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Introduction




Motivation

A fine and high-resolution discretization is often needed for rich and vivid
effects like detailed wrinkles, folds, and creases.

Low-res Simulation High-res Simulation



Challenges

* Nonlinear cloth dynamics require significant computation costs for high-
resolution simulation.

* Collisions and self-collisions are ubiquitous in cloth simulation. The state-
of-the-art contact modeling, Incremental Potential Contact (IPC) significantly
iIncrease the stiffness of the nonlinear cloth dynamics.



Overview

Projective Dynamics

Subspace \

Local Step

Full-Space Jacobi

A novel subspace-preconditioned projective dynamics (PD)
framework to accelerate cloth nonlinear dynamics.

« Low-frequency motion modes are captured within a
designed subspace. \

 High-frequency details are resolved by parallel Jacobi
relaxation.

Adopt a time-splitting scheme [Xie et al. 2023] to
accelerate contact handling.

» Subspace BFGS progressively integrates the quadratic
contact proxy into the subspace matrix.

» Penetration issues are resolved through a penetration
correction step.

An efficient GPU implementation
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Technical Detalls




Time Integration

Backward Euler Time Integration
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Optimization Time Integration
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Solved by Newton, which requires recomputing Hessian matrices
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- Predicted position under inertia
F; - In-plane deformation gradient

R(F) - Closestisometry

Stretching stencil A
Bending stencil i :




Projective Dynamics (PD)

Optimization Time Integration
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Projective Dynamics [Bouaziz et al. 2014]
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Solving Full-Order PD

» The global step is a quadratic problem with a fixed system hessian

1 k o) Emem k k2 Ebend ku2
min — |[x" — x + F; — R + X
nin o [ 1§ Et,ll " £ |l Ee,ll o,

2 2
Subject to solving a linear system: \
— Huk = pk1 uk _ xk _ xk—l
Current Residual New increment

System matrix can be prefactorized if it is small
Otherwise, a fixed number of Jacobi iterations are applied

* The local step can be executed on triangles in parallel

» The global-local alternation can be accelerated by Chebyshev acceleration [Wang 2015]



Subspace PD

Rationale —\ \

« Decrease #DOF for efficient prefactorization.

» Low-frequency modes dominate the overall motions.

Subspace Solve for Global Step

P - Basis matrix: each column is one basis for the displacement

£ Eb d
Subspace solve: min 2h2”x — x||3, + memZ”Fk(xk)_Rk”Z en Z” k|2 L st ok k=1 _ pyk
y
Linear form: PTHPy* = pTp<1 uk =7’y _ 5k _ k-1
\_'_l

Can be prefactorized
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B-Spline Subspace for Cloth

Cloth has sewing patterns. Each patch has a UV-plate.

We only need a basis parameterized on 2D plane.

Bij(X) = N(u/Ax —i)N(v/Ax — j)

( 1
% = xza |x| < Ea
—J1/3 1 3
N(x) = 1 §(§ - |x|)2, 7 = x| < 7> Quadratic B-spline
3
KO, 2 < |X|
P=BR I Boost 1D basis to 3D basis

Partition of Unity is naturally satisfied.
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Subspace PD Simulation

Partition of Unity is important

[Brandt et al. 2018]




Subspace-Preconditioned PD

Subspace cannot resolve high-frequency features, such as wrinkles.
Need full-order relaxation to reduce high-frequency residual

1

E E
. . i B kK =2 mem k _ pkj2 bend ku2
Original global step  min o [l - I3, + = ZuFt REIP + = 2”" 1%,

Step I: Subspace Solve PTHPyF = PTH*1 b0 = Pyt

Step II: Jacobi Relaxation u*/ = u*/~1 + o diag(H) "' (b*~! - Hu®/"1)  Forj=1,23, .,

WoN — ok k-1

Subspace Solve «

Projective Dynamics Local Step

Full-Space Jacobi )
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Subspace-Preconditioned PD Simulation

Ours [Wang 2015]

3.0s/frame 26.2s/frame




Time-Splitting for Contact

Contact is ubiquitous in cloth motions

Codimensional Incremental Potential Contact (CIPC) [Li et al. 2021]: \
MT = h( V\I’E(x) VB(x))
Stretching + Bendlng Co'ntact barrier energy

Guarantee penetration-free by working with CCD

Splitting with Quadratic Proxy [Xie et al. 2023]:

Elasticity Step Penetration Correction Step
2 Y n+1
h X _h (_WE _ (VZB(x*)— ) + VB(x*))) . _RVB(x™)
\ J
| — mm — ||x x||M + B(x)
X

Quadratic Proxy

Optimized by Newton PCG e



Splitting with Quadratic Proxy [Xie et al. 2023] é@/

|
3
N

Momentum Equation

M(Un+1 . Un) _ h(fE,n+1 +fC,n+1)

Naive Splitting
M(5 _ Un) _ th,n+1
M(Un+1 _ 5) — th,n+1

Splitting with Contact Proxy
- 1 -
M(U _ Un) _ h(fE,n+1 4 5fC)
- 1 - 1
M(Un+1 _ U) _ h(fC,n+1 _ 5fC) ~ 5th,n+1
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\
Global Step with Contact Proxy @é@/

Recall: Without contact, the global step is a linear system Huk = bk_1 \
Goal: (H +V?B(x"))u* =b*" = b\f“l - (VZB(x*)(xk"l —x*) + VB(x*))
Residual w.o. contact \

Subspace Solve:  (PTHP + PTV2B(x")P)y* = PTH*!

Prefectorized Constant only in the same time step

Initial Hessian: PTHP

BFGS

Low-rank updates to approximate: SDTVZB(x*)SD
(avoid refactorization)

Shared low-rank updates across all global steps

Jacobi Relaxation: H + V“B(x™)
17



Full Algorithm

Algorithm 1 Timestepping of subspace-preconditioned PD

if it is the first time step then

Construct subspace basis sparse matrix P. > Sec. 4.2
Factorize the reduced-order global matrix P T HP. » Sec. 4.3
end if

Update predictive position x.

Run a reduced-order global step w.o. contact for an initial guess.

Construct quadratic barrier proxy at current state x*.

Initialize subspace BFGS history.

while not converged do > Sec. 4.4.1
Run 2 iterations of subspace BFGS and update the history.
Run 5 fullspace Jacobi iterations.
Run PD local projections in parallel.

end while

Run penetration correction step. > Sec. 4.4.2
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Comparisons




ours

GPU CIPC

PD-IPC [Lan et al. 2023]

#V: 252K
#Basis: 8427

Ours: 27s/frame
GPU CIPC: 241s/frame
PD-IPC: 49s/frame




#V: 104K
#Basis: 7665

Ours: 10s/frame
GPU CIPC: 90s/frame
PD-IPC: 18s/frame
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- Ours

GPU CIPC

~—

#V: 285K \
#Basis: 7119

Ours: 46s/frame
GPU CIPC: 1033s/frame
PD-IPC: 134s/frame
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Ours

GPU CIPC

PD-IPC

#V: 232K
#Basis: 9432

Ours: 23s/frame
GPU CIPC: 362s/frame
PD-IPC: 253s/frame




Ours: 23s/frame
GPU CIPC: 150s/frame

ours
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GPU CIPC
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Conclusion




Conclusion

» An efficient GPU cloth simulation method
based on the projective dynamics (PD)
framework.

« Combination of subspace integration and full-
space relaxation effectively reduces both high-
frequency and low-frequency residuals.

« Seamlessly integrate with IPC to ensure
penetration-free in a time-splitting manner.

« Significant performance improvements over
existing GPU solvers for high-resolution cloth
simulation.

» Under high speed, the time splitting error can
lead to damping effects.

> Adaptive substepping
* Newton’'s method in the penetration correction
step may have overshooting problems.

> A dedicated solver for penetration
correction
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