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Observation

e Traditional rendering
o + Precise
o + Photo-realistic
o - Requires full scene description

e Diffusion models
o + Simple to use
o + Confuse the real from the fake
o - Hard for precise control



ldea

e \We aim to explore a middle ground

o specify only certain appearance properties, and
o give freedom to the model to hallucinate a plausible version of the rest

e X: intrinsic channels (G-buffers)
e X ->RGB: synthesizing an image from a given description

e RGB -> X: decomposing an image into intrinsic channels



Background

e RGB->X: estimating per-pixel information from image
o  We denote these intrinsic channels (or, G-buffers) as X

e This problem is under-constrained and ambiguous
o “Wooden floor with shadows and reflections on it”
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Background

e Recent work show improved estimation on X based on diffusion models

Input image Zhu et al. [2022b] Kocsis et al. [2023] Careaga and Aksoy [2023] Our RGB—X




Goal

e Explore the connections between
o diffusion models, rendering, and intrinsic channel estimation
e Focus on two problems

o RGB->X: intrinsic channels estimation and
o X->RGB: image synthesis conditioned on intrinsic channels



RGB->X

e Fine-tuned from pre-trained Stable Diffusion (latent diffusion model)
e Key idea:

o repurpose the input text prompt as a “switch” to control the output,
o produce a single intrinsic channel at a time

e Two benefits:

o Enable usage of a mix of heterogeneous datasets, which differ in the available channels
m For example, a dataset with only albedo channel available can still be employed to train
our model
m Massively enlarged the training datasets available to us.
o Avoid handling multiple output channels
m  Which is proven to make the training more challenging




X->RGB

e Fine-tuned from pre-trained Stable Diffusion (latent diffusion model)
e Key idea:

o Achannel drop-out strategy: randomly drop conditioned channels during training.
m For example, drop albedo channel with a probability of 0.3
o Jointly train a conditional and unconditional diffusion model

e Two benefits
o Again, enable usage of a mix of heterogeneous datasets, which differ in the available
channels
o Enable image generation with any subset of conditions
m For example, providing no albedo or no lighting will result in the model generating
plausible images, using its prior to compensate for the missing information
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Results: RGB->X
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Results: X->RGB
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Results: X->RGB
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: X->RGB
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Results: X->RGB
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Results: RGB->X->RGB
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Applications

e RGB->X

o Estimation of intrinsic channels (albedo estimator, normal estimator, ...)
o X->RGB

o Fast previews of renderings for 3D software
e RGB->X->RGB

o Material replacement, object insertion, relighting, ...



