Visual Recreation with *Data* and *Physics*

Shenlong Wang

Apr 2, 2024

1

What if...

2

What if... driving at night?

What if... jaywalkers present?

What if... driving on a smoggy day?

What if... the street is covered by snow?

6

What if... the street is flooded?

Recreative mind^[1]

Recreative imagination: an ability to experience or think about the world from a perspective different from the one that experience presents -- Gregory Currie and Ian Ravenscroft (2002)

Recreative mind^[1]

Recreative imagination: an ability to experience or think about the world from a perspective different from the one that experience presents -- Gregory Currie and Ian Ravenscroft (2002)

Teleconference

Healthcare

Simulation

FACE
Siten
Malcrup
Tech

 HAIR
Hatad
Deard
Museum

O BODY Body Shepe Topis Bottoms

U

origin flood

smog

Entertainment

BLEND MOVE SOULST DR

What we have done so far

Physical simulation can simulate, but it is not based on real scenes, and necessitates user-created assets.

What have done so far

Video Effects (VFX): can be ultra realistic but requires professionals.

What we have done so far

Generative models can edit but are data-hungry and lack physical grounding.

What we have done so far

(Neural) 3D modeling can encode rich appearance, geometry and semantics, but has limited editability.

Key insights

Data-driven

Model-based

Key insights

Data-driven

Model-based

Can we simulate from and to the reality?

Lighting

Dynamics

Key challenge: relightable scene representation

Object-level, surrounding views

(a) Input images

(b1) Albedo (b2) Roughness

(b3) Shape & lighting

(c1) Novel view

(c3) Relit 2

Multi-illumination or known geometry

Image credit: NeuralPIL, NeRFOSR

Key challenge: relightable scene representation

Object-level, surrounding views

Multi-illumination or known geometry

UrbanIR: Urban Scene Inverse Rendering

• Data-driven monocular cues provide strong prior / regularization

• Explicit modeling **physics** of **shadow** improves geometry

Zhi-Hao Lin, Bohan Liu, Yi-Ting Hu, Anand Bhattad, David Forsyth, Jia-Bin Huang, Shenlong Wang. UrbanIR: Large-Scale Urban Scene Inverse Rendering from a Single Video, arXiv. 2023

Reconstruction

IRIS: Inverse Rendering of Indoor Scenes from Low Dynamic Range Images by Zhi-Hao Lin, Jia-Bin Huang, Zhengqin Li, Zhao Dong, Christian Richardt, Tuotuo Li, Michael Zollhöfer, Johannes Kopf, Shenlong Wang, Changil Kim, arXiv, https://irisldr.github.io/

Can we model and simulate weather effects?

ClimateNeRF

https://climatenerf.github.io/

Snow

Climate Impact

Style image

Multi-view Input Images

Extreme V

Climate Impact

Multi-view Input Imag

Controllability

Possible to incorporate realistic weather projection

Can we simulate dynamic actors?

Can we turn a video to a game?

Input: single video

Output: real-time, realistic, interactive environment

Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, Shenlong Wang, Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video, CVPR 2024

Motivation: everything comes with a price tag

Overall framework

Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, Shenlong Wang, Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video, CVPR 2024 C

(i) localhost:8080 6

$\forall \mathscr{Y}$ \overleftrightarrow 3 £= A ...

 $\overline{}$

+

Ō

(స్ట) භි

 \times

+

(კე

ණ

+

Controls:

Demo

• <u>https://video2game.github.io/</u>

Today's talk

Modeling: *Data-driven* perception + inverse physics

Generation: *Physics-based simulation* + *generative prior*

Layout-aware

Realistic

Coherent in space & time

LidarDM, arXiv soon

SEINE

I2VGEN-XL

DynamiCrafter

Ours

PhysGen, arXiv soon

SEINE

I2VGEN-XL

DynamiCrafter

Ours

PhysGen, arXiv soon

SEINE

I2VGEN-XL

DynamiCrafter

Ours

PhysGen, arXiv soon

Acknowledgement

Acknowledgement

The Grainger College of Engineering **Center for Autonomy**

The Grainger College of Engineering
Illinois Center for Transportation

Insper

Today's talk

Modeling: *Data-driven* perception + inverse physics

Generation: *Physics-based simulation* + *generative prior*

