Rectifying Strip Patterns

Motivations: Gridshell Structures

Eike Schling, et al., 2022

Motivations: Gridshell Structures

Motivations: Gridshell Structures

Motivations: Gridshell Structures

Strips tangential to the surface
[Natterer et al. 2000]

Motivations: Gridshell Structures

Strips tangential to the surface
[Natterer et al. 2000]

Strips orthogonal to the surface
[Eike et al. 2022]

Motivations: Gridshell Structures

Strips tangential to the surface
[Natterer et al. 2000]

Strips orthogonal to the surface
[Eike et al. 2022]

Strips holding a constant angle to the surface

Rectifying Strips in Differential Geometry

Straight Flat Strip
Arbitrary Curve
Rectifying Strip

Attaching Rectifying Strips on the Surface

Attaching Rectifying Strips on the Surface

Attaching Rectifying Strips on the Surface

Discrete Frenet Frame

Geometry of Gridshells

$S(u, v)$

Geometry of Gridshells

Geometry of Gridshells

Geometry of Gridshells

Motivations: Gridshell Structures

Method: A Level-Set Based Framework

Scalar Fields

Rectifying GridShells
Postprocessing

Initialization

Initialization

A robust version of [Jiang et al. 2019]'s tracing algorithm.

Assign function values for the curves

Initialization

Initialization

An Optional Initialization: An Interactive Method:

Optimizing Pseudo-Geodesics

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Optimizing Curvatures

The normal curvature and geodesic curvature[Pottmann et. al., 2010]

$$
\begin{gathered}
\kappa_{n}=\frac{\mathrm{II}(\mathrm{D} \nabla \mathrm{~F})}{\|\nabla F\|^{2}}, \quad \begin{array}{c}
\text { Second fundamental form } \\
\kappa_{g}=\operatorname{div}\left(\frac{\nabla F}{\|\nabla F\|}\right), \\
\text { Rotate by } 90^{\circ}
\end{array} \\
\theta=\operatorname{acot}\left(\kappa_{n} / \kappa_{g}\right)
\end{gathered}
$$

Need to compute I and II, and high-order derivatives.

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

$$
\begin{aligned}
\mathrm{e}_{0} & =\frac{\mathrm{p}-\mathrm{v}}{\|\mathrm{p}-\mathrm{v}\|} \\
\mathrm{e}_{1} & =\frac{\mathrm{v}-\mathrm{q}}{\|\mathrm{v}-\mathrm{q}\|} \\
\mathrm{b} & =\frac{\mathrm{e}_{0} \times \mathrm{e}_{1}}{\left\|\mathrm{e}_{0} \times \mathrm{e}_{1}\right\|}
\end{aligned}
$$

Angle Constraint:
$\mathrm{b} \cdot \mathrm{n}-\cos \theta=0$

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormals on Each Vertex Star

$$
\begin{aligned}
\mathrm{e}_{0} & =\frac{\mathrm{p}-\mathrm{v}}{\|\mathrm{p}-\mathrm{v}\|} \\
\mathrm{e}_{1} & =\frac{\mathrm{v}-\mathrm{q}}{\|\mathrm{v}-\mathrm{q}\|} \\
\mathrm{b} & =\frac{\mathrm{e}_{0} \times \mathrm{e}_{1}}{\left\|\mathrm{e}_{0} \times \mathrm{e}_{1}\right\|}
\end{aligned}
$$

Angle Constraint:
$\min (\mathrm{b} \cdot \mathrm{n}-\cos \theta)^{2}$

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormal Vectors

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormal Vectors

$\mathrm{b} \cdot \mathrm{n}-\cos \theta=0$ cannot distinguish b_{1} from b_{2}

Optimizing Pseudo-Geodesics

Control the Inclination Angles: Controlling the Binormal Vectors

The angle constraints:

Optimizing Pseudo-Geodesics

$$
\text { (Angle Constraints) } \begin{aligned}
E_{\text {angle }}= & \sum_{\mathrm{v} \in \mathcal{V}}\left((\mathrm{~b} \cdot \mathrm{n})^{2}-\cos ^{2} \theta\right)^{2} \mathcal{A}(\mathrm{v})+ \\
& \sum_{\mathrm{v} \in \mathcal{V}}((\mathrm{~b} \cdot \mathrm{n})(\mathrm{b} \cdot \mathrm{u})-\sin \theta \cos \theta)^{2} \mathcal{A}(\mathrm{v}),
\end{aligned}
$$

- Why containing the area $\mathcal{A}(\mathrm{v})$ of the Voronoi cell? The error $E_{\text {angle }}=\int($ Error on Point $) d \mathcal{A}$
(Preventing Vanishing Gradients) $E_{\text {grad }}=\sum_{\mathrm{f} \in \mathcal{F}}(\|\nabla F(\mathrm{f})\|-r)^{2} \mathcal{A}(\mathrm{f})$,

$$
\text { (fairness) } \quad E_{\text {fair }}=\sum_{\mathrm{v} \in \mathcal{V}}\|H(\mathrm{v})\|^{2} \mathcal{A}(\mathrm{v}) .
$$

$\min E_{\mathrm{pg}}=\lambda_{\text {fair }} E_{\text {fair }}+\lambda_{\text {grad }} E_{\text {grad }}+\lambda_{\text {angle }} E_{\text {angle }}$.

- Two simplified constraints for asymptotics and geodesics

$$
\begin{aligned}
& E_{\text {geo }}=\sum_{\mathbf{v} \in \mathcal{V}}\left(\frac{\operatorname{det}\left(\mathbf{n}, \mathbf{v}_{0}-\mathbf{p}, \mathbf{v}_{0}-\mathbf{q}\right)}{\left\|\mathbf{v}_{0}-\mathbf{p}\right\|\left\|\mathbf{v}_{0}-\mathbf{q}\right\|}\right)^{2} \mathcal{A}(\mathbf{v}), \\
& E_{\text {asy }}=\sum_{\mathbf{v} \in \mathcal{V}}\left(\left(\frac{\mathbf{n} \cdot\left(\mathbf{v}_{0}-\mathbf{p}\right)}{\left\|\mathbf{v}_{0}-\mathbf{p}\right\|}\right)^{2}+\left(\frac{\mathbf{n} \cdot\left(\mathbf{v}_{0}-\mathbf{q}\right)}{\left\|\mathbf{v}_{0}-\mathbf{q}\right\|}\right)^{2}\right) \mathcal{A}(\mathbf{v}) .
\end{aligned}
$$

- The $E_{\text {grad }}$:

Prevent optimization failures, make the curves uniform (Pottmann et.al., 2010, Geodesic Patterns)

Optimizing Pseudo-Geodesics

$$
\begin{aligned}
\text { (Angle Constraints) } E_{\text {angle }}= & \sum_{\mathrm{v} \in \mathcal{V}}\left((\mathrm{~b} \cdot \mathrm{n})^{2}-\cos ^{2} \theta\right)^{2} \mathcal{A}(\mathrm{v})+ \\
& \sum_{\mathrm{v} \in \mathcal{V}}((\mathrm{~b} \cdot \mathrm{n})(\mathrm{b} \cdot \mathrm{u})-\sin \theta \cos \theta)^{2} \mathcal{A}(\mathrm{v}),
\end{aligned}
$$

$$
\theta=0^{\circ} \text { (Asymptotic) }
$$

(Preventing Vanishing Gradients) $E_{\text {grad }}=\sum_{\mathrm{f} \in \mathcal{F}}(\|\nabla F(\mathrm{f})\|-r)^{2} \mathcal{A}(\mathrm{f})$,
(fairness)

$$
E_{\text {fair }}=\sum_{\mathrm{v} \in \mathcal{V}}\|H(\mathrm{v})\|^{2} \mathcal{A}(\mathrm{v}) .
$$

$\min E_{\mathrm{pg}}=\lambda_{\text {fair }} E_{\text {fair }}+\lambda_{\text {grad }} E_{\text {grad }}+\lambda_{\text {angle }} E_{\text {angle }}$.

$$
\theta=60^{\circ} \text { (Pseudo-Geodesic) }
$$

$\theta=75^{\circ}$ (Pseudo-Geodesic)

Optimizing Pseudo-Geodesics

Validation: comparing with an exact pseudo-geodesic

$\theta=60^{\circ}$. Red: continuous pseudo-geodesic curve. Black: level sets.
Error: 0.47% of the curve length

Optimizing Pseudo-Geodesics

Validation: stability under remeshing

8960 vertices

657 vertices

Error is 0.76% of $b b d$

Optimizing Pseudo-Geodesics

Co-optimizing Reference Surface and Level Sets

Keeping F fixed and optimize the underlying surface

Optimizing Pseudo-Geodesics

Postprocessing

Rectifying Strip Structure

Postprocessing

Discrete Rectifying Developable Optimization

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar

Straight: $\alpha+\beta=\pi$

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar

Straight: $\cos (\alpha)+\cos (\beta)=0$

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar

Straight: $\left(\mathrm{e}_{i}, \mathrm{~d}_{i}\right)-\left(\mathrm{e}_{i+1}, \mathrm{~d}_{i}\right)=0$

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar

Straight: $\left(\mathrm{e}_{i}-\mathrm{e}_{i+1}\right) \perp \mathrm{d}_{i}$

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar
Straight: $\mathrm{n}_{i}^{p} \perp \mathrm{~d}_{i}$

Applications: gridshells

Applications: gridshells

Applications: gridshells

Applications: gridshells

PP-Net $\theta_{1}=\theta_{2}=60^{\circ}$

AAG-Web

AGG-Webs

$$
\text { PPG-Web } \theta_{1}=\theta_{2}=60^{\circ}
$$

Applications: gridshells

Changing the Underlying Surface for More Accurate Results

Applications: gridshells

Changing the Underlying Surface for More Accurate Results

Applications: gridshells

Changing the Underlying Surface for More Accurate Results

Applications: gridshells

Changing the Underlying Surface for More Accurate Results

Applications: gridshells

Changing the Underlying Surface for More Accurate Results

Applications: gridshells

Physical Model: PP-Net, $\theta_{1}=\theta_{2}=50^{\circ}$

Physical Model: PPG-Web, $\theta_{1}=\theta_{2}=60^{\circ}$

Applications: gridshells

Torsion-free rectifying strip structures

The Darboux vector $\mathrm{d}=\tau \mathrm{t}+\kappa \mathrm{b}$ is the ruling of the rectifying developable

$\frac{d \mathbf{T}}{d s}$	$=$	$\kappa \mathbf{N}$		
$\frac{d \mathbf{N}}{d s}$	$=$	$-\kappa \mathbf{T}$		$+\tau \mathbf{B}$
$\frac{d \mathbf{B}}{d s}$	$=$			

$$
\begin{aligned}
& \text { The ruled surface } S(u, v)=\mathrm{c}(u)+v \mathrm{~d}, \\
& S_{u}=\mathrm{t}+v\left(\tau \kappa \mathrm{n}^{p}-\kappa \tau \mathrm{n}^{p}\right)=\mathrm{t} \\
& S_{v}=\mathrm{d}=\tau \mathrm{t}+\kappa \mathrm{b}, \\
& \operatorname{span}\left(S_{u}, S_{v}\right)=\operatorname{span}(\mathrm{t}, \mathrm{~b})
\end{aligned}
$$

Applications: gridshells

Torsion-free rectifying strip structures

- Using binormal vectors as node axes is not accurate!
- The curvature along the direction of b is NOT 0 if the torsion $\tau \neq 0$!
- Proposition 1. The ruled surface $\mathrm{B}(u, v)=\mathrm{c}(u)+v \cdot \mathrm{~b}(u)$ has Gaussian curvature

$$
K(u, v)=-\left(\frac{\tau}{1+\tau^{2} v^{2}}\right)^{2}
$$

- Proposition 2. The first normal curvature $\kappa_{1}=0$ along the Darboux vector d. The second normal curvature κ_{2} and normal curvature κ_{n} (b) in direction of b are

$$
\kappa_{2}=\kappa\left(1+k^{2}\right), \kappa_{n}(\mathrm{~b})=\kappa k^{2}
$$

where $k:=\tau / k$.

Applications: gridshells

Torsion-free rectifying strip structures

Torsion-free node: a node where two developable strips intersect along a straight line segment

mesh optimization

Postprocessing

Discrete Rectifying Developable Optimization

Flat: The rulings $\mathrm{d}_{i}, \mathrm{~d}_{i+1}$ are coplanar
Straight: $\mathrm{n}_{i}^{p} \perp \mathrm{~d}_{i}$

Applications: gridshells

Torsion-free rectifying strip structures [Pottmann and Wallner 2001].

The angles between the tangent vectors t and a fixed axis A is constant.

Applications: gridshells

Torsion-free rectifying strip structures

Curves of Constant Slope
midpoint
The angles between the tangent vectors t and a fixed axis A is constant.

Applications: gridshells

Torsion-free rectifying strip structures

Curves of Constant Slope

midpoint
The angles between the tangent vectors t and a fixed axis A is constant.

Applications: gridshells

Torsion-free rectifying strip structures

Curves of Constant Slope

Applications: gridshells

Torsion-free rectifying strip structures

Applications: gridshells

Torsion-free rectifying strip structures

Curves of Constant Slope

Property:

A rectifying strip of a COCS takes the axis as the rulings, thus is a cylinder.

Proof:
$(\mathrm{t}, \mathrm{A})=\mathrm{const} \Rightarrow(\mathrm{t}, \mathrm{A})=\kappa\left(\mathrm{n}^{p}, \mathrm{~A}\right)=0$.
Assume that $\kappa \neq 0,\left(\mathrm{n}^{p}, \mathrm{~A}\right)=0$.
$\left(\mathrm{n}^{p}, \mathrm{~A}\right)=0 \Rightarrow(-\kappa \mathrm{t}+\tau \mathrm{b}, \mathrm{A})=0$,
A is in the direction of $\mathrm{d}=\kappa \mathrm{t}+\tau \mathrm{b}$, which is the ruling of the rectifying developable.

- Parallel rulings + developable = cylinder

Applications: gridshells

Torsion-free rectifying strip structures

Different slopes of the same axis

Applications: Shading Systems

Shading System

Applications: Shading Systems

Letting the Light Through:

$$
\left(\mathrm{l}, \mathrm{n}^{p}\right)=0
$$

$$
(1, t)=0
$$

Applications: Shading Systems

Light l is always orthogonal to the rectifying planes

$$
\operatorname{COCS}:\left(\mathrm{t}_{1}, A\right)=\left(\mathrm{t}_{2}, A\right) \Rightarrow\left(\mathrm{t}_{1}-\mathrm{t}_{2}, A\right) \Longrightarrow\left(\mathrm{n}^{p}, \mathrm{~A}\right)=0
$$

Strip is straight

$$
\Longleftarrow \quad \Leftarrow \quad(\text { reverse the COCS condition })
$$

Applications: Shading Systems

$$
(\mathrm{l}, \mathrm{~b})=0,
$$

$\left(\mathrm{l}, \mathrm{n}^{p}\right)=0$

$$
\begin{aligned}
& \gamma \in\left[\gamma_{\min }, \gamma_{\max }\right] \quad \Longleftrightarrow l_{z} \in\left[z_{\min }, z_{\max }\right], \\
& \delta \in\left[\delta_{\min }, \delta_{\max }\right]
\end{aligned} \Longleftrightarrow l_{y} / l_{x} \in\left[g_{\min }, g_{\max }\right], ~ l
$$

Applications: Shading Systems

Blocking the Light

Letting the Light Through

Makkah, 12:00, Dec $1^{\text {st }}$.

Applications: Shading Systems

Light Blocked

Applications: Shading Systems

Let the sunlight through in the morning, and block the sunlight in the afternoon.

Result Evaluations

Convergence of scalar field optimization ($E_{\text {angle }} \approx 3 e-6$)

$\theta=72^{\circ}$, maximal angle deviation 1.59° Approximation error: $1.5 \% b b d$

Maximal angle deviation 2.72°, Approximation error: $1.43 \% b b d$

Maximal angle deviation 1.59°, Approximation error: $0.14 \% b b d$

Conclusion

Limitations:

Avoid singularities: limited by the fundamental geometry nature of level sets. Topology: need to be a topological disk.

Composition of Regular parts

Stitch Level Sets on the Boundaries (Future Work)

Conclusion

Limitations:

Non-linear optimization is not fully automatic

Conclusion

- Straight Flat Strips
- Controllable Inclinations
- Gridshell Design
- Shading System Design

PPG-Gridshell $\left(\theta_{1}=45^{\circ}, \theta_{2}=60^{\circ}\right)$

Shading Systems

Physical Models

Conclusion

- Straight Flat Strips
- Controllable Inclinations
- Gridshell Design
- Shading System Design

PPG-Gridshell $\left(\theta_{1}=45^{\circ}, \theta_{2}=60^{\circ}\right)$

Shading Systems

Physical Models

Applications: Shading Systems

2. Initialize the scalar
function F
3. Initialize the best shading directions

4. Optimize the level sets
5. Extract rectifying strips

Postprocessing

Discrete Rectifying Developable Optimization

