Spines



Results: In-painting a Large Dataset without Detailed Spines



Recap

Cost-effective, scalable motion capture from IMUs and Smart Glasses 

Augmenting coarse motion data with fine-grained spine movements  

Theme: Motion Prior (Transformer, Diffusion, etc.) and Biophysical Prior help bridging 

                 the gap between insufficient sensing and detailed human states



Concluding Thoughts



Physical Digital Human & World

Modern Deep Learning Bio/Physics Simulation

The role of scalable simulation is irreplaceable for GenAI to continue to scale up:  

    Prior knowledge of physics/experts are very more dense in information 

    Simulation (synthesized data) brings expert knowledge to GenAI systems



Thank you!


