
Subspace-Preconditioned GPU Projective 
Dynamics with Contact for Cloth Simulation

Xuan Li, Yu Fang, Lei Lan, Huamin Wang, Yin Yang, Minchen Li, Chenfanfu Jiang



Introduction



3

Motivation

A fine and high-resolution discretization is often needed for rich and vivid 
effects like detailed wrinkles, folds, and creases.

Low-res Simulation High-res Simulation
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Challenges

• Nonlinear cloth dynamics require significant computation costs for high-
resolution simulation.

• Collisions and self-collisions are ubiquitous in cloth simulation. The state-
of-the-art contact modeling, Incremental Potential Contact (IPC) significantly
increase the stiffness of the nonlinear cloth dynamics.
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Projective Dynamics

Full-Space Jacobi

Local Step

Subspace           

Barrier
Proxy

BFGS

Overview

Penetration Correction

A novel subspace-preconditioned projective dynamics (PD) 
framework to accelerate cloth nonlinear dynamics.

Adopt a time-splitting scheme [Xie et al. 2023] to
accelerate contact handling.

• Low-frequency motion modes are captured within a
designed subspace.

• High-frequency details are resolved by parallel Jacobi 
relaxation.

• Subspace BFGS progressively integrates the quadratic 
contact proxy into the subspace matrix.

• Penetration issues are resolved through a penetration 
correction step.

An efficient GPU implementation



Technical Details
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Time Integration
Backward Euler Time Integration

Optimization Time Integration
- In-plane deformation gradient

- Closest isometry

- Predicted position under inertia

Stretching stencil

Bending stencil

Inertia ARAP Stretching Quadratic Bending

Solved by Newton, which requires recomputing Hessian matrices
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Projective Dynamics (PD)

Projective Dynamics [Bouaziz et al. 2014] 

Local Step

For k = 1, 2, 3, …

Global Step

Constant

Optimization Time Integration
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Solving Full-Order PD
• The global step is a quadratic problem with a fixed system hessian

Current Residual New increment

System matrix can be prefactorized if it is small

• The local step can be executed on triangles in parallel

Otherwise, a fixed number of Jacobi iterations are applied

• The global-local alternation can be accelerated by Chebyshev acceleration [Wang 2015]

Subject to solving a linear system:
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Subspace PD
Rationale

• Decrease #DOF for efficient prefactorization.
• Low-frequency modes dominate the overall motions.

Subspace Solve for Global Step

- Basis matrix: each column is one basis for the displacement

Subspace solve:

Can be prefactorized

Linear form:
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B-Spline Subspace for Cloth

Cloth has sewing patterns. Each patch has a UV-plate.

We only need a basis parameterized on 2D plane.

Quadratic B-spline

Boost 1D basis to 3D basis

Partition of Unity is naturally satisfied.

Math Equations

x̃ = x= + ⌘v= + ⌘2g

) Nu: = b:�1

u: = x: � x:�1

P

Nu: = b:�1

P)NP~: = b:�1

u: = P~: = x: � x:�1

�G
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Subspace PD Simulation
Partition of Unity is important

Ours [Brandt et al. 2018] 
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Projective Dynamics Local Step

Subspace Solve

Full-Space Jacobi

Subspace-Preconditioned PD
Subspace cannot resolve high-frequency features, such as wrinkles.

Step I: Subspace Solve

Original global step

Step II: Jacobi Relaxation For j = 1, 2, 3, …, N

Need full-order relaxation to reduce high-frequency residual
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Subspace-Preconditioned PD Simulation

Ours [Wang 2015] 
3.0s/frame 26.2s/frame
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Time-Splitting for Contact

Contact is ubiquitous in cloth motions

Codimensional Incremental Potential Contact (CIPC) [Li et al. 2021]:

Splitting with Quadratic Proxy [Xie et al. 2023]:

Contact barrier energyStretching + Bending

Penetration Correction Step

Quadratic Proxy
Optimized by Newton PCG

Elasticity Step

Guarantee penetration-free by working with CCD
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Splitting with Quadratic Proxy [Xie et al. 2023]
Momentum Equation

Naive Splitting

000:8 • Xie et al. 2023

Table 1. Simulation statistics including duration of each frame (Δ𝑡frame, [𝑠 ]), time step size upperbound (Δ𝑡, [𝑠 ]), number of fluid particles (𝑁fluid), number
of solid vertices (𝑁solid), incompressibility coefficient (𝑘𝐼 , [𝑃𝑎]), dynamic viscosity (𝜈𝑓 , [𝑃𝑎 · 𝑠 ]), fluid particle diameter (𝑑, [𝑚𝑚]), fluid density (𝜌𝑓 , [𝑘𝑔/𝑚

3 ]),

Young’s modulus (𝐸, [𝑃𝑎]), Possion’s ratio (𝜈𝑠 ), solid density (𝜌𝑠 , [𝑘𝑔/𝑚3 ]) and the average simulation time for each frame (𝑇 , [𝑚𝑖𝑛]). Timing statistics are
measured on a 24-core 3.50GHz Intel i9-10920X machine except for Fig. 11, which is tested on the “e2-standard-8” (8 cores with 32GB RAM) Google Compute
Engine. Note that examples marked with * contain codimensional materials, whose parameter settings are not covered here.

Scene Δ𝑡frame Δ𝑡 𝑁fluid 𝑁solid 𝑘𝐼 𝜈 𝑓 𝑑𝑓 𝜌 𝑓 E 𝜈𝑠 𝜌𝑠 𝑇

Fig. 1 Kick Water* 1/24 6 × 10−3 1M 43K 2.5 × 105 0.1 25 1000 - - 500 37.9
Fig. 2 Shoot Armadillo 1/24 4 × 10−3 103K 16K 1 × 105 0 10 1000 1 × 105 0.3 200 1.3
Fig. 3 Cream 1/24 4 × 10−3 159K 9K 3 × 104 25 3 1000 5 × 108 0.49 1000 1.8
Fig. 4 Buoyancy 1/24 5 × 10−3 787K 66K 2 × 105 1 10 1000 1 × 105 0.4 200/700/1200 5.9
Fig. 5 Bob 1/24 4 × 10−3 97K 2.3K 2 × 105 0 15 1000 1 × 105 0.3 500 0.3
Fig. 6 Twist Cylinder* 1/24 5 × 10−3 486K 12K 4 × 104 0 5 1000 - - 500 7.9
Fig. 7a Viscous Armadillo 1/48 4 × 10−3 238K 0 1 × 105 100 10 1200 - - - 0.4
Fig. 9 Dam Break 1/24 5 × 10−3 280K 0 2 × 105 0.005 25 1000 - - - 0.4
Fig. 11a Liquid Bunnys 1/50 4 × 10−3 52K 3.7K 1 × 105 0 10 1000 4 × 103 0.49 200 0.4
Fig. 11b Liquid Bunnys 1/50 4 × 10−3 101K 4.5K 6 × 104 0 6.4 1000 1 × 103 0.49 200 1.0
Fig. 14 Angry Cow* 1/24 5 × 10−3 789K 13K 1 × 105 0.2 10 1000 1 × 105 0.45 100/700 4.9

Initial (A) (B) (C)

(a) A viscous armadillo dropped onto the ground.

(A) (B) (C)

(b) Cube on cloth. An elastic cube is dropped onto a square cloth with
four corners fixed.

Fig. 7. Simulation results of (A) Joint Optimization, (B) Time Splitting with
Contact Proxy, and (C) Baseline Time Splitting. While directly applying time
splitting results in instability at the boundaries, our results with contact
proxy are consistent with joint optimization.

stable simulation results. Hence, for comparison, we use the largest
CFL time step for both schemes to maximize their performance
as smaller ℎ typically takes more Newton’s iterations in total to
simulate a frame. For joint optimization, since direct factorization is
intractable, we solve Eq. 20 using the block-Jacobi preconditioned
conjugate gradient solver with the fluid part matrix free.
As shown in Table 2, our time splitting scheme is significantly

(up to 6×) faster than joint optimization, especially for cases (e.g.
Fig. 2) involving contacts between fluids and deformable solids.
This improvement stems from no longer having to solve for incom-
pressibility of fluids repeatedly within a time step. Moreover, one

Table 2. Statistics of different time stepping schemes: Joint Optimiza-
tion (Joint), Baseline Time Splitting (TS) and Time Splitting with Contact
Proxy (TSCP). Our proposed TSCP is much faster than both the Joint and
TS.

Scene
Sec/Frame # Newton Iter./Frame

Joint TS TSCP Joint TS TSCP

Fig. 5 66.1 38.0 22.5 63.5 117.3 37.1
Fig. 7a 41.3 32.3 25.5 16.5 29.0 10.5
Fig. 2 486.4 158.5 79.8 176.7 187.2 85.8
Fig. 6 2408.2 722.7 472.2 389.1 419.3 219.5

can also find out that Newton’s iterations are much less with our
proxy-assisted time splitting scheme. As discussed in § 4.1.2, this is
because the challenging high-speed impacts are already partially
resolved in the fluid phase. Another benefit of time splitting is the
support of different error tolerances for the two phases. Errors in
the fluid phase are sourced from the solution deviation of the CG
solver, while in the solid phase they are directly controlled by the
tolerance of Newton’s method. Typically, setting a slightly higher
tolerance for fluids yields better performance while still producing
visually plausible results.

Aside from efficiency, our proposed contact proxy also improves
the stability of time splitting scheme. Though simulation results of
the baseline time splitting scheme look fine in the case of inviscid
fluids, situations get worse when it is applied to viscous fluids. In Fig.
7a, a viscous armadillo is dropped to the ground. In this example,
the baseline time splitting scheme produces severe sticky artifacts at
the boundary, and the fluid surface could not finally calm down. By
consistently applying our contact proxy to exert boundary pressure
in the fluid phase, the artifacts can be well resolved as demonstrated
in Fig. 7a. Similarly, our idea of contact proxy is also applicable
to further separate elasticity from IPC contact while maintaining
stability, leading to our three-phase scheme (Fig. 7b).

ACM Trans. Graph., Vol. 42, No. 4, Article 000. Publication date: August 2023.

Splitting with Contact Proxy
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Global Step with Contact Proxy

Goal:

Subspace Solve:

Residual w.o. contact

Prefectorized Constant only in the same time step

BFGS
(avoid refactorization)

Initial Hessian:

Low-rank updates to approximate:

Shared low-rank updates across all global steps

Jacobi Relaxation:

Recall: Without contact, the global step is a linear system 
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Full Algorithm



Comparisons
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Ours

GPU CIPC PD-IPC [Lan et al. 2023]

#V: 252K
#Basis: 8427

Ours: 27s/frame
GPU CIPC: 241s/frame
PD-IPC: 49s/frame
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Ours

GPU CIPC PD-IPC

#V: 104K
#Basis: 7665

Ours: 10s/frame
GPU CIPC: 90s/frame
PD-IPC: 18s/frame
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Ours

GPU CIPC PD-IPC

#V: 285K
#Basis: 7119

Ours: 46s/frame
GPU CIPC: 1033s/frame
PD-IPC: 134s/frame
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Ours

GPU CIPC PD-IPC

#V: 232K
#Basis: 9432

Ours: 23s/frame
GPU CIPC: 362s/frame
PD-IPC: 253s/frame
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Ours

GPU CIPC

Ours: 23s/frame
GPU CIPC: 150s/frame



Conclusion
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Conclusion

• An efficient GPU cloth simulation method 
based on the projective dynamics (PD) 
framework.

• Combination of subspace integration and full-
space relaxation effectively reduces both high-
frequency and low-frequency residuals.

• Seamlessly integrate with IPC to ensure 
penetration-free in a time-splitting manner.

• Significant performance improvements over 
existing GPU solvers for high-resolution cloth 
simulation. 

• Under high speed, the time splitting error can 
lead to damping effects.
Ø Adaptive substepping

• Newton’s method in the penetration correction 
step may have overshooting problems.
Ø A dedicated solver for penetration 

correction 



Thank you!


