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Application: Inverse Rendering & 3D AIGC

Inverse Rendering
Recover scene representation from images/videos 

through analysis by synthesis

3D AIGC
Optimize 3D representation using 2D images priors

Through SDS/VSD Loss



Gradient based optimization
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Gradient based optimization

Differentiable Rendering Pipeline: Rasterization
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Analytical Antialiasing
[Kato 18] N3MR

Approximate Gradient
Soft Rasterizer, PyTorch3D
Approximate Rendering
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Gradient based optimization

Differentiable Rendering Pipeline: PBR/PT
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Target Image

Reparameterization
Li et al. 2018
Edge Sampling

Zhang et al. 2020
PSDR

Bangaru et al. 2020
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Problems: Loss Locality & Gradient Sparsity

Pixel-wise L2 Loss

Overall L2 Loss with 
Object Translation

Target Image

Rendered Image 𝜃: 𝑥 − 𝑎𝑥𝑖𝑠 translation

Gradient

Some methods may help
- multi-resolution 
- plateau reduced
  [Fischer 2022]
- large-steps
  [Nicolet 2021]
But not enough!

Loss Locality Gradient Sparsity
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A Novel Pipeline

Scene Parameters
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    Light          Camera

……

𝑥:

Color Derivative

Pixel-wise Color 
Based Loss
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Tradition Pipeline

Position Derivative
& Path Derivative

Path Derivative

Optimal Transport 
Based Loss

Our Idea



Optimal Transport Based Loss Function [Xing 2022]

Current & Target Image

Matching 𝜎

Solved by optimal transport
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Traditional Loss vs Our Loss
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Backpropagate to Scene Parameter 𝜽 
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Color Derivatives
(Follow traditional 
work) 

How to compute position derivatives
 with respect to scene parameter 𝜃?



Path Derivatives

Regard pixel position 𝒑 
as the path ഥ𝒙 interaction 
with image plane

𝜕𝒑

𝜕𝜽
=

𝜕𝒑(𝒙)

𝜕𝒙

𝜕𝒙

𝜕𝜃

Path Derivatives: When we 
change scene parameter 𝜽, 
how will the path 𝒙 be changed

𝒑 → 𝒙 → 𝜽
Pixel

Position
Path Scene

Parameters

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝒙 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝒑(𝑥)



Simple Path Derivatives [Xing 2022]

Cannot handle longer light paths involving global illumination effects!

Path 𝒙 = 𝑥0, 𝑥1 , where 𝑥1 is the primary intersection

When changing scene parameter 𝜽,
Stick 𝑥1 to the underlying geometry



Complex Path in PT 

• In path tracing, paths are composed of 
multiple vertex and generated by various 
sampling strategy

• No determined relationship between scene 
parameters and path
• Unable to compute derivatives of  path 

with respect to parameters.

Our Main Task: 
 Build a determined relationship 
between scene parameters and 
complex light path. 

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝒙 = (𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒)

𝒑(𝑥)

𝜽: mirror rotation



Inspiration: Path Space Manifold [Jakob 2012]

• Valid paths usually lie in low dimension manifolds.

• The specular middle points can be uniquely determined by the diffuse endpoints. 

Constraints 𝐶(𝒙) = 0

𝒙 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝜕𝑥𝑖
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𝑥2
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𝑥4

𝑥2
′

𝑥1
′

𝑥3
′

𝑥4
′

Implicit Function Theorem 



Extended Path Space Manifold (EPSM)

𝐶(𝒙) = 0,
𝜕𝑥𝑖

𝜕𝑥𝑗

Path Space Manifold

Efficient Sampling
Forward Rendering

𝐶(𝒙, 𝜃) = 0,
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𝜕𝜃

Extended PSM

Path Derivatives
 Differentiable Rendering
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How to build 𝐶(𝒙,𝜃)=0

Constraints 𝐶(𝒙,𝜃): 
Represents how we want 
the path to be changed

𝜃: mirror rotation



Move path geometry

Goal of Building Constraint

𝜃: mirror rotation

Path Radiance

Keep radiance



Move path geometry

Goal of Building Constraint

𝜃: mirror rotation

Path Radiance

Keep path effect



Example: Keep Path Effect 

Path effect decided by 
the diffuse intersection 𝜃: mirror rotation



Fix Position Constraint

𝜃: mirror rotation

Visualization Mathematics

𝑢 = 𝐶𝑜𝑛𝑠𝑡
𝑣 = 𝐶𝑜𝑛𝑠𝑡

𝑥𝑖(𝑢, 𝑣)

Fix Position Constraint

Keep intersection 
sticked to the object



Half Vector Constraint

𝜃: mirror rotation

Fix Position Constraint

ℎ=(𝜔𝑖+ 𝜔𝑜)/2
< 𝑛, ℎ > = 𝐶𝑜𝑛𝑠𝑡 

Half Vector Constraint

Visualization Mathematics

Keep path still be valid 
through specular 
/transparent /glossy
intersection 



Example: Path Moving

𝜃: mirror rotation

Fix Position Constraint

Half Vector Constraint



Derivatives Computing

• For length 𝑛 path 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) (all surface intersections)

• We enforce 𝑛 2D Constraint on it:

• Given 𝜃, we can uniquely determine a path 𝒙

• By implicit function theorem:

𝐶 𝒙, 𝜃 = {𝐶𝑖 𝒙, 𝜃 = 𝟎 𝒊 = 𝟏 … 𝒏} 

𝜕𝒙

𝜕𝜃
= −

𝜕𝐶

𝜕𝒙

−1
𝜕𝐶

𝜕𝜃



Path Types and Constraints in EPSM

General Path Caustic Path Shadow Path

𝜔𝑖

𝜔𝑜

𝑛 ℎ

Half Vector Constraint
Fix Position
Constraint

Fix Direction
Constraint

Colinear
Constraint



Results
For complex path



Bathroom
Init Target

Ours

Path Type: General Path
Optimize parameter:
 8 Object Translation

PRDPT[Fischer  2022]PRB[Vicini 2021]



Highlight

Ours

Path Type: General Path
Optimize parameter:
 Glass Slab Rotation
 Light Translation

PRDPT[Fischer  2022]PRB[Vicini 2021]

Init Target



Ours

CornellBox

Path Type: Caustic Path
Optimize parameter:
 Light Position

PRDPT[Fischer  2022]PRB[Vicini 2021]

Init Target



Shadow

OursPRDPT[Fischer  2022]PRB[Vicini 2021]

Path Type: Shadow Path
Optimize parameter:
 400 Spheres Occluder Translation

Init Target



Results
For simple path



sa2022.siggraph.org

Gradient Visualization

Target Image

Initial

Nvdiffrast 
Gradient

w/o shading

Nvdiffrast 
Gradient

Traditional Gradients
Local and Sparse

Our Gradients
Global and Dense

 

𝜃:  X-axis translation

: Indicates go right (right)

: Indicates go left (wrong)
3
2

http://sa2022.siggraph.org


sa2022.siggraph.org

Human Pose Fitting

Initial Pose

Target Pose
(random)

PyTorch3D Ours

Human Model: Skinned Multi-Person Linear Model (SMPL)
Optimize Parameter: 24 joints 3D rotation angle

3
3

http://sa2022.siggraph.org


sa2022.siggraph.org

Human Pose Fitting

Initial State

Target State
(random)

Nvdiffrast PyTorch3D

Nvdiffrast Ours

Human Model: Skinned Multi-Person Linear Model (SMPL)
Optimize Parameter: 24 joints 3D rotation angle

3
4

http://sa2022.siggraph.org


sa2022.siggraph.org

Facial Expression Reconstruction

Target State
(random)

Initial State

Face Model: BlendShape with 11 base facial expression
Optimized Parameter: 11 weight parameters for each base expression

PyTorch3D Ours

3
5
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sa2022.siggraph.org

Facial Expression Reconstruction

Target State
(random)

Face Model: BlendShape with 11 base facial expression
Optimized Parameter: 11 weight parameters for each base expression

Initial State

Nvdiffrast Ours

3
6

http://sa2022.siggraph.org
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Furniture Layout

Initial State

Target State
Furniture Model: 3D-Front
Optimized Parameter: Furniture XZ-axis translation and Y-axis rotation

PyTorch3D Ours

3
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Furniture Layout

Initial State

Target State

Nvdiffrast Ours

3
8

Furniture Model: 3D-Front
Optimized Parameter: Furniture XZ-axis translation and Y-axis rotation

http://sa2022.siggraph.org


Summary 

• Contribution:
• A novel pipeline for physically based differentiable rendering

• A globally optimal transport based loss function

• Formulation of extended path space manifolds to compute path derivatives

• Limitation & Future work:
• Adapt EPSM to more types of path and scene representation

• Derive both path geometry and color derivatives in EPSM formulation

• Improve matching quality and efficiency



Thanks for Listening!
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