Rectifying Strip Patterns

KAUST 格明

Bolun Wang¹, Hui Wang¹, Eike Schling², Helmut Pottmann¹, Siggraph Asia 2023

DOIULI VValig

1

Strips tangential to the surface

[Natterer et al. 2000]

Strips tangential to the surface

Strips orthogonal to the surface

[Natterer et al. 2000]

[Eike et al. 2022]

Strips tangential to the surface Strips orthogonal to the surface

Strips holding a constant angle to the surface

[Mesnil and Baverel 2023]

[Natterer et al. 2000]

[Eike et al. 2022]

Bolun Wang

Rectifying Strips in Differential Geometry

Attaching Rectifying Strips on the Surface

Attaching Rectifying Strips on the Surface

Attaching Rectifying Strips on the Surface

Discrete Frenet Frame

S(u,v)

Bolun Wang

A robust version of [Jiang et al. 2019]'s tracing algorithm.

Assign function values for the curves

Background

Line color

35.000 Shininess

An Optional Initialization: An Interactive Method:

🖆 Isc_devbin Window	🌚 👁 🗌 🎭 🖸 🦁 🛤 🗢 🕤 🔾 400 余 💿 Q 🕴 🕿 🗤 11月2日周囲下午2:39
	libigi viewer
 Viewei Viewei Vieweispace Mesh Swee Mesh Swee Mesh Swee Viewing Options Options Options Options Show wentry Draw Options Show wentry Show wentry Show wentry depth Show wentry abebs Show ventra labebs Show	 Fund The Load Second Code Second Code Readed Ead First Life Load Second Code Readed Ead First Life Load Second Code Readed Ead First me Load Second Code Readed E

Input Surface + Target Angle θ

Pseudo-Geodesics of Angle θ

Control the Inclination Angles: Optimizing Curvatures

The normal curvature and geodesic curvature[Pottmann et. al., 2010]

Need to compute I and II, and high-order derivatives.

Control the Inclination Angles: Controlling the Binormal Vectors

Control the Inclination Angles: Controlling the Binormal Vectors

Bolun Wang

Control the Inclination Angles: Controlling the Binormal Vectors

• Side vector $\mathbf{u} = \mathbf{n} \times \mathbf{t}$

(Angle Constraints)
$$E_{\text{angle}} = \sum_{\mathbf{v} \in \mathcal{V}} ((\mathbf{b} \cdot \mathbf{n})^2 - \cos^2 \theta)^2 \mathcal{A}(\mathbf{v}) + \sum_{\mathbf{v} \in \mathcal{V}} ((\mathbf{b} \cdot \mathbf{n})(\mathbf{b} \cdot \mathbf{u}) - \sin \theta \cos \theta)^2 \mathcal{A}(\mathbf{v}),$$

(Preventing Vanishing Gradients)
$$E_{\text{grad}} = \sum_{f \in \mathcal{F}} (\|\nabla F(f)\| - r)^2 \mathcal{A}(f),$$

(fairness)
$$E_{\text{fair}} = \sum_{v \in \mathcal{V}} ||H(v)||^2 \mathcal{A}(v).$$
$$\min E_{\text{pg}} = \lambda_{\text{fair}} E_{\text{fair}} + \lambda_{\text{grad}} E_{\text{grad}} + \lambda_{\text{angle}} E_{\text{angle}}$$

Why containing the area $\mathcal{A}(v)$ of the Voronoi cell? • The error $E_{angle} = \int (Error \ on \ Point) d\mathcal{A}$

Two simplified constraints for asymptotics and • geodesics

$$E_{\text{geo}} = \sum_{\mathbf{v}\in\mathcal{V}} \left(\frac{\det(\mathbf{n}, \mathbf{v}_0 - \mathbf{p}, \mathbf{v}_0 - \mathbf{q})}{\|\mathbf{v}_0 - \mathbf{p}\| \|\mathbf{v}_0 - \mathbf{q}\|} \right)^2 \mathcal{A}(\mathbf{v}),$$

$$E_{\text{asy}} = \sum_{\mathbf{v}\in\mathcal{V}} \left(\left(\frac{\mathbf{n} \cdot (\mathbf{v}_0 - \mathbf{p})}{\|\mathbf{v}_0 - \mathbf{p}\|} \right)^2 + \left(\frac{\mathbf{n} \cdot (\mathbf{v}_0 - \mathbf{q})}{\|\mathbf{v}_0 - \mathbf{q}\|} \right)^2 \right) \mathcal{A}(\mathbf{v}).$$

• The E_{grad} :

Prevent optimization failures, make the curves uniform (Pottmann et.al., 2010, Geodesic Patterns) 38

Optimizing Pseudo-Geodesics
(Angle Constraints)
$$E_{angle} = \sum_{v \in V} ((b \cdot n)^2 - \cos^2 \theta)^2 \mathcal{A}(v) + \sum_{v \in V} ((b \cdot n)(b \cdot u) - \sin \theta \cos \theta)^2 \mathcal{A}(v),$$

(Preventing Vanishing Gradients) $E_{grad} = \sum_{f \in \mathcal{F}} (\|\nabla F(f)\| - r)^2 \mathcal{A}(f),$
(fairness) $E_{fair} = \sum_{v \in V} \|H(v)\|^2 \mathcal{A}(v).$
min $E_{pg} = \lambda_{fair} E_{fair} + \lambda_{grad} E_{grad} + \lambda_{angle} E_{angle}.$
 $\theta = 60^\circ$ (Pseudo-Geodesic) $\theta = 75^\circ$ (Pseudo-Geodesic)

Validation: comparing with an exact pseudo-geodesic

 $\theta = 60^{\circ}$. Red: continuous pseudo-geodesic curve. Black: level sets. Error: 0.47% of the curve length

Bolun Wang

Optimizing Pseudo-Geodesics

Validation: stability under remeshing

8960 vertices

657 vertices

Error is 0.76% of bbd

Optimizing Pseudo-Geodesics

Co-optimizing Reference Surface and Level Sets

Keeping *F* fixed and optimize the underlying surface

Bolun Wang

Bolun Wang

3-Web

Rectifying Strip Structure

Discrete Rectifying Developable Optimization

Discrete Rectifying Developable Optimization

Flat: The rulings d_i , d_{i+1} are coplanar

Discrete Rectifying Developable Optimization

Flat: The rulings d_i , d_{i+1} are coplanar

Straight: $\alpha + \beta = \pi$

Discrete Rectifying Developable Optimization

Flat: The rulings d_i , d_{i+1} are coplanar

Straight: $cos(\alpha) + cos(\beta) = 0$

Discrete Rectifying Developable Optimization

Flat: The rulings d_i , d_{i+1} are coplanar

Straight: $(e_i, d_i) - (e_{i+1}, d_i) = 0$

Discrete Rectifying Developable Optimization

Flat: The rulings d_i , d_{i+1} are coplanar

Straight: $(e_i - e_{i+1}) \perp d_i$

α

 e_i

n^p

 e_{i+1}

Discrete Rectifying Developable Optimization

G: Geodesic Strips

A: Asymptotic Strips

P: Pseudo-Geodesic Strips ($\theta \neq 0, \pi/2$)

 $\mathsf{PP-Net}\,\theta_1=\theta_2=60^\circ$

AAG-Web

AGG-Webs

PPG-Web $\theta_1 = \theta_2 = 60^\circ$

Physical Model: PP-Net, $\theta_1 = \theta_2 = 50^{\circ}$

Physical Model: PPG-Web, $\theta_1 = \theta_2 = 60^{\circ}$

Torsion-free rectifying strip structures

The Darboux vector $d = \tau t + \kappa b$ is the ruling of the rectifying developable $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$ $\frac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + \tau \mathbf{B}$ $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$ The ruled surface S(u, v) = c(u) + v d, $S_u = t + v(\tau \kappa n^p - \kappa \tau n^p) = t$, $S_v = d = \tau t + \kappa b$, $span(S_u, S_v) = span(t, b)$

Torsion-free rectifying strip structures

- Using binormal vectors as node axes is not accurate!
- The curvature along the direction of b is NOT 0 if the torsion $\tau \neq 0$!
- Proposition 1. The ruled surface $B(u, v) = c(u) + v \cdot b(u)$ has Gaussian curvature

$$K(u,v) = -\left(\frac{\tau}{1+\tau^2v^2}\right)^2.$$

• Proposition 2. The first normal curvature $\kappa_1 = 0$ along the Darboux vector d. The second normal curvature κ_2 and normal curvature $\kappa_n(b)$ in direction of b are $\kappa_2 = \kappa(1 + k^2), \kappa_n(b) = \kappa k^2$,

where $k \coloneqq \tau/k$.

Torsion-free rectifying strip structures

Torsion-free node: a node where two developable strips intersect along a straight line segment

mesh optimization

Discrete Rectifying Developable Optimization

Torsion-free rectifying strip structures [Pottmann and Wallner 2001].

Torsion-free rectifying strip structures

Curves of Constant Slope

Property:

A rectifying strip of a COCS takes the axis as the rulings, thus is a cylinder.

Proof:

 $(t, A) = const \Longrightarrow (\dot{t}, A) = \kappa(n^p, A) = 0.$ Assume that $\kappa \neq 0$, $(n^p, A) = 0$. $(n^p, A) = 0 \Longrightarrow (-\kappa t + \tau b, A) = 0,$ A is in the direction of $d = \kappa t + \tau b$, which is the ruling of the rectifying developable.

• Parallel rulings + developable = cylinder

Scalar Field Optimization

The constraints need to be soft penalties, because:

- Only straight strips fulfill "Blocking the light" condition
- Only strips of COCS fulfill "Letting the Light Through" condition

Light 1 is always orthogonal to the rectifying planes ⇒ Strip is straight

$$\mathsf{COCS:} (\mathsf{t}_1, \mathsf{A}) = (\mathsf{t}_2, \mathsf{A}) \Longrightarrow (\mathsf{t}_1 - \mathsf{t}_2, \mathsf{A}) \Longrightarrow (\mathsf{n}^p, \mathsf{A}) = 0$$

$$\leftarrow$$
 (reverse the COCS condition)

Blocking the Light

Letting the Light Through

Makkah, 12:00, Dec 1st.

Vienna, Aug 1st.

London, Aug 15th.

Result Evaluations

Convergence of scalar field optimization ($E_{angle} \approx 3e - 6$)

 $\theta = 72^{\circ}$, maximal angle deviation 1.59° Approximation error: 1.5%*bbd*

Limitations:

Avoid singularities: limited by the fundamental geometry nature of level sets. Topology: need to be a topological disk.

Composition of Regular parts

Stitch Level Sets on the Boundaries (Future Work)

Limitations:

Non-linear optimization is not fully automatic

Initialization

Using Default Parameters

Choosing Parameters Manually

Conclusion

- ٠
- Straight Flat Strips Controllable Inclinations •
- Gridshell Design
- Shading System Design

PPG-Gridshell ($\theta_1 = 45^\circ, \theta_2 = 60^\circ$)

Shading Systems

Physical Models

Open source project/anttps://github.com/wangbolun300/RectifyingStripPatterns 88

Conclusion

- Straight Flat Strips Controllable Inclinations
- Gridshell Design
- Shading System Design

Thanks

Physical Models

PPG-Gridshell ($\theta_1 = 45^\circ, \theta_2 = 60^\circ$)

Shading Systems

Open source project/ahttps://github.com/wangbolun300/RectifyingStripPatterns 89

Discrete Rectifying Developable Optimization

