

Extended Path Space Manifolds for Physically Based Differentiable Rendering

Jiankai Xing¹, Xuejun Hu¹, Fujun Luan², Ling-Qi Yan³, Kun Xu¹ ¹Tsinghua University & ²Adobe & ³UC Santa Barbara

Connecting STORIES

The 16th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

CONFERENCE 12 - 15 December 2023 EXHIBITION 13 - 15 December 2023 ICC, Sydney, Australia

ASIA.SIGGRAPH.ORG/2023

Differentiable Rendering

Forward Rendering y = f(x)

 $\frac{\partial y}{\partial y}$ ∂x Differentiable Rendering

.....

Rendered Image

Application: Inverse Rendering & 3D AIGC

Michelangelo style statue of dog reading news on a cellphone.

Henry VIII king of England.

An elephant skull.

Inverse Rendering

Recover scene representation from images/videos through analysis by synthesis

3D AIGC

Optimize 3D representation using 2D images priors Through SDS/VSD Loss

Differentiable Rendering Pipeline

Differentiable Rendering Pipeline: Rasterization

Differentiable Rendering Pipeline: PBR/PT

Problems: Loss Locality & Gradient Sparsity

A Novel Pipeline

Scene Parameters Geometry Material

.....

 \mathcal{X} : Geometry Material Light Camera

Tradition Pipeline Color Derivative $\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\int_{\Omega} f(\bar{\boldsymbol{x}}) \,\mathrm{d}\mu(\bar{\boldsymbol{x}}) \right) =$ **Pixel-wise Color Based Loss** $\int_{\Omega} \dot{f}(\bar{x}) \, \mathrm{d}\mu(\bar{x}) + \int_{\Omega} g(\bar{x}) \, \mathrm{d}\mu'(\bar{x})$ **Path Derivative** Rendered **y**: Target Image image **Optimal Transport Based Loss Our Idea**

Optimal Transport Based Loss Function [Xing 2022]

$$\min_{\sigma \in Perm(n)} \frac{1}{n} \sum_{i} d(\boldsymbol{P}_{i}^{\text{render}}, \boldsymbol{P}_{\sigma(i)}^{\text{target}})$$
$$d(\boldsymbol{P}_{i}, \boldsymbol{P}_{j}) = \|\boldsymbol{P}_{i} - \boldsymbol{P}_{j}\|_{2}^{2}$$

Solved by optimal transport

Current & Target Image

$$\boldsymbol{P}_{i} = \begin{bmatrix} \boldsymbol{r} \\ \boldsymbol{g} \\ \boldsymbol{b} \\ \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} \overset{\text{Color } \boldsymbol{c}}{\underset{\text{Position } \boldsymbol{p}}{\overset{\text{Screen Space}}{\overset{\text{Screen Space}}{\overset{\text{Screen Space}}{\overset{\text{Screen Space}}{\overset{\text{Screen Space}}{\overset{\text{Screen Space}}{\overset{\text{Soliton } \boldsymbol{p}}}} L^{our} = \frac{1}{n} \sum \left\| \boldsymbol{P}_{i}^{\text{render}} - \boldsymbol{P}_{\sigma(i)}^{\text{target}} \right\|^{2}$$

Traditional Loss vs Our Loss

$$= \begin{bmatrix} \mathbf{r} \\ \mathbf{g} \\ \mathbf{b} \\ \lambda \mathbf{x} \\ \lambda \mathbf{y} \end{bmatrix}$$
Color \mathbf{c}
Screen Space
Position \mathbf{p}

P

Traditional Loss

$$\mathbf{L} = \frac{1}{n} \sum \left\| \mathbf{I}_{i}^{\text{render}} - \mathbf{I}_{i}^{\text{target}} \right\|^{2} = \frac{1}{n} \sum \left\| \mathbf{P}_{i}^{\text{render}} - \mathbf{P}_{i}^{\text{target}} \right\|^{2}$$

Our Loss

$$\mathbf{L}^{our} = \frac{1}{n} \sum \left\| \boldsymbol{P}_{i}^{\text{render}} - \boldsymbol{P}_{\sigma(i)}^{\text{target}} \right\|^{2} \text{from a matching}$$

Traditional loss is equivalent to our loss with identity matching

Backpropagate to Scene Parameter $\boldsymbol{\theta}$

$$\frac{\partial \mathbf{L}^{our}}{\partial \theta} = \frac{\partial \mathbf{L}^{our}}{\partial c} \frac{\partial c}{\partial \theta} + \frac{\partial \mathbf{L}^{our}}{\partial p} \frac{\partial p}{\partial \theta}$$

Color Derivatives (Follow traditional work) How to compute position derivatives with respect to scene parameter θ ?

Path Derivatives

 $p
ightarrow \chi
ightarrow heta$ Pixel Path Scene Position Parameters

 $\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\theta}} = \frac{\partial \boldsymbol{p}(\boldsymbol{x})}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\theta}}$

Regard pixel position pPath Derivatives: When weas the path \overline{x} interactionchange scene parameter θ ,with image planehow will the path x be changed

Simple Path Derivatives [Xing 2022]

Path $x = (x_0, x_1)$, where x_1 is the primary intersection

Complex Path in PT

- In path tracing, paths are composed of multiple vertex and generated by various sampling strategy
- No determined relationship between scene parameters and path
 - Unable to compute derivatives of path with respect to parameters.

Our Main Task:

Build a determined relationship between scene parameters and complex light path.

Inspiration: Path Space Manifold [Jakob 2012]

- Valid paths usually lie in low dimension manifolds.
- The specular middle points can be **uniquely** determined by the diffuse endpoints.

$$x = (x_0, x_1, x_2, x_3, x_4)$$
Constraints $C(x) = 0$
Implicit Function Theorem
$$\begin{array}{c} \\ \partial x_i \\ \partial x_i \\ \partial x_i \end{array}$$

Extended Path Space Manifold (EPSM)

How to build $C(x,\theta)=0$

Constraints $C(x,\theta)$: Represents how we want the path to be changed

 θ : mirror rotation

Goal of Building Constraint

Move path geometry Keep radiance

Goal of Building Constraint

Move path geometry Keep path effect

Example: Keep Path Effect

Fix Position Constraint

Half Vector Constraint

Example: Path Moving

Half Vector Constraint

 θ : mirror rotation

Derivatives Computing

- For length n path $\mathbf{x} = (x_1, x_2, ..., x_n)$ (all surface intersections)
- We enforce *n* 2D Constraint on it:

$$C(\boldsymbol{x},\boldsymbol{\theta}) = \{C_i(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{0} \mid \boldsymbol{i} = \boldsymbol{1} \dots \boldsymbol{n}\}$$

- Given θ , we can uniquely determine a path x
- By implicit function theorem:

$$\frac{\partial \mathbf{x}}{\partial \theta} = -\left(\frac{\partial C}{\partial \mathbf{x}}\right)^{-1} \frac{\partial C}{\partial \theta}$$

Path Types and Constraints in EPSM

Results

For complex path

Bathroom

Path Type: General Path Optimize parameter: 8 Object Translation

PRB[Vicini 2021]

PRDPT[Fischer 2022]

Target

Ours

Highlight

Path Type: General Path Optimize parameter: Glass Slab Rotation Light Translation

PRB[Vicini 2021]

PRDPT[Fischer 2022]

Target

Ours

CornellBox

Path Type: Caustic Path Optimize parameter: Light Position

PRB[Vicini 2021]

PRDPT[Fischer 2022]

Target

Ours

Results

For simple path

Gradient Visualization

 θ : X-axis translation

acm

Traditional Gradients

Our Gradients Global and Dense

Human Pose Fitting

Human Pose Fitting

acm

sa2022.siggraph.org

Facial Expression Reconstruction

Target State (random)

acn

Face Model: BlendShape with 11 base facial expression Optimized Parameter: 11 weight parameters for each base expression sa2022.siggraph.org

Facial Expression Reconstruction

acn

Optimized Parameter: 11 weight parameters for each base expression sa2022.siggraph.org

Furniture Layout

PyTorch3D

Initial State

Target State

acm

Ours

Furniture Model: 3D-Front **Optimized Parameter**: Furniture XZ-axis translation and Y-axis rotation <u>sa2022.siggraph.org</u> <u>3</u>

Furniture Layout

Nvdiffrast

Ours

Furniture Model: 3D-Front **Optimized Parameter**: Furniture XZ-axis translation and Y-axis rotation sa2022.siggraph.org

Initial State

Target State

Summary

- Contribution:
 - A novel pipeline for physically based differentiable rendering
 - A globally optimal transport based loss function
 - Formulation of extended path space manifolds to compute path derivatives
- Limitation & Future work:
 - Adapt EPSM to more types of path and scene representation
 - Derive both path geometry and color derivatives in EPSM formulation
 - Improve matching quality and efficiency

Thanks for Listening!