

FuseSR: Super Resolution for Real-time Rendering through Efficient Multiresolution Fusion

Zhihua Zhong^{*1,4}, Jingsen Zhu^{*1}, Yuxin Dai³, Chuankun Zheng¹, Yuchi Huo^{+2,1}, Guanlin Chen⁴, Hujun Bao¹, Rui Wang⁺¹

¹State Key Lab of CAD&CG, Zhejiang University, ²Zhejiang Lab, ³Zhejiang A&F University, ⁴Zhejiang University City College

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

12 - 15 December 2023 CONFERENCE 13 - 15 December 2023 EXHIBITION ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

Background

Super Resolution for Real-time Rendering

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

CONFERENCE 12 - 15 December 2023 EXHIBITION 13 - 15 December 2023 ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

Super Resolution

• ill-posed

• poor information input \Rightarrow rich information output

Solution

poor information input \implies rich information output

poor information input \Rightarrow rich information output extra input

Input Information Utilization Efficiency

- Interpolation
- Self-similarity
- Heuristics: sharpen, back-projection, edge-detection
- Neural network

Anti aliasing

- Under sampling
- Reconstruction w/o adding sampling frequency

Anti aliasing

- MSAA : adding sampling frequency selectively
- FXAA : edge-detection
- TAA: temporal additional information

Previous work

NSRR [SIGGRAPH'20]

Sponsored by 🛛 👝 🥑

Sponsored by

8x

4x

HR image

Sponsored by

Neural Supersampling for Real-time Rendering

LEI XIAO, SALAH NOURI, MATT CHAPMAN, ALEXANDER FIX, DOUGLAS LANMAN, and ANTON KAPLANYAN, Facebook Reality Labs

Fig. 1. Results of our real-time, learned 4×4 supersampling are shown for four sample scenes. From top to bottom: the rendered low-resolution color input, our reconstruction, and the rendered reference images. Our supersampling method takes the color, depth, and motion vectors of multiple low-resolution frames, and produces high-fidelity reconstructions by reducing aliasing and recovering scene details.

Due to higher resolutions and refresh rates, as well as more photorealistic effects, real-time rendering has become increasingly challenging for video

scenario, significantly outperforming existing superresolution and temporal antialiasing work.

NSRR [SIGGRAPH'20]

12 - 15 December 2023 • ASIA.SIGGRAPH.ORG/2023 • Sydney, Australia

- $\ensuremath{\mathfrak{S}}$ Insufficient information
- ⊗ Struggles in dynamic scenes
- Ours: Utilizing HR G-buffers as auxiliary features
 - © High-frequency details
 - © Easy and fast to acquire

Method

Real-time Super-resolution Network

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

CONFERENCE 12 - 15 December 2023 EXHIBITION 13 - 15 December 2023 ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

- Input: LR image I^{LR} with auxiliary features
- Output: Upsampled HR image \hat{I}^{HR}
- Auxiliary features:
 - LR G-buffer G^{LR}
 - LR historical frames I^{history}
 - HR G-buffer G^{HR} (we introduce)

 $\hat{I}^{HR} = \mathbf{SR}(I^{LR}, G^{LR}, I^{history}, G^{HR})$

• BRDF demodulation

Image

BRDF

Irradiance

• Multi-resolution fusion network (H-Net)

• Motivation:

- Rendering equation: $L_o(\omega_o) = \int_{\Omega} f_r(\omega_i, \omega_o) L_i(\omega_i) \cos \theta_i d\omega_i$
- Diffuse material $f_r(\omega_i, \omega_o) = f_{Albedo}$
- Demodulation: $L_o(\omega_o) = f_{Albedo} \int_{\Omega} L_i(\omega_i) \cos \theta_i d\omega_i$
- Limitation: for diffuse material only. Unphysical-based for glossy material.

- Filter out high-frequency texture and material details
- Zhuang et al.'s Demodulation:
 - BRDF term $F_{\beta}(\omega_o) = \int_{\Omega} f_r(\omega_i, \omega_o) \cos \theta_i \, d\omega_i$
 - Demodulated irradiance term $L_D(\omega_o) = \frac{L_o(\omega_o)}{F_B(\omega_o)}$

koelnmesse

- High-frequency texture and material details are baked in F_{β}
- Demodulated irradiance term L_D becomes much smoother

Irradiance L_D

Sponsored by

- High-frequency texture and material details are baked in F_{β}
- Demodulated irradiance term L_D becomes much smoother

Image

• High-frequency texture and material details are baked in F_{β} • Demodulated irradiance term L_D becomes much smoother

BRDF F_{β}

Irradiance L_D

Sponsored by

- BRDF term F_{β} can be pre-computed
- Demodulated irradiance term L_D to be predicted by network Φ

$$\hat{L}_D^{HR} = \Phi(L_D^{LR}, G^{LR}, I^{history}, G^{HR}), \hat{I}^{HR} = F_\beta^{HR} \odot \hat{L}_D^{HR}$$

• Estimate smoother \hat{L}_D^{HR} instead of \hat{I}^{HR} by network

- Network inputs
 - LR inputs: I^{LR}, G^{LR}, I^{history}
 - HR input: G^{HR}
- Challenge: Inputs contain multi-resolution features
 - How to efficiently and effectively fuse them within our network?
- Naïve solutions
 - Upsampling: slow network ⊗
 - Pooling: lossy, damage details $\ensuremath{\mathfrak{S}}$

- Our solution: pixel-shuffling operation
 - Unshuffle: $[C, H * r, W * r] \rightarrow [C * r^2, H, W]$
 - Shuffle: $[C * r^2, H, W] \rightarrow [C, H * r, W * r]$

12 - 15 December 2023

 Converting between pixel-wise spatial information and channel-wise deep information without information loss

• Our design: H-Net

- 1. Pixel-unshuffle G^{HR} into LR space and concatenate with other LR inputs
- 2. Concatenated feature processed by fusion network F at LR level
- 3. Pixel-shuffle the output of **F** into HR space as the HR output \hat{L}_D^{HR}

- Our design: H-Net
 - 1. Pixel-unshuffle G^{HR} into LR space and concatenate with other LR inputs
 - 2. Concatenated feature processed by fusion network F at LR level
 - 3. Pixel-shuffle the output of **F** into HR space as the HR output \hat{L}_D^{HR}
- Pixel-unshuffling *G*^{*HR*} can also aggregate neighboring pixels in *G*^{*HR*} to obtain a compact implicit representation
 - Outperforming upsampling strategy

Experiments

High-fidelity Super-resolution Results

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

CONFERENCE 12 - 15 December 2023 EXHIBITION 13 - 15 December 2023 ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

- Two versions of implementation
 - FuseSR: Full network implementation with optimal quality
 - FuseSR

- 4 well-designed scenes from Unreal Engine
 - 2 from UE4 and 2 from UE5
 - 4K (3840x2160) resolution
 - Customized shaders to generate pre-computed BRDF and other G-buffers

• 2 from UE4 and 2 from UE5, 4K resolution

Kite scene from UE4

• 2 from UE4 and 2 from UE5, 4K resolution

Showdown scene from UE4

Organized by koelnmesse

• 2 from UE4 and 2 from UE5, 4K resolution

Slay scene from UE5

inized by

coelnmesse

• 2 from UE4 and 2 from UE5, 4K resolution

City scene from UE5

ganized by

koelnmesse

PSNR and SSIM in 4 scenes

- "Ours" outperforms baselines with a large margin
- "Ours

		Ours	Ours 🖌	NSRR	MNSS	LIIF	FSR	XeSS	Ours-8x	NSRR-8x	MNSS-8x
PSNR (dB)	Kite	32.33	31.22	27.74	28.00	26.47	29.12	28.30	30.21	25.00	25.72
	Showdown	36.32	31.42	30.27	29.17	30.33	26.29	29.31	33.61	29.17	25.62
	Slay	37.02	34.41	35.42	35.39	31.12	32.39	34.94	34.26	32.12	33.47
	City	28.94	28.66	27.65	28.23	26.56	26.63	27.15	27.20	25.95	26.46
SSIM	Kite	0.933	0.900	0.832	0.829	0.817	0.887	0.893	0.899	0.765	0.770
	Showdown	0.976	0.949	0.945	0.914	0.942	0.866	0.917	0.955	0.914	0.813
	Slay	0.972	0.958	0.962	0.963	0.962	0.928	0.944	0.957	0.939	0.943
	City	0.921	0.901	0.899	0.896	0.874	0.836	0.888	0.916	0.873	0.873

Organized by

Organized by

• FuseSR is the first to succeed in 8x8 super-resolution

- Our method has better performance in general
 - Especially in high-resolution settings (like 4K)
- Our experiment validates the low cost of HR G-buffer generation

	720p	1080p	2K	4K
HR G-buffer	0.83	0.93	1.97	2.35
Ours	6.21	8.44	15.09	33.93
Ours-8x	6.20	7.57	8.79	16.20
Ours 🖌	2.66	2.88	3.96	7.82
NSRR	13.53	26.29	64.02	149.20
MNSS	2.26	3.57	5.52	11.29

- Our method has better performance in general
 - Especially in high-resolution settings (like 4K)
- Our method has best trade-off between performance and quality

- Our method can indeed accelerate the rendering process
 - Rendering LR image & HR G-buffer + Ours >>Faster>> Rendering HR image

Organized by

koelnmesse

Discussion

Design Comparison and Further Understanding

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

CONFERENCE 12 - 15 December 2023 EXHIBITION 13 - 15 December 2023 ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

Network Design

Early Upsamping

Late Upsamping

Resolution and Inference Time

- CNN infer time highly related to feature resolution.
- Late upsampling have advantages in speed.

High utilization rate of input information

Temporal warping with zero-upsampling

12 - 15 December 2023 • ASIA.SIGGRAPH.ORG/2023 • Sydney, Australia

Organized by koelnmesse

Resolution

Neural Shading

LR Render Result

Neural AA

HR G-Buffers

FuseSR: Super Resolution for Real-time Rendering through Efficient Multi-resolution Fusion

Zhihua Zhong^{*}, Jingsen Zhu^{*}, Yuxin Dai, Chuankun Zheng, Yuchi Huo⁺, Guanlin Chen, Hujun Bao, Rui Wang⁺

Code will be released at Project Page ↓

