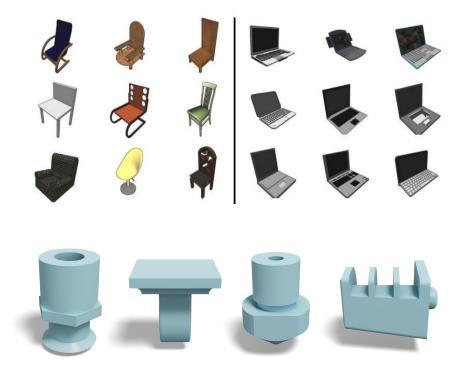


Learning Structured Representations of 3D CAD Models

Fenggen Yu (余锋根)

• What is Computer-Aided-Design (CAD) model?





3D organic models

3D human-made objects

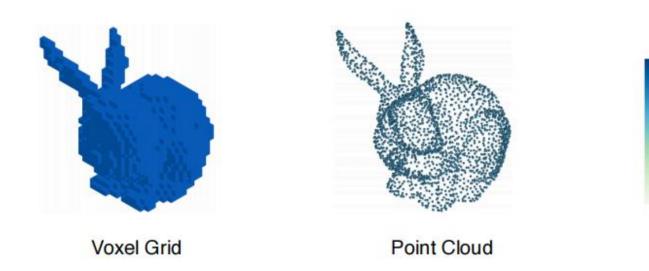
Complex structures, regular surfaces, and sharp edges Uniform structures with smooth surfaces and edges

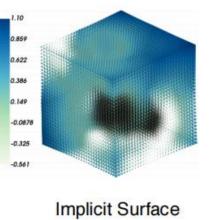
• Why do we need CAD models?

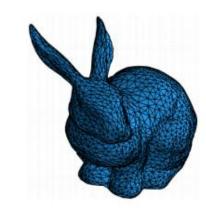
Video game, movie

AR/VR, online e-commerce Industrial design, manufacturing

• Unstructured 3D representations







Triangle Mesh

• Disadvantages of unstructured 3D representations

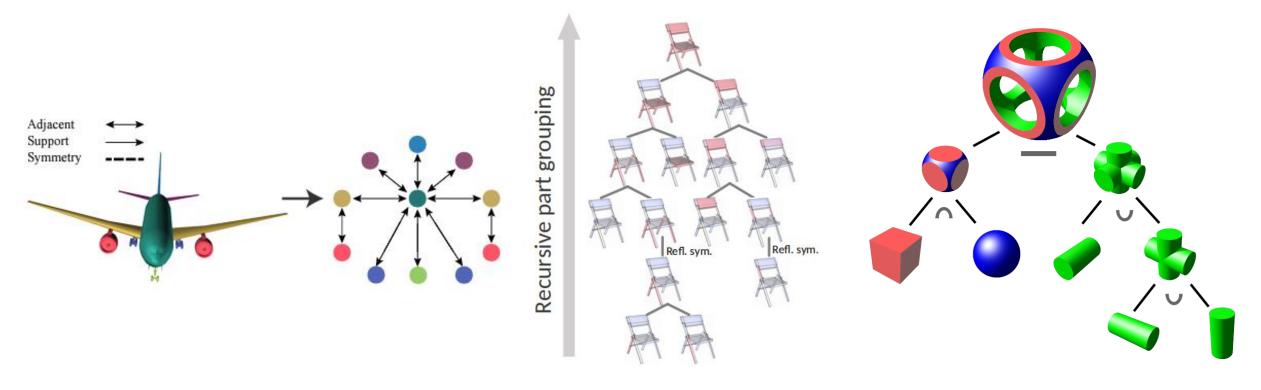
Imperfect shape surface (Non-manifold, non-watertight)



Not friendly for functionality and semantic understanding

Not friendly for shape editing (Additional segmentation needed)

• Structured 3D representations: atomic elements and assembly patterns.



Graph [1]

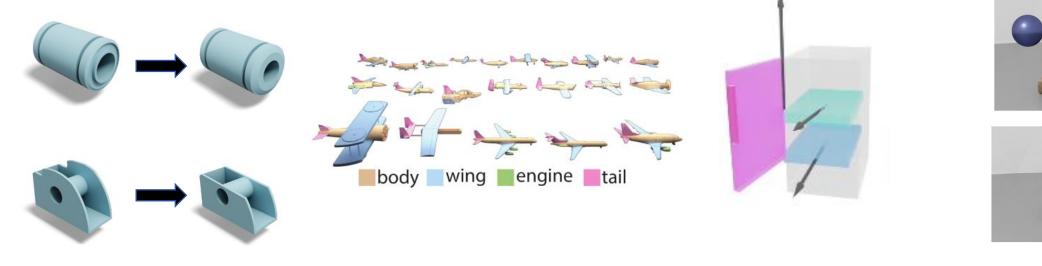
Hierarchy-tree [2]

CSG-tree

[1] SDM-NET: Deep Generative Network for Structured Deformable Mesh

[2] GRASS: Generative Recursive Autoencoders for Shape Structures

• Advantages of structured 3D representations



Shape editing/manipulation

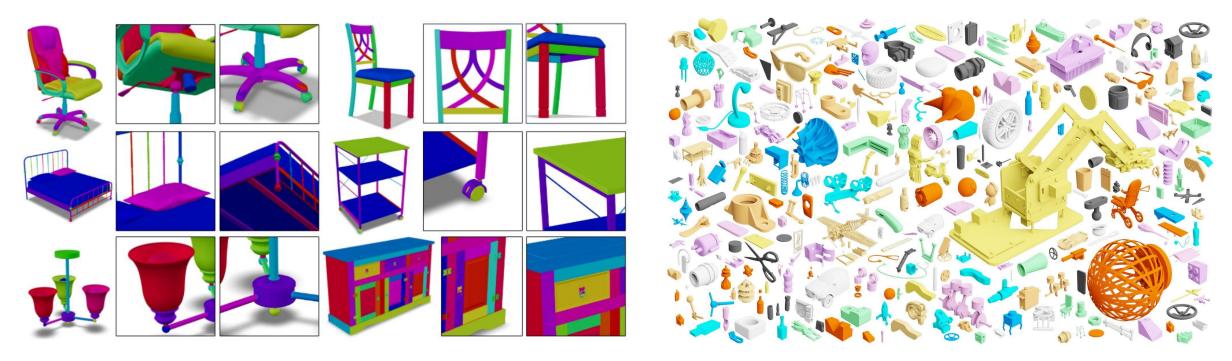
Semantic understanding

Part functionality annotation

Physics animation

• Talk topic: learning structured representations of 3D CAD models

• Challenge: intricate 3D CAD model structure



Small and different number of parts

3D CAD components: complex and various topologies

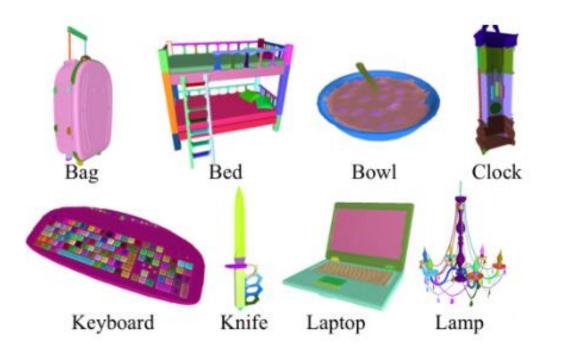
- Challenge: intricate 3D CAD model structure
- Our solution: hierarchical learning strategy to reduce learning complexity



Hierarchical CSG tree structure

Hierarchical semantic tree structure

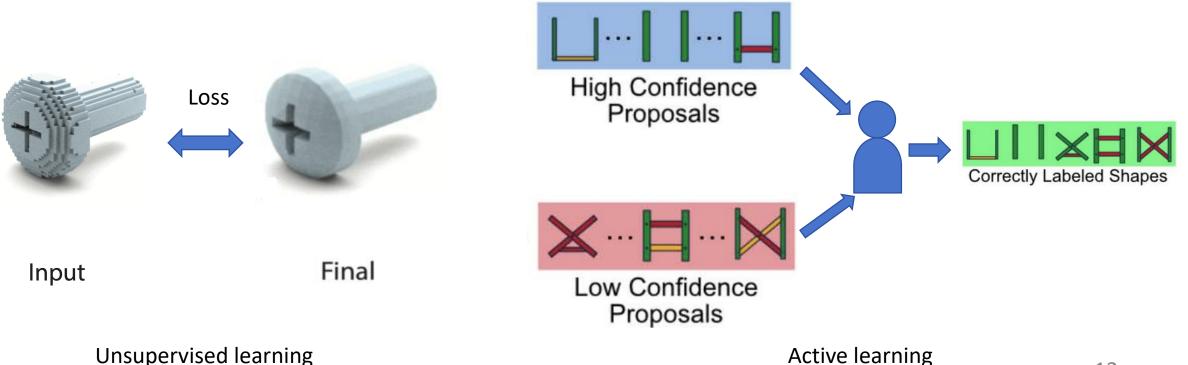
• Challenge: limited training data in structured representations



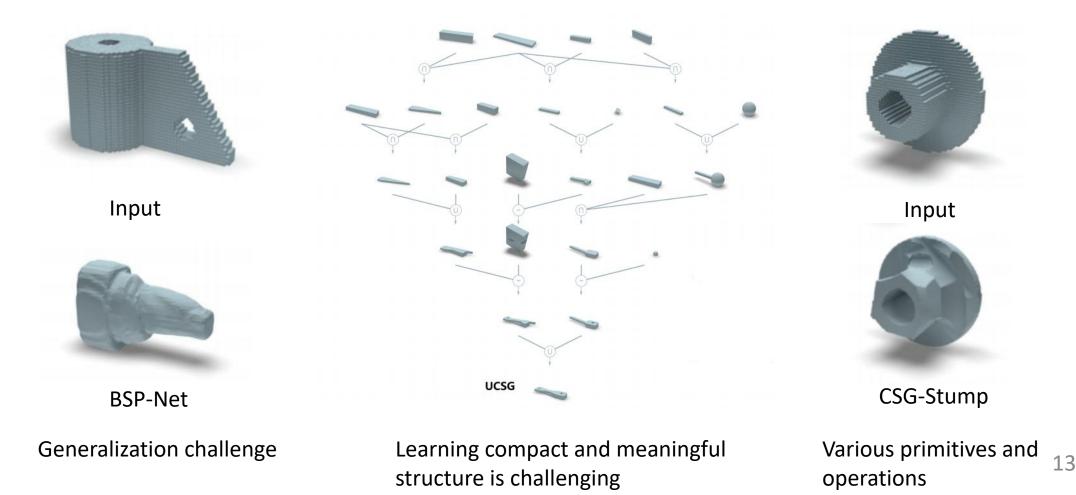
PartNet: less than 30K, most of categories have less than 1K shapes

Objverse-XL: no category or part-level annotation

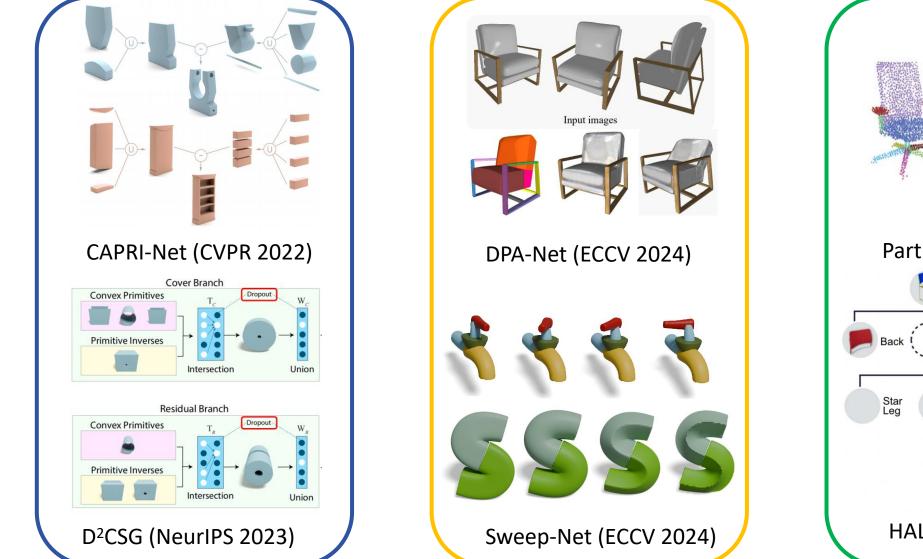
- Challenge: limited training data in structured representations
- Our strategy: unsupervised learning and active learning



• Challenge: reconstructing CSG Representation by the neural network

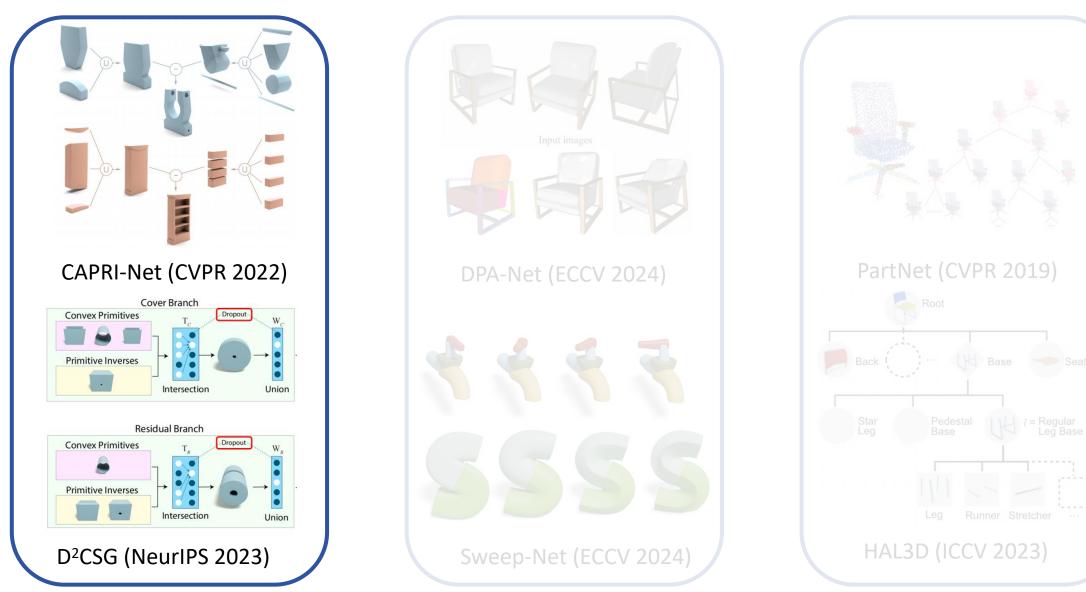


This Talk: Learning Structured 3D Representations



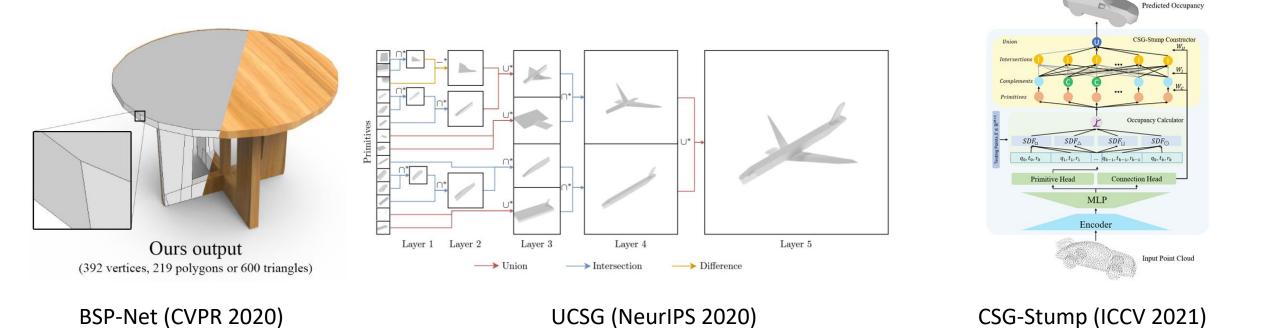
PartNet (CVPR 2019) Root Base Seat l = Regular Leg Base Pedestal Base Lea Runner Stretcher HAL3D (ICCV 2023) 14

This Talk: Learning Structured 3D Representations



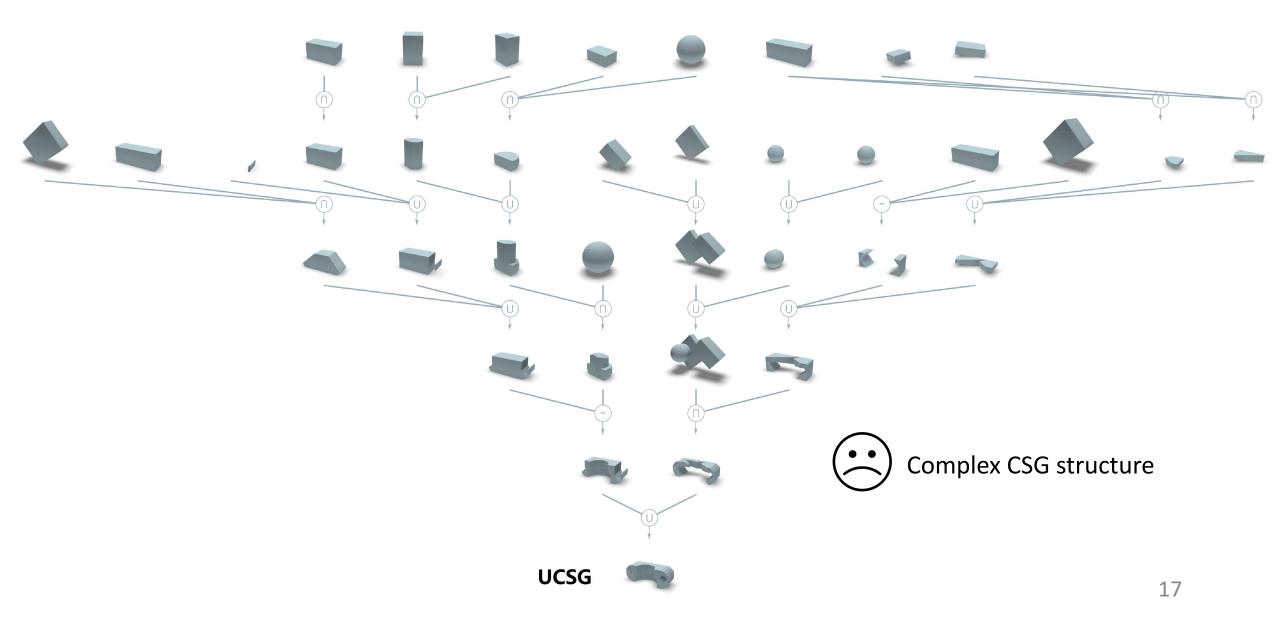
CAPRI-Net: Learning Primitive Assembly for 3D CAD Models

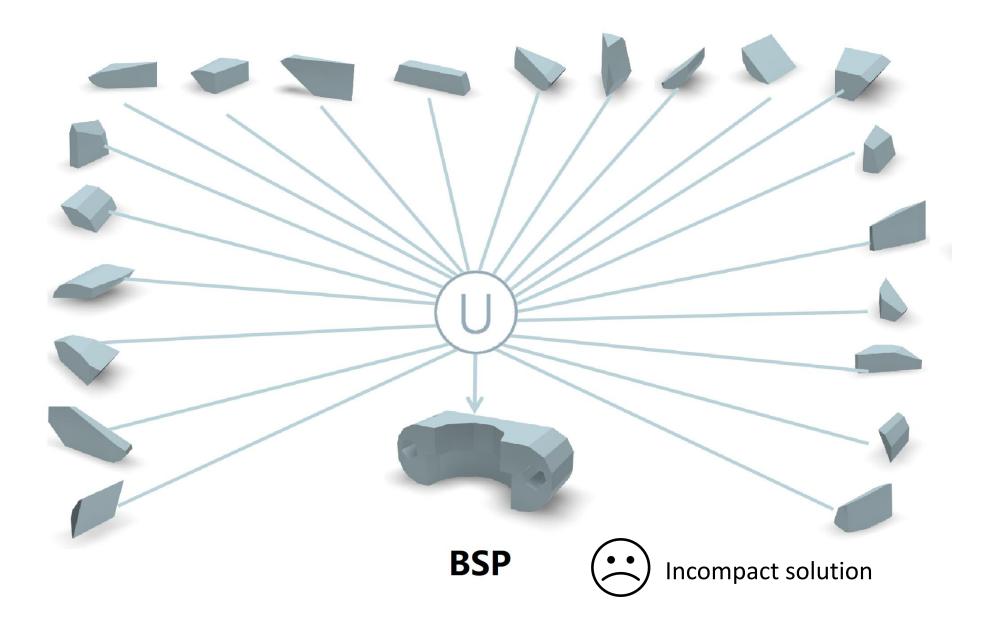
• Related works: unsupervised learning CSG representation

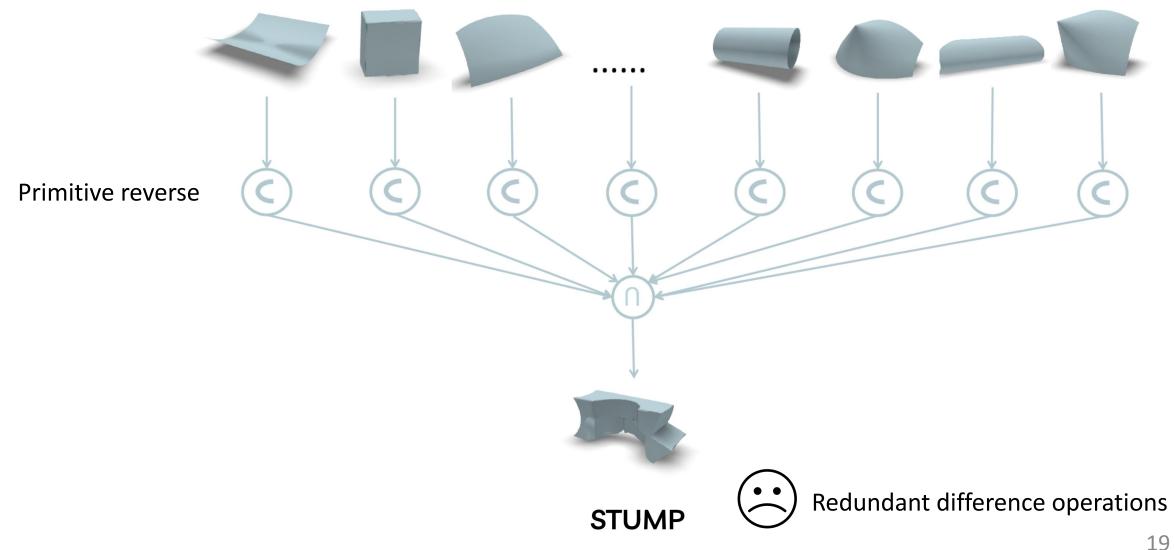


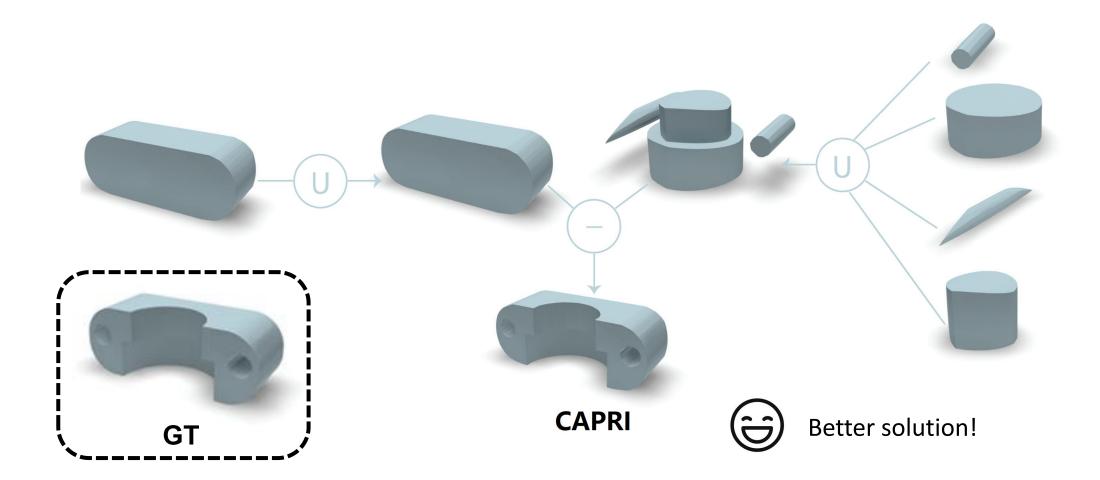
16

CSG Tree Comparison

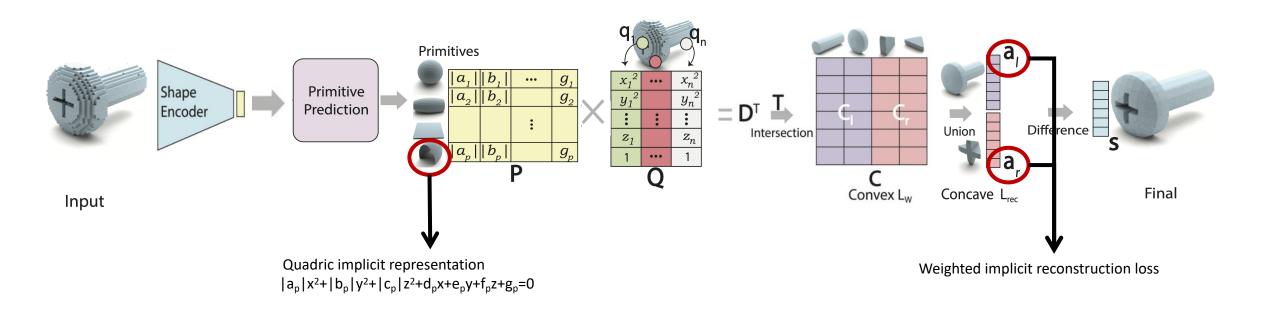




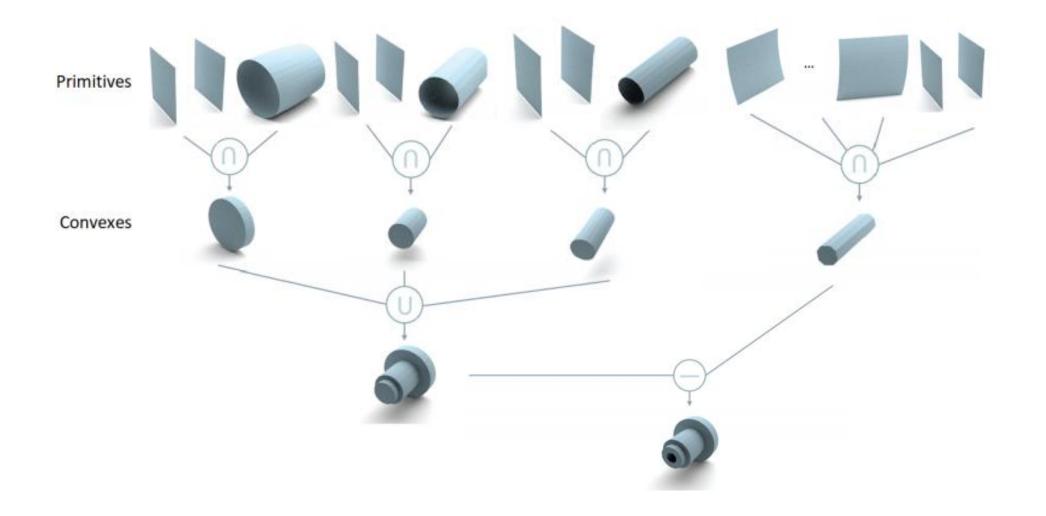




Method



CAD Model Meshing Process



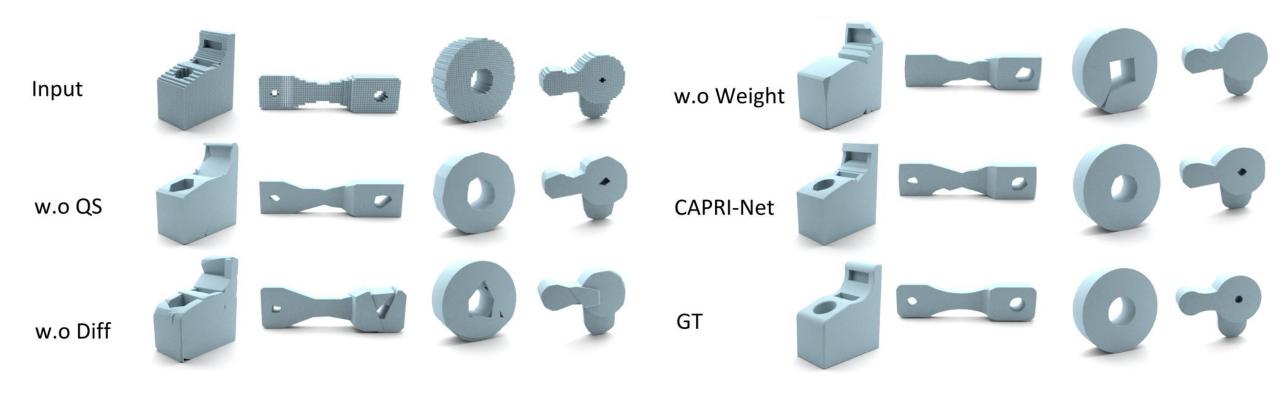
ABC Model Reconstruction From Voxels

#P:98, #C:13	#C:16	#C:47	#P:48, #C:4			
Methods	BSP-Net	UCS	G	STUM	Ρ	Ours
CD↓	0.491	0.3	00	1.18	0	0.136
NC ↑	0.868	0.8	77	0.82	9	0.914
ECD↓	10.098	5.0	22	11.84	8	2.208
LFD↓	1,342.7	1,494	.8	2945	.2	800.2
#Primitives (#P) \downarrow	114.44		-		-	46.93
#Convexes (#C)↓	11.60	12.	72	90.8	8	6.03
Input BSP	UCSG	STUMP		CAPRI		GT

ShapeNet Model Reconstruction From Voxels

#P:136, #C:	16 #C:12	#C:134	#P:49, #C:8	
Methods	BSP-Net	UCSG	STUMP	Ours
CD↓	0.220	1.317	2.288	0.175
NC ↑	0.869	0.815	0.792	0.872
ECD↓	2.111	5.233	10.457	2.101
LFD↓	2,254.4	3,582.5	5217.0	1,824.1
#Primitives (#P) ↓	214.70	-	 2	61.56
#Convexes (#C) \downarrow	<mark>18.8</mark> 6	12.40	180.54	8.71
Input BSP	UCSG	STUMP	CAPRI	GT

Ablation Studies

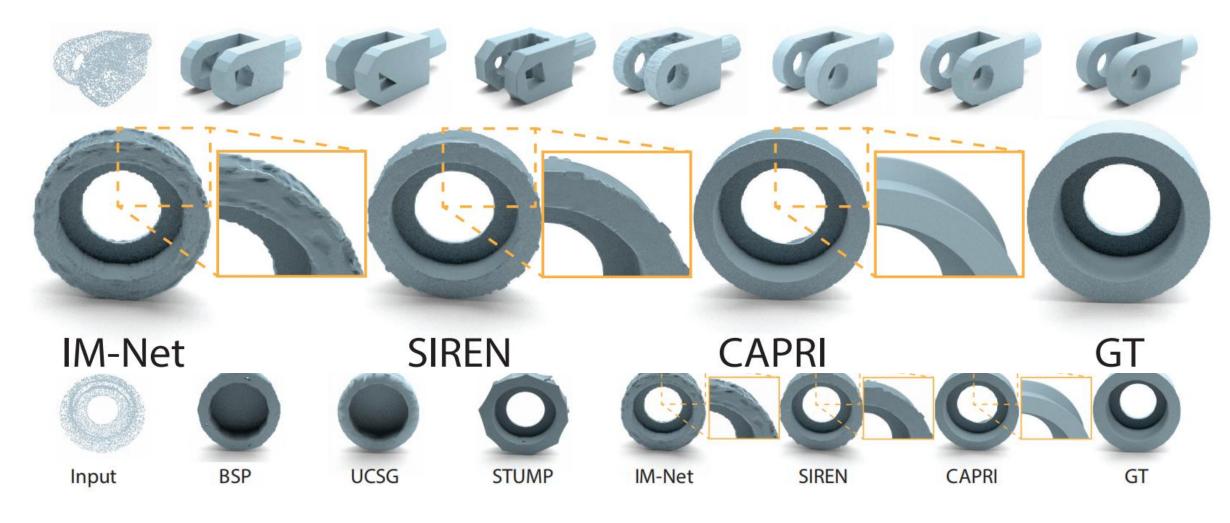


QS: quadric surface Diff:

Diff: difference operation

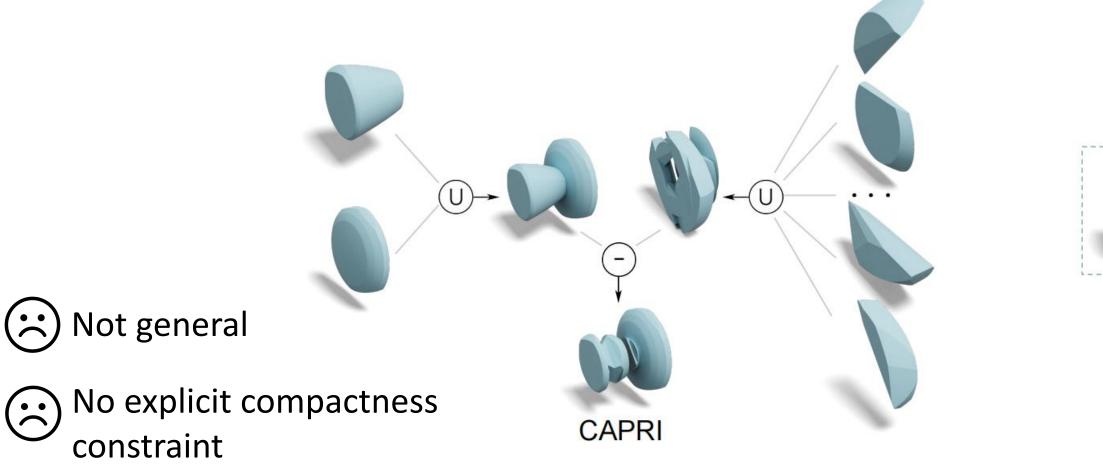
Weight: weighted implicit reconstruction loss

ABC Model Reconstruction From Point Clouds



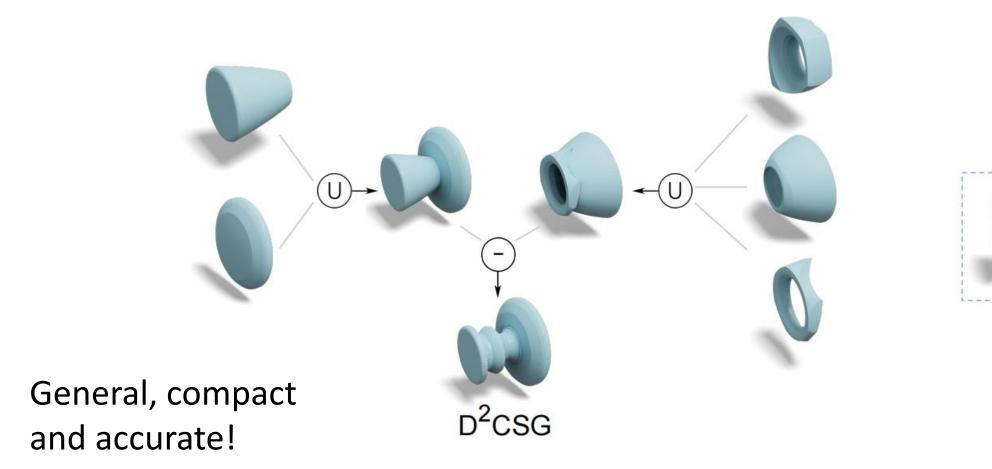
Limitation of CAPRI-Net

Convex shapes only



GT

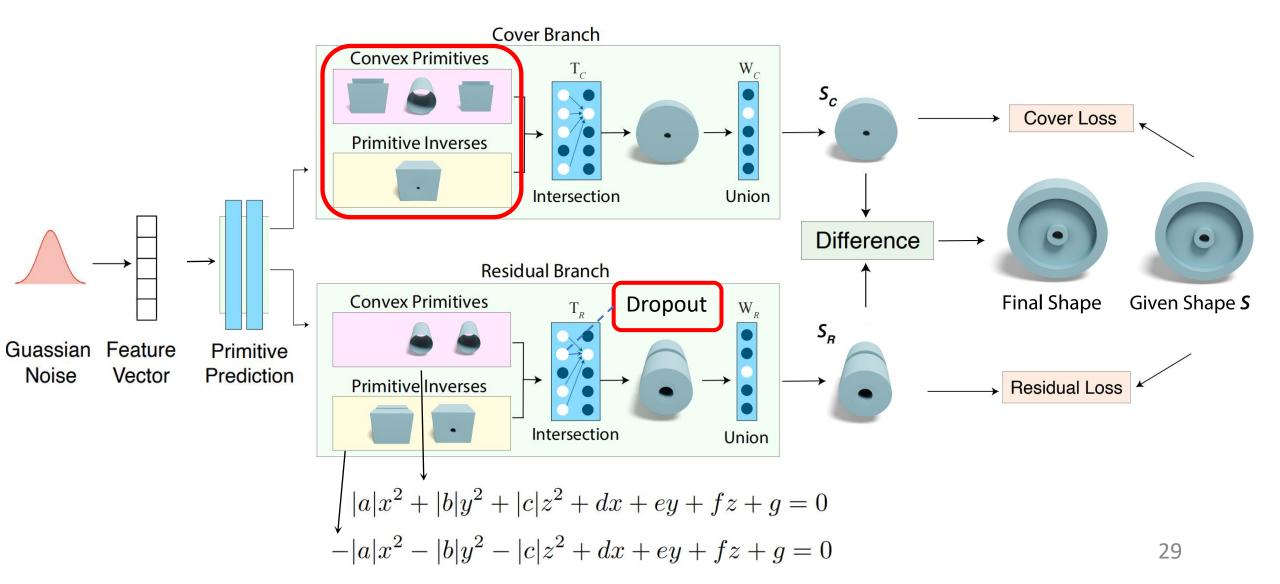
D²CSG: Unsupervised Learning of Compact CSG Trees with Dual Complements and Dropouts



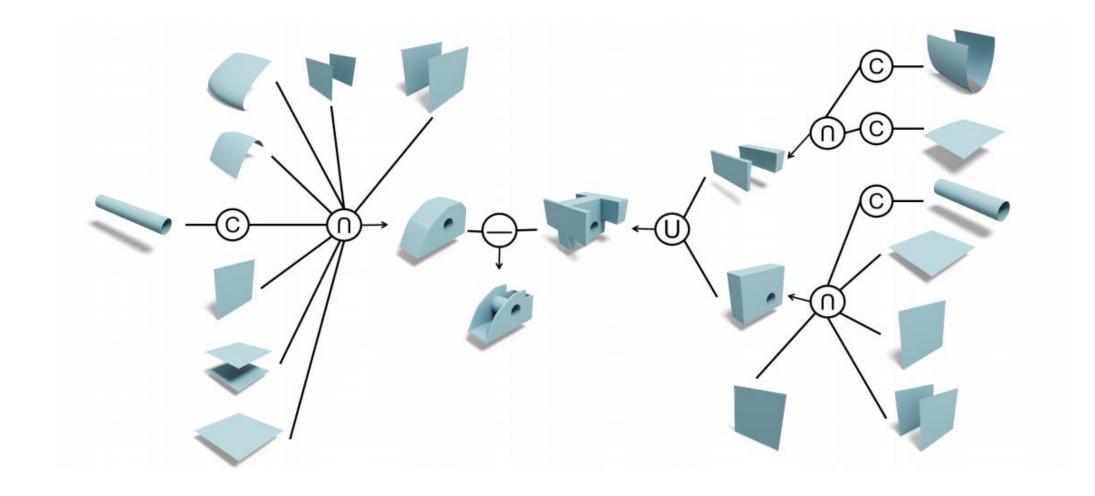
••

GT

Network Overview

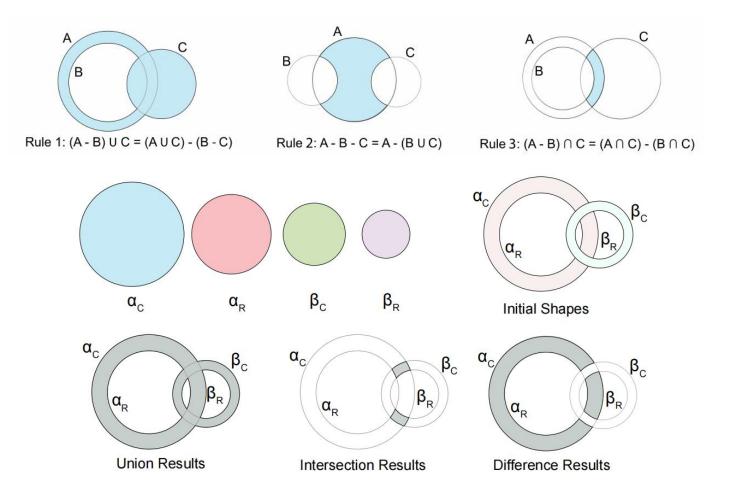


Learned CSG Tree

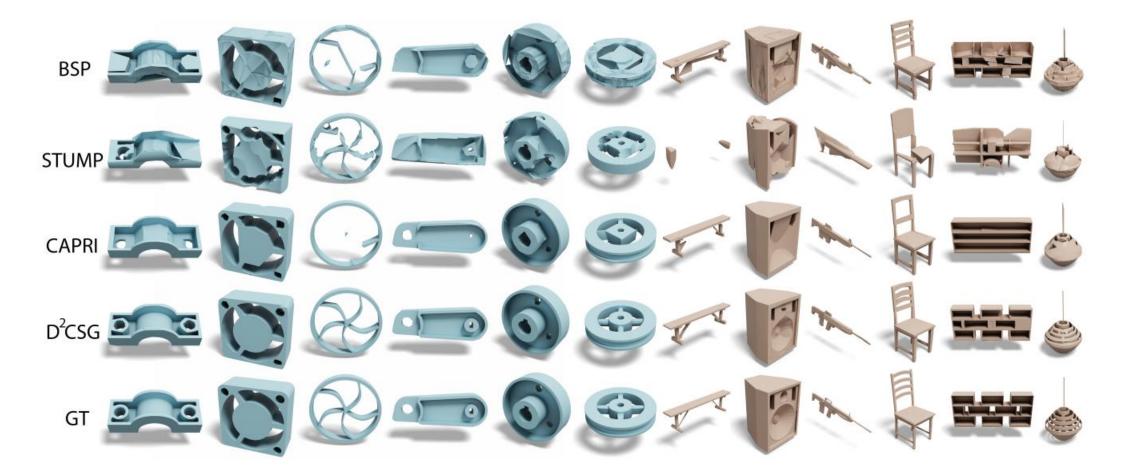


Generalization Proof

• The operation sequence in D²CSG is able to support any CSG sequence



Experiments: Mesh-to-CSG



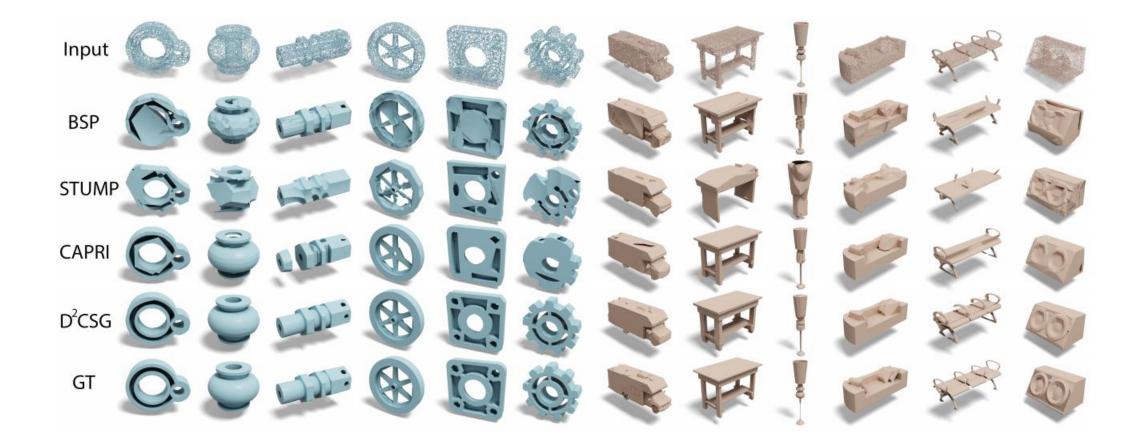
ABC DataSet

ShapeNet

Experiments: Ablation Studies

			AR	4		, PA		
Row ID	CP	DB	DO	$ CD\downarrow $	NC ↑	$\text{ECD}\downarrow$	# P↓	#IS ↓
1	-	-	-	0.183	0.907	3.92	77	9.2
2	_	\checkmark	-	0.114	0.918	2.97	37	10.5
3	-	\checkmark	\checkmark	0.127	0.914	3.56	32	10.0
4	\checkmark	-	-	0.073	0.935	3.12	38	5.8
5	\checkmark	-	\checkmark	0.088	0.926	3.48	27	5.3
6	\checkmark	\checkmark	-	0.069	0.936	2.98	53	6.8
7	\checkmark	\checkmark	\checkmark	0.069	0.928	3.09	29	5.7
w.o C	Р	W	v.o DB	w.	o DP	Ours		GT
CP: Complementary primitives DB: Dual branches DP: Drop					DP: Dropou			

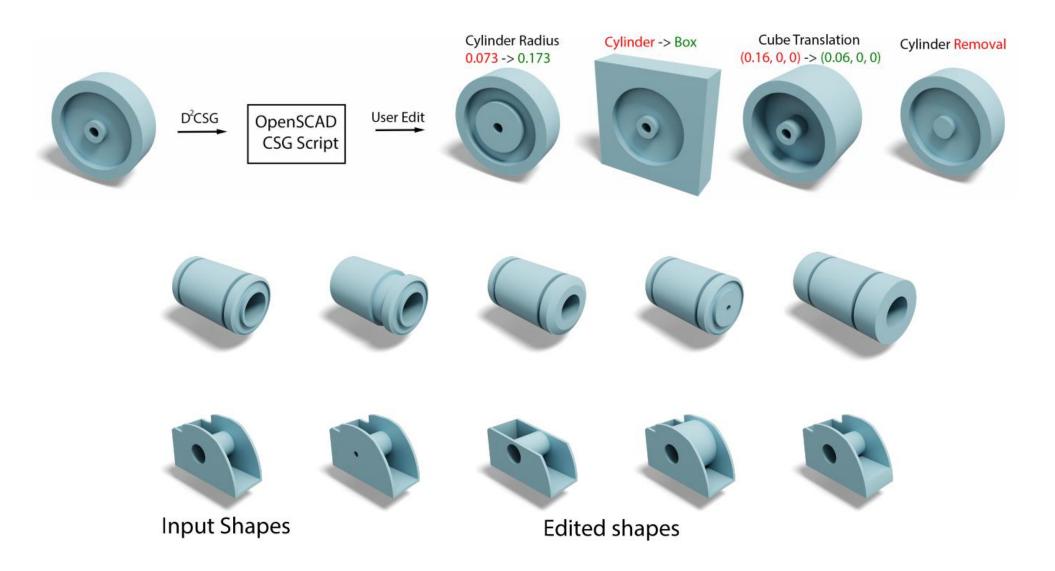
Application: PointCloud-to-CSG



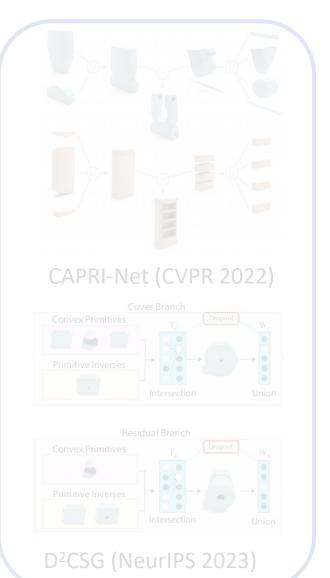
ABC DataSet

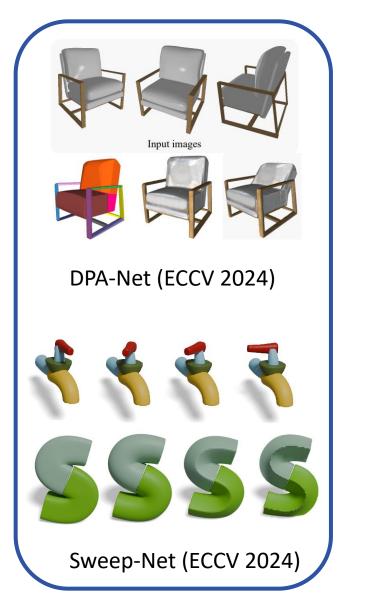
ShapeNet

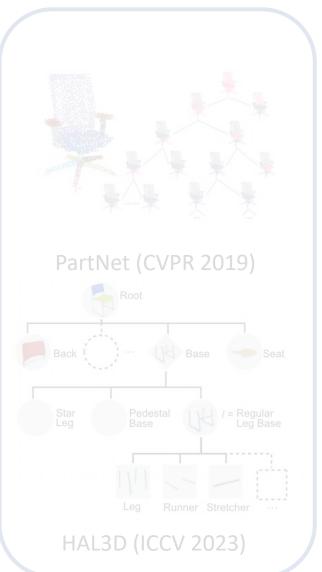
Application: Shape Editing



This Talk: Learning Structured 3D Representations







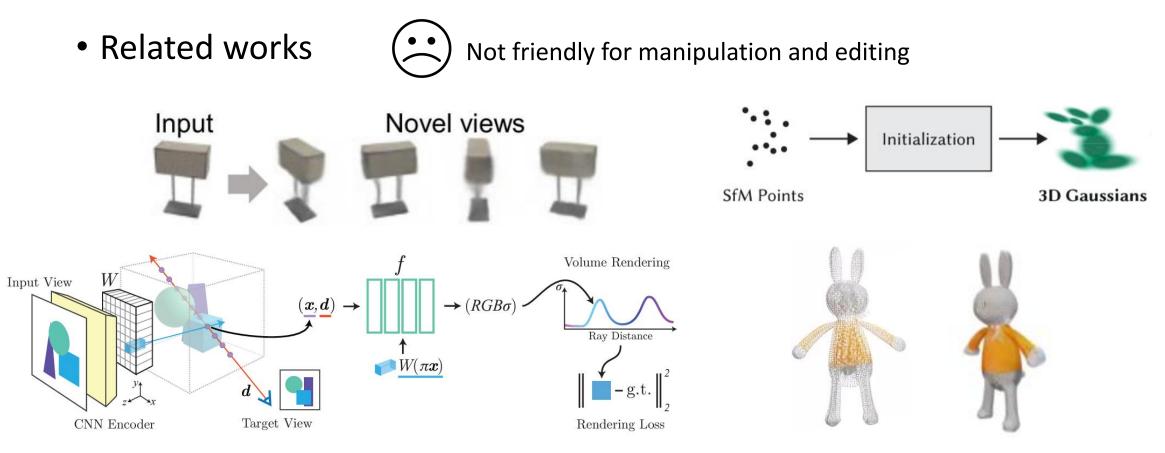
3D Abstraction

• Reduce computational cost

٠

Facilitate high-level perception

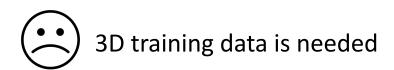
Simplify complex shapes with fundamental and manageable primitives

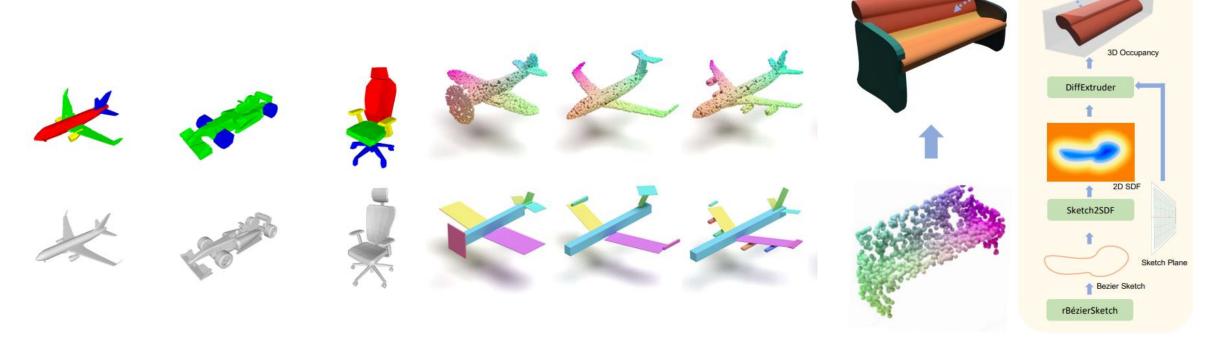


pixelNerf (CVPR 2021)

Gaussian splatting (SIGRRAPH 2023)

Related works





BSP-Net (CVPR 2020)

Cuboids Abstraction (SIGGRAPH 2021)

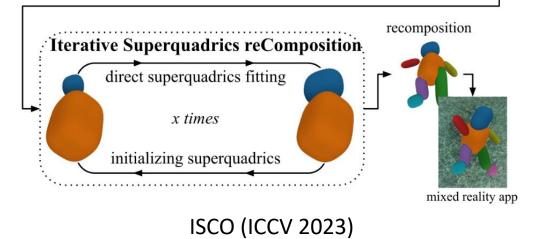
ExtrudeNet (ECCV 2022)

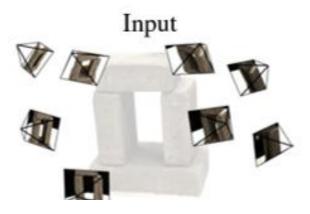
• Related works

Not general, require dense views

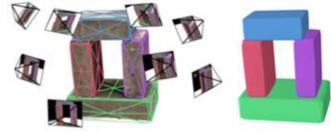
Instance Segmentation

Silhouettes



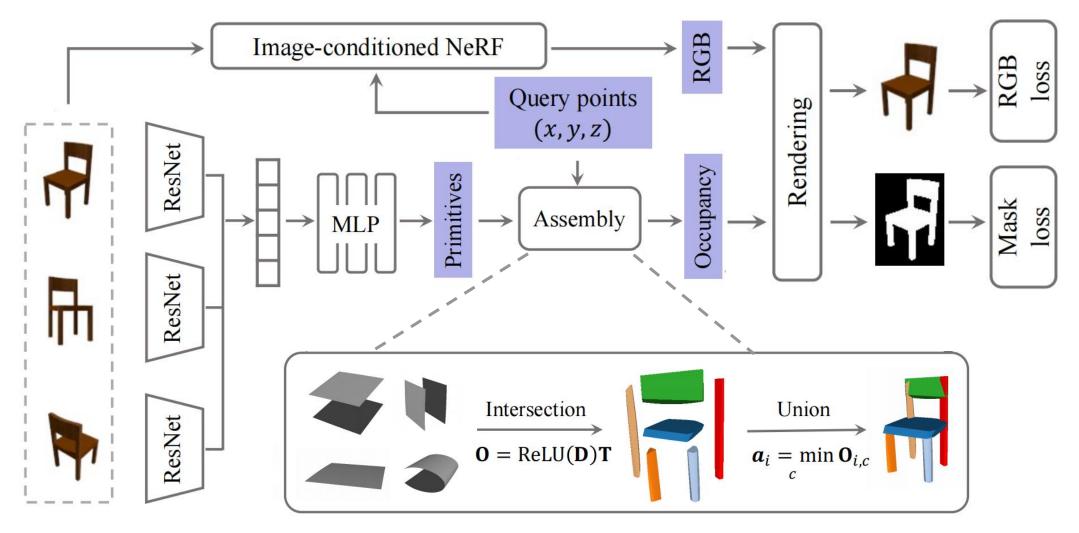


Optimized textured 3D primitives



Differentiable block world (NeurIPS 2023)

Overview of DPA-Net



Improvements

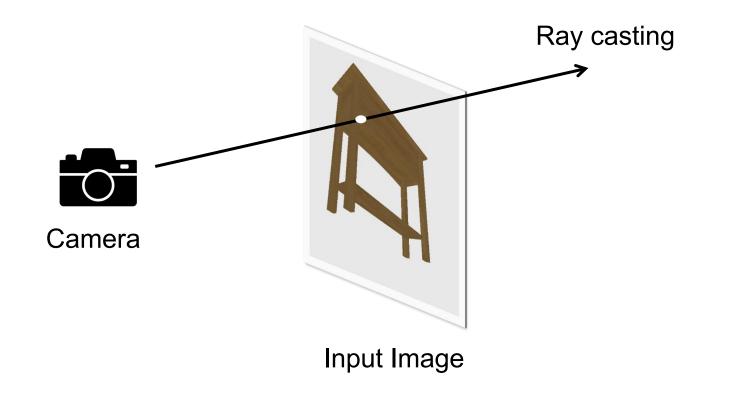
• Improve structure: overlapping loss and dropout strategy

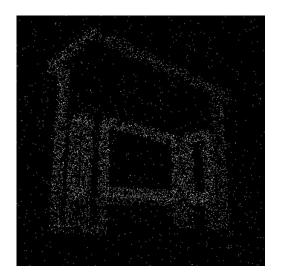
Phase	Type of \mathbf{T}	Type of \mathbf{w}	Occupancy	Opacity	Dropout	Loss	Model parameters
1	float	float	\mathbf{a}^+	\mathbf{a}^+	-	$\mathcal{L}_{ph} + \mathcal{L}_{\mathbf{T}} + \mathcal{L}_{\mathbf{w}}$	network, T, w
2	float	_	\mathbf{a}^*	$\exp(-10\mathbf{a}^*)$	3 <u>1</u> 0	$\mathcal{L}_{ph} + \mathcal{L}_{\mathbf{T}}$	network, T
3	binary	-	\mathbf{a}^*	$\exp\left(-10\mathbf{a}^*\right)$	\checkmark	$\mathcal{L}_{ph} + \mathcal{L}_{over}$	network

Details of the multi-stage fine-tuning

Improvements

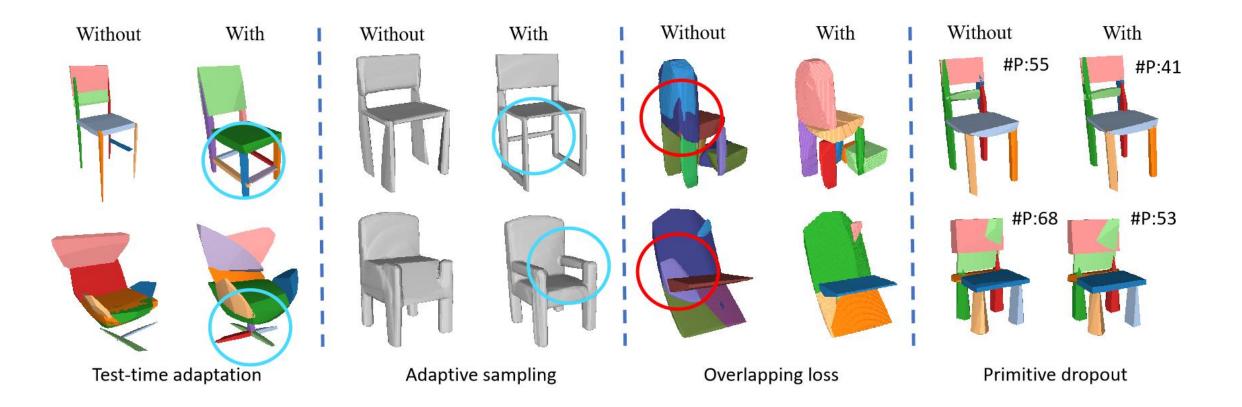
• Improve reconstruction accuracy: silhouette-aware adaptive sampling



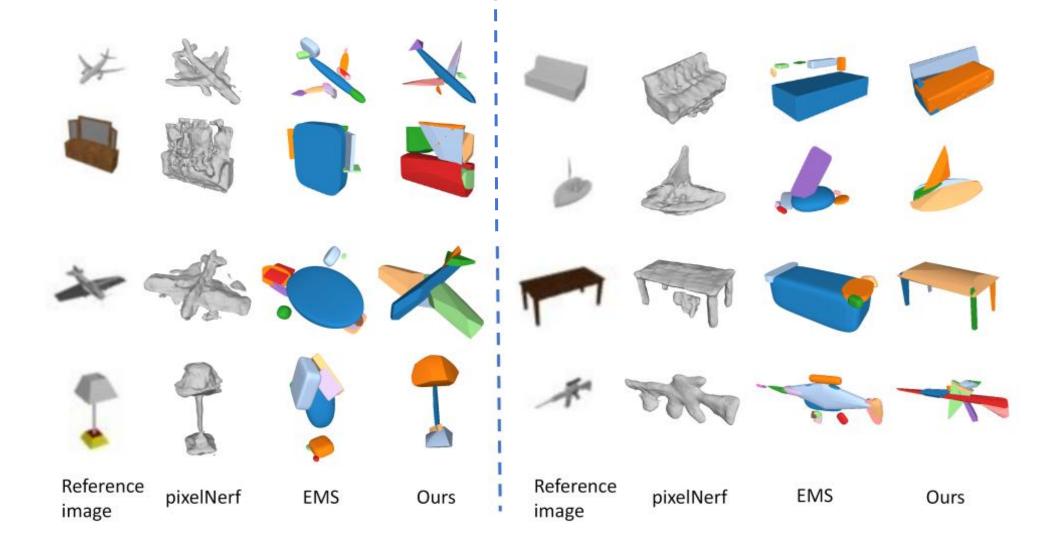


Adaptive camera ray direction sampling

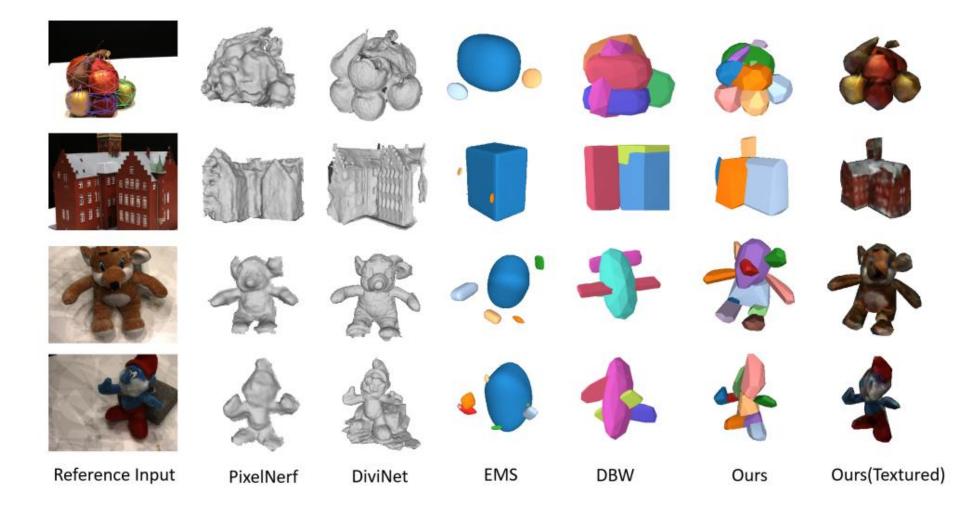
Ablation Studies



Results on ShapeNet Cross-categories



Results on Real Images



Application: Shape Editing

Before editing

Nose removal

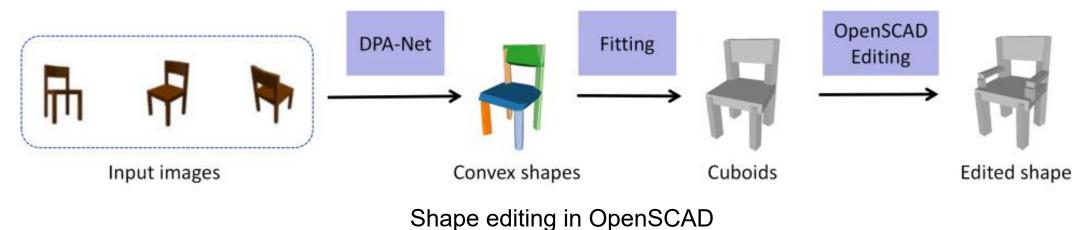
"Hug"

Before editing

Top removal

Shorter legs

Shape editing in MeshLab



48

Application: Conditional Shape Generation

Structural prompt

"Pink dinner chair"

Structural

prompt

"Green outdoor chair"

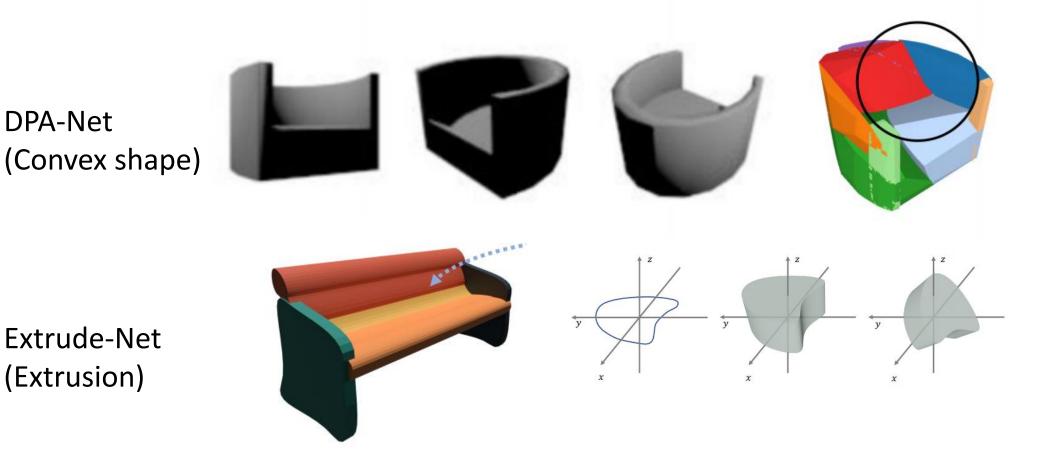
Structural

prompt

"Orange chair with back bars"

"Green outdoor chair"

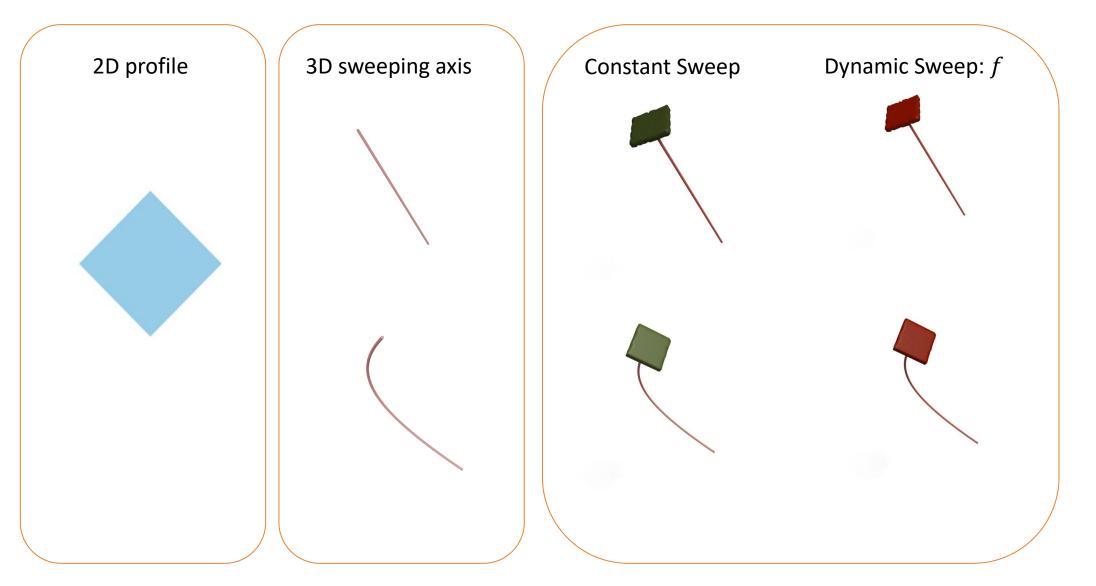
Limitation of Previous Representation



Not general for curvy objects

SweepNet: Unsupervised Learning of Shape Abstraction via Neural Sweepers

What is a sweep surface?

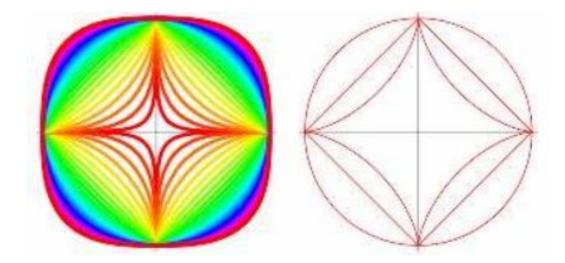


Sweep Surface Parametrization – Profile

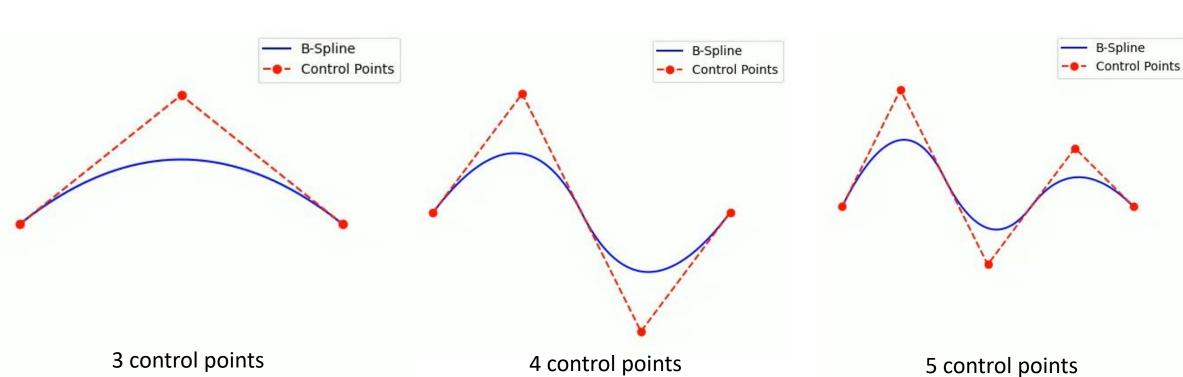
- Efficient parametrization
- Wide shape vocabulary
- Guaranteed close-loop without self-intersection

Superellipse

$$\begin{cases} x(\theta) = a \cdot |\cos(\theta)|^{\frac{2}{d}} \cdot \operatorname{sgn}(\cos(\theta)), \\ y(\theta) = b \cdot |\sin(\theta)|^{\frac{2}{d}} \cdot \operatorname{sgn}(\sin(\theta)), \end{cases}$$

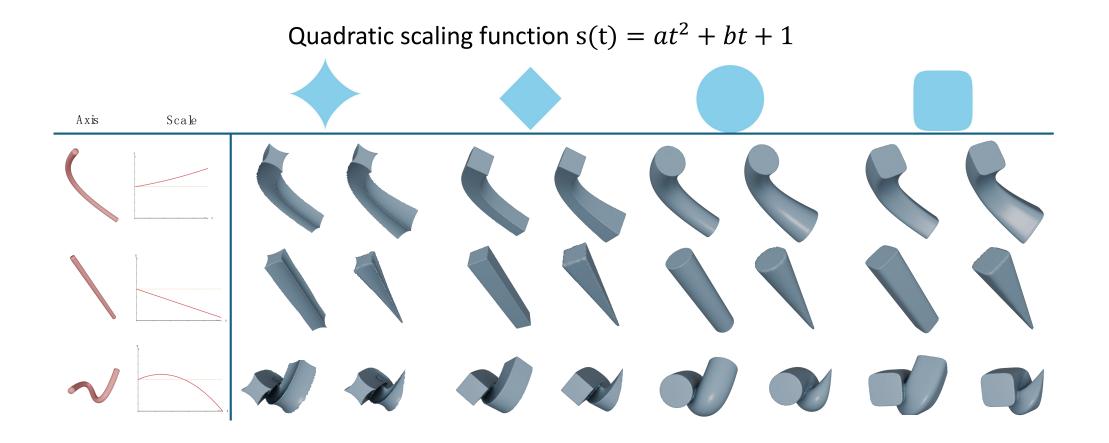


Sweep Surface Parametrization – Sweeping Axis

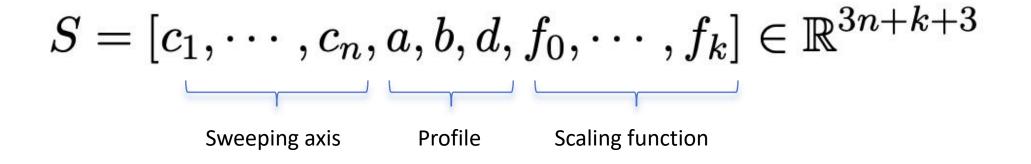


B-spline curves

Sweep Surface Parametrization: Scaling function



Sweep Surface Parametrization

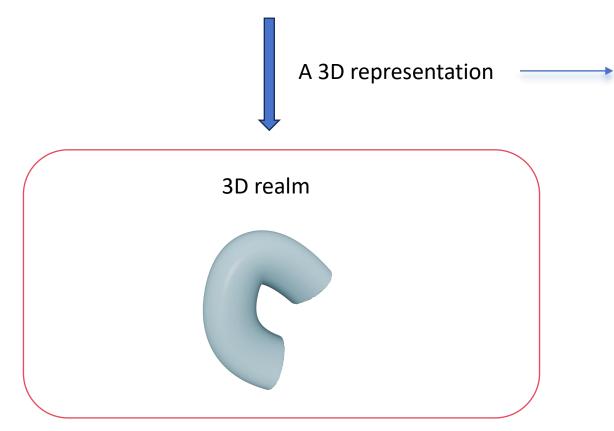


With 3 control points B-spline and fixed-constant quadratic scaling function A sweep surface only need **14** float numbers to represent

Sweep Surface Construction

Parameter space

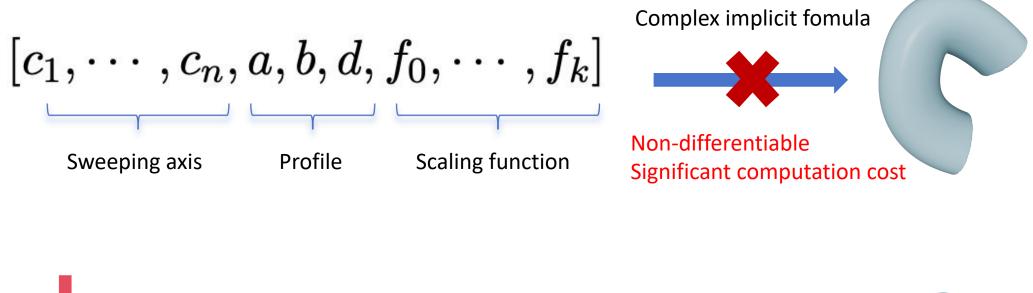
 $S = [c_1, \cdots, c_n, a, b, d, f_0, \cdots, f_k] \in \mathbb{R}^{3n+k+3}$

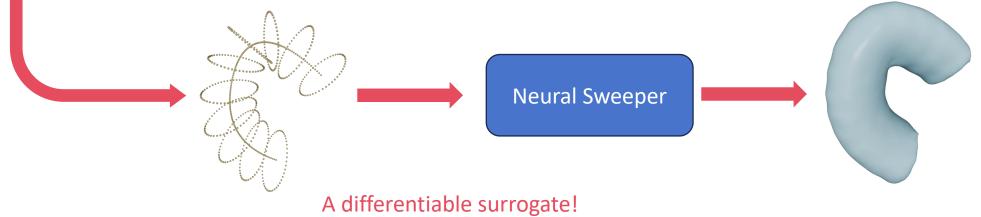


Occupancy field

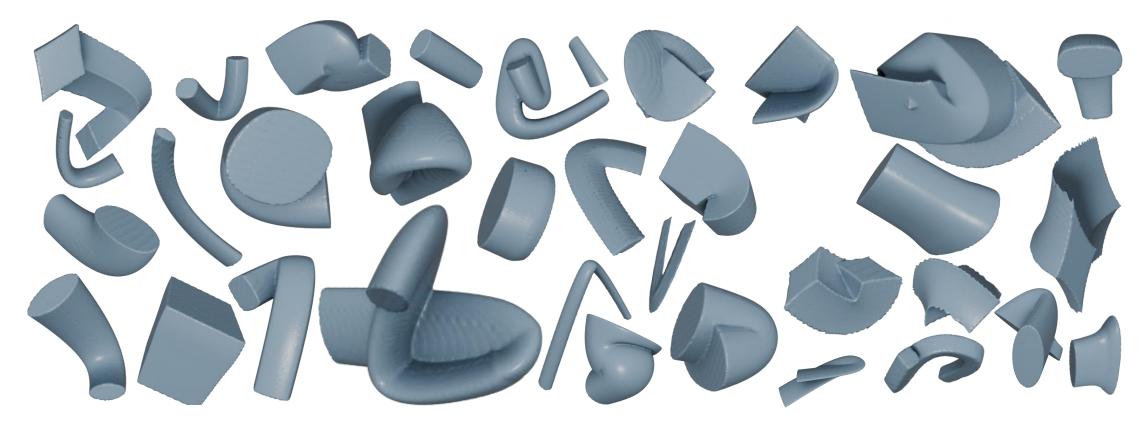
- Resolution-invariant allow dense sampling
- Robust against union operations, suitable for primitive assembly
- Gradient friendly easy to train

Neural Sweeper

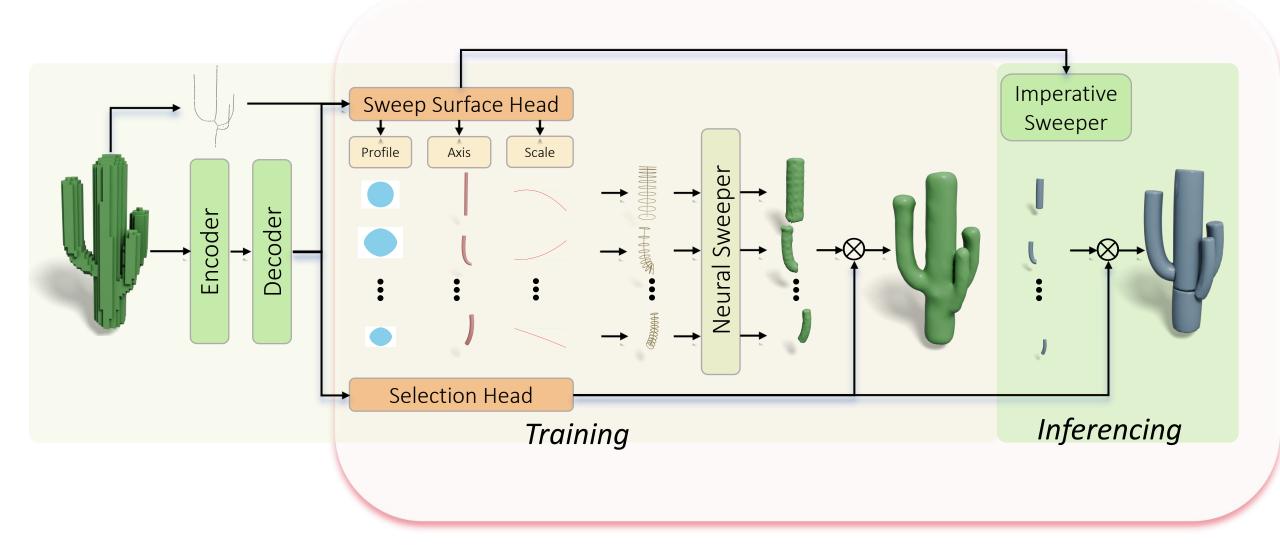


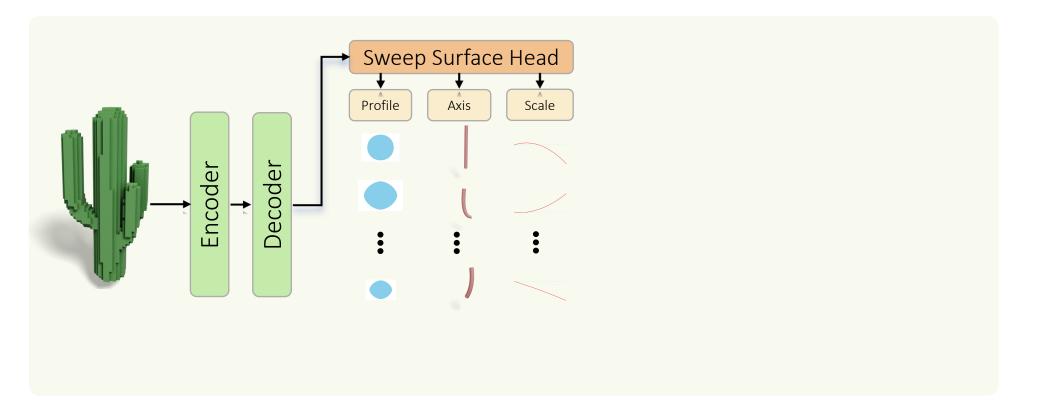


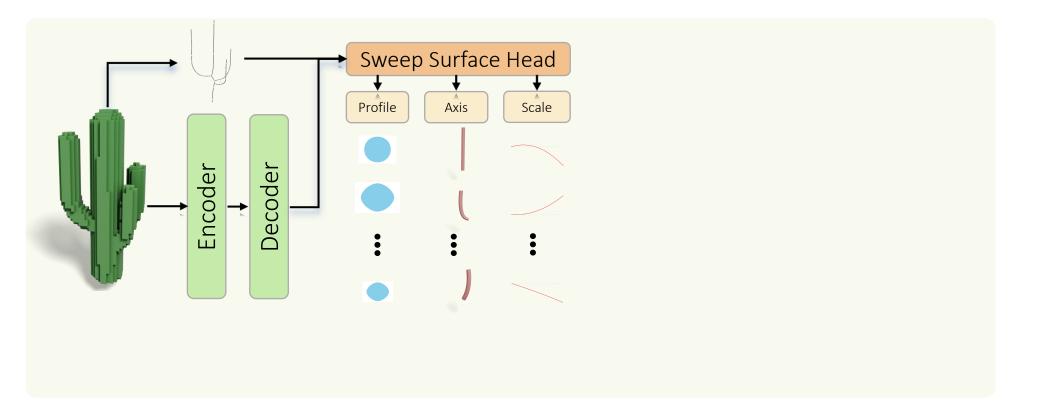
Neural Sweeper

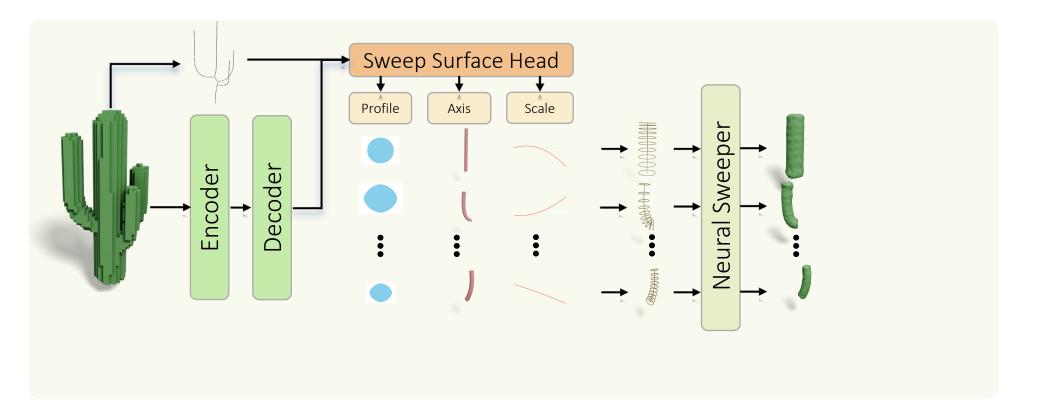


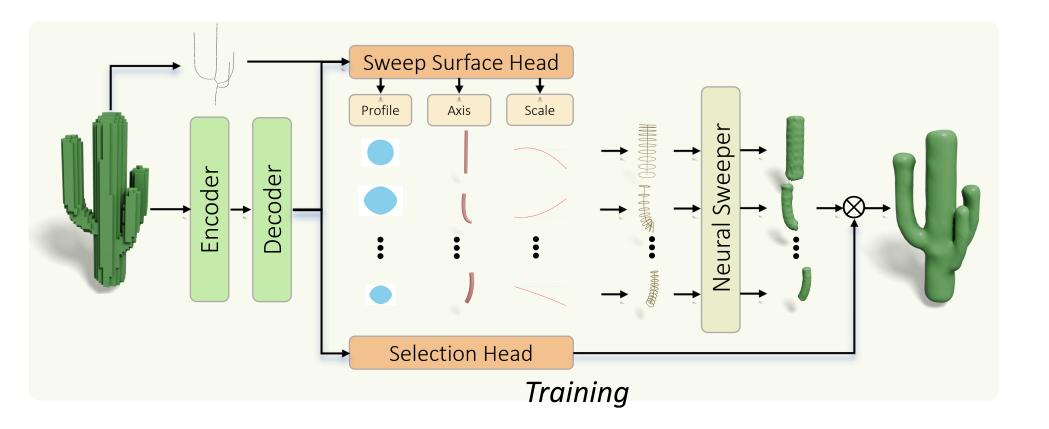
Train on 20,000 sweep surfaces

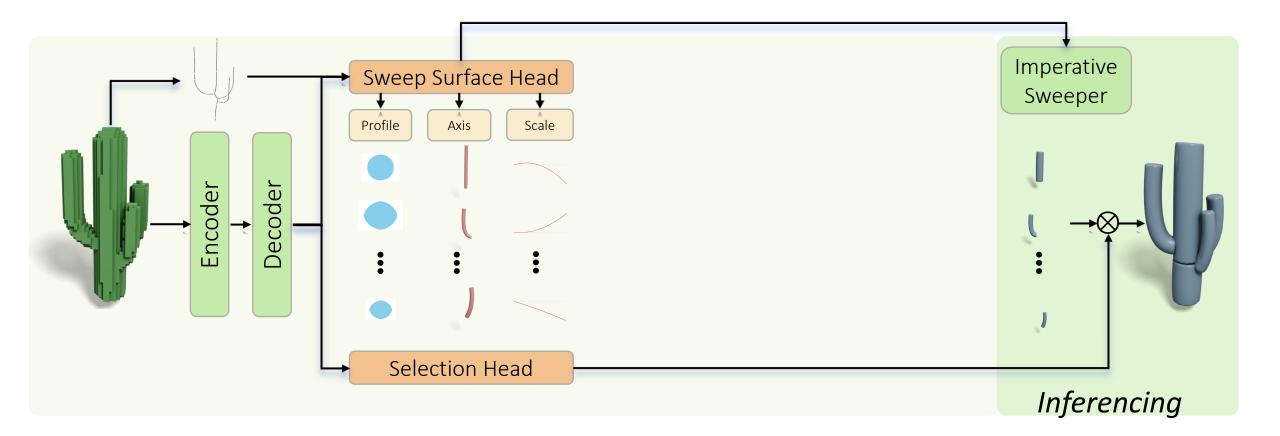








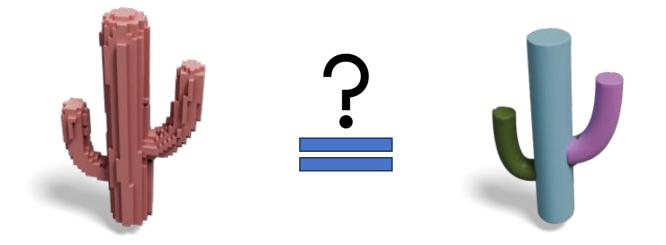




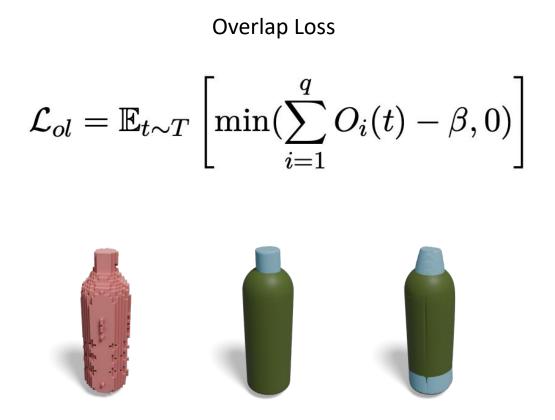
Loss function

Reconstruction Loss

$$\mathcal{L}_{recon} = \mathbb{E}_{t \sim T} \left[\left\| O_{GT}(t) - \frac{\sum_{i=1}^{q} O_i(t) e^{\alpha O_i(t)}}{\sum_{i=1}^{q} e^{\alpha O_i(t)}} \right\|_2^2 \right]$$

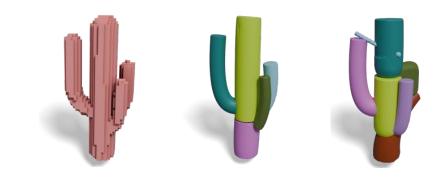


Loss function



Parsimony Loss

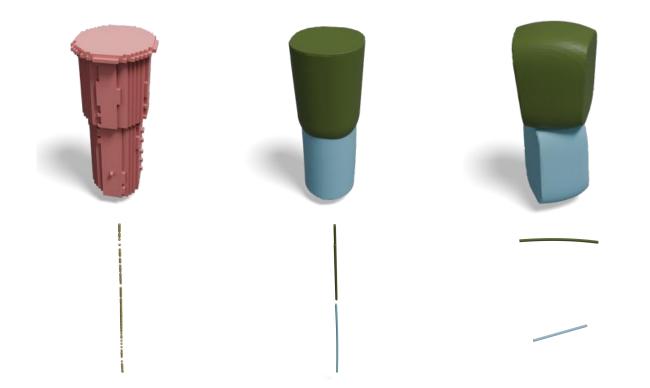
$$\mathcal{L}_{pars} = \sqrt{q}$$



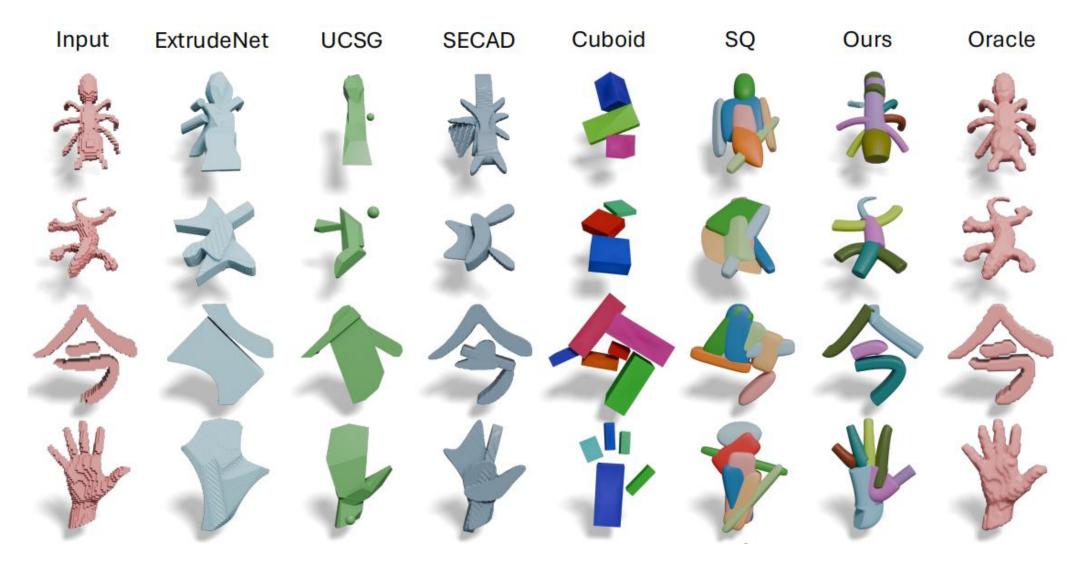
Loss function

Axis Loss

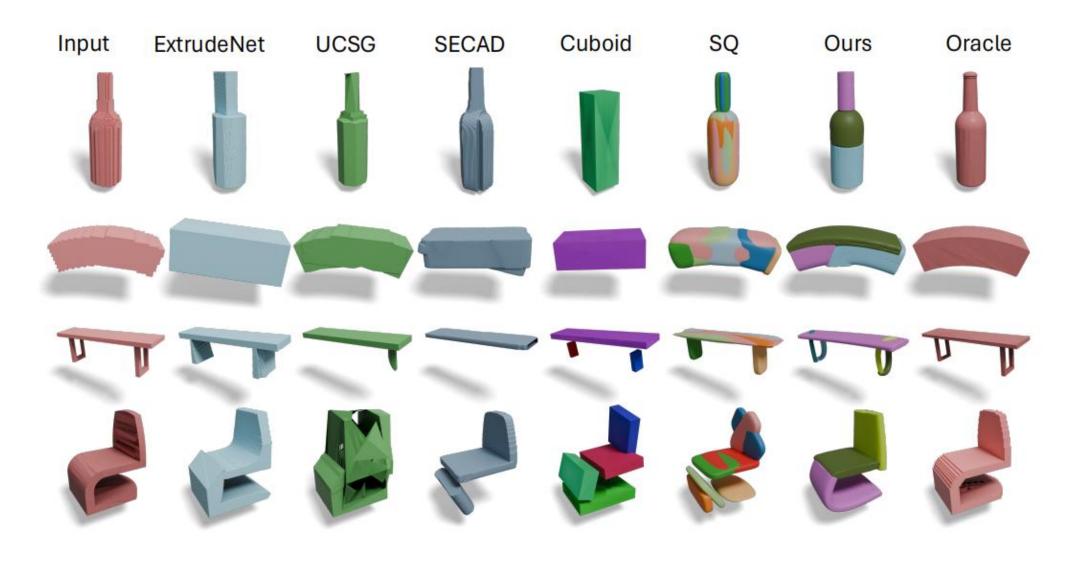
$$\mathcal{L}_{axis} = \mathbb{E}_{m \sim M} \left[\min_{s \in S} dist(m, s) \right]$$



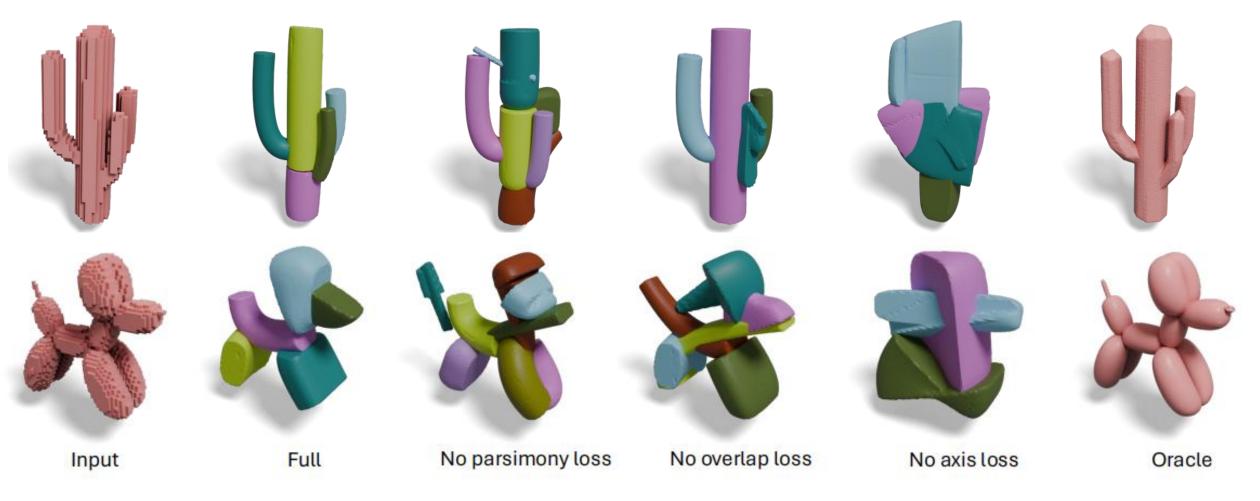
Results



Results

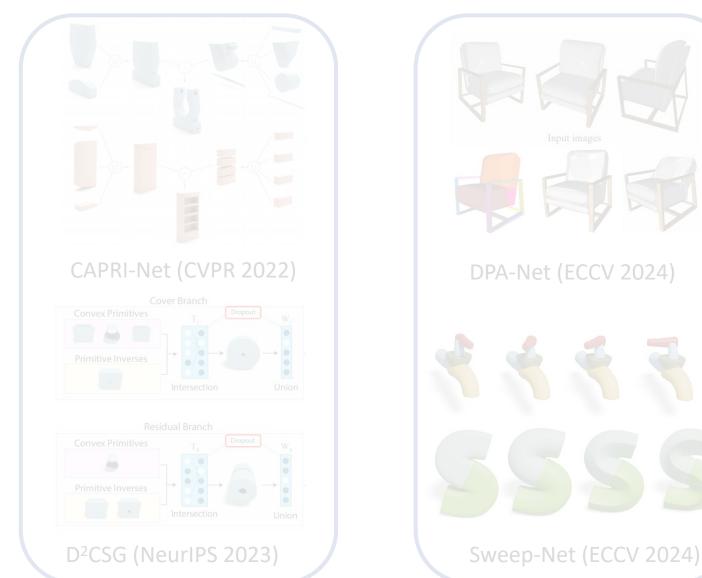


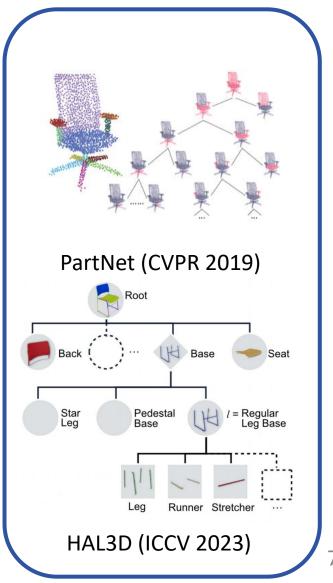
Ablation Study



Editability

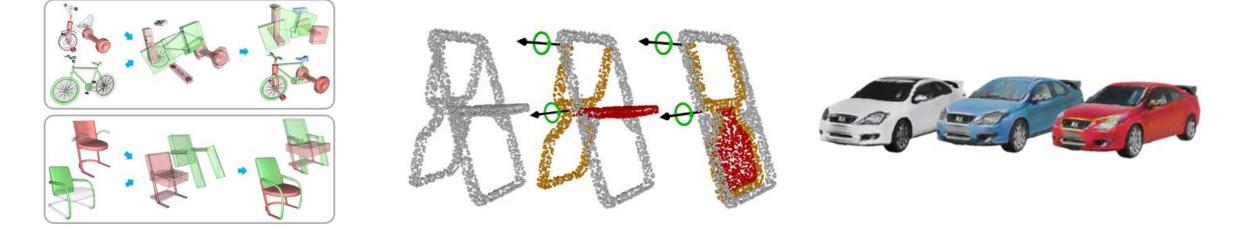
This Talk: Learning Structured 3D Representations





Understanding Parts

• Advantages of part segmentation



Shape editing

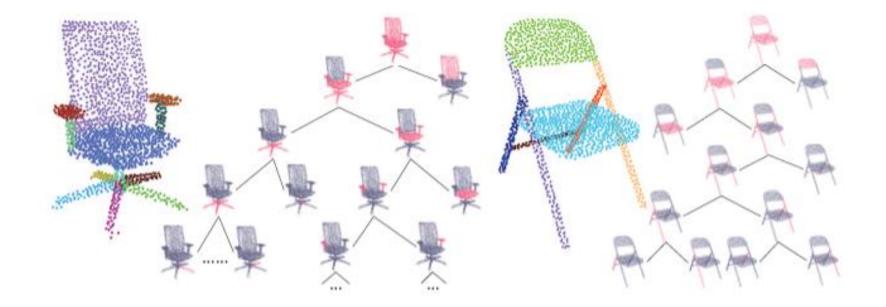
Part motion

Part texture editing

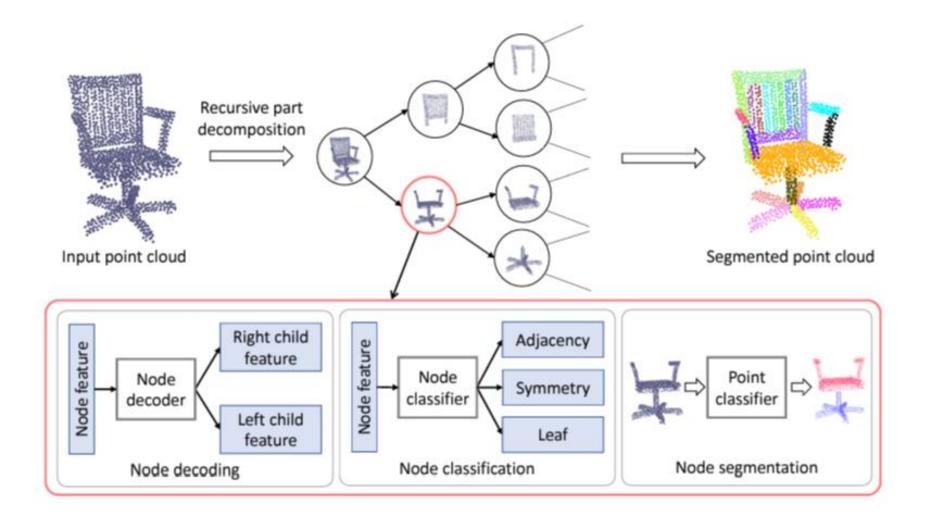
[1]Zhu et al 2018, SCORES: Shape Composition with Recursive Substructure Priors[2]Wang et al 2019, Shape2Motion: Joint Analysis of Motion Part sand Attributes from 3D Shapes[3]Yawar Siddiqui et al 2022, Texturify: Generating Textures on 3D Shape Surfaces

PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation

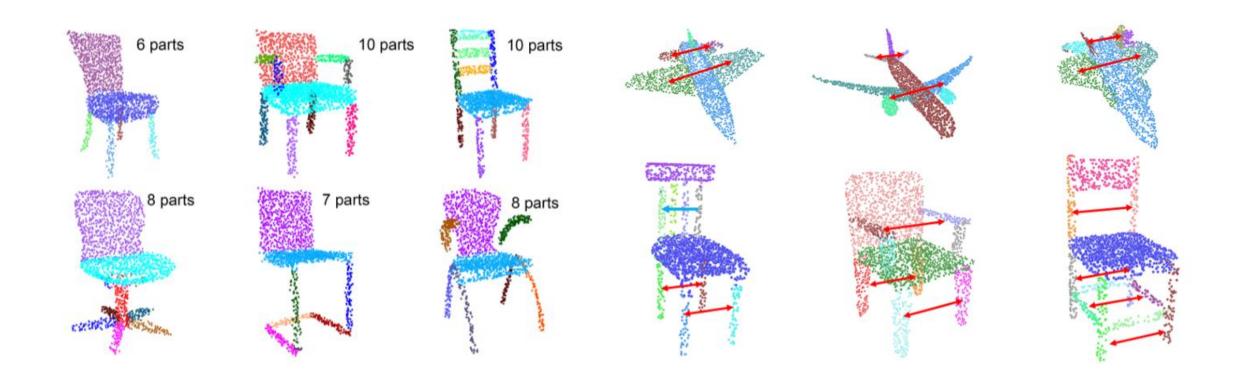
- Input: 3d point cloud
- Output: fine-grained part instance segmentation and part relations



PartNet: Method



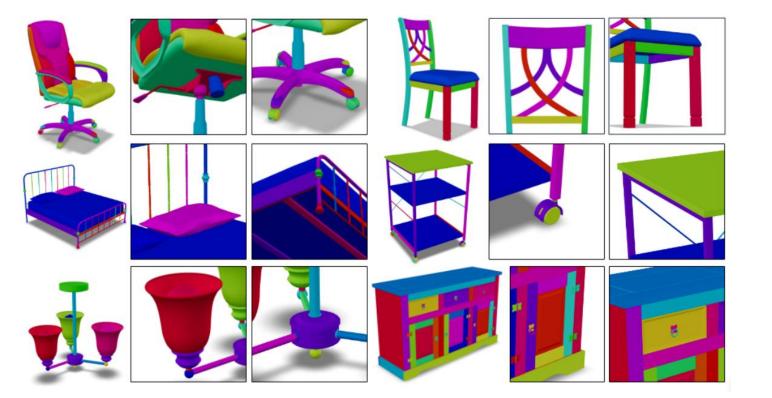
Part Segmentation Results



HAL3D: Hierarchical Active Learning for Fine-Grained 3D Part Labeling

 Online 3D assets created by human artists usually are made by connected components

Connected components in the ABO dataset

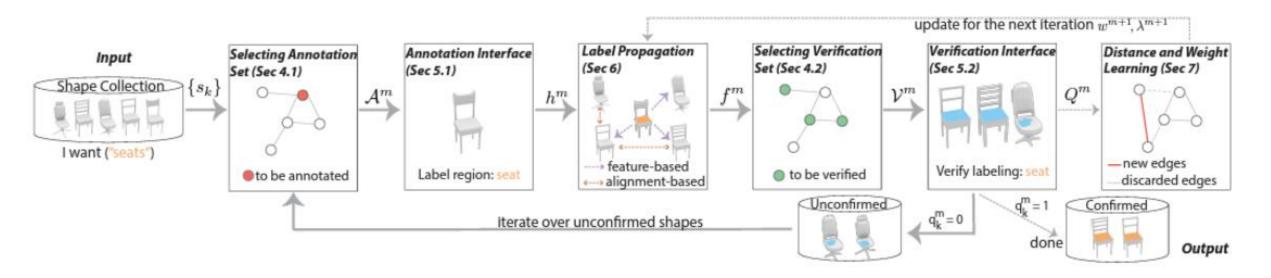


Unlabeled abstraction from DPA-Net

[1] ABO: Dataset and Benchmarks for Real-World 3D Object Understanding, CVPR 2022

HAL3D

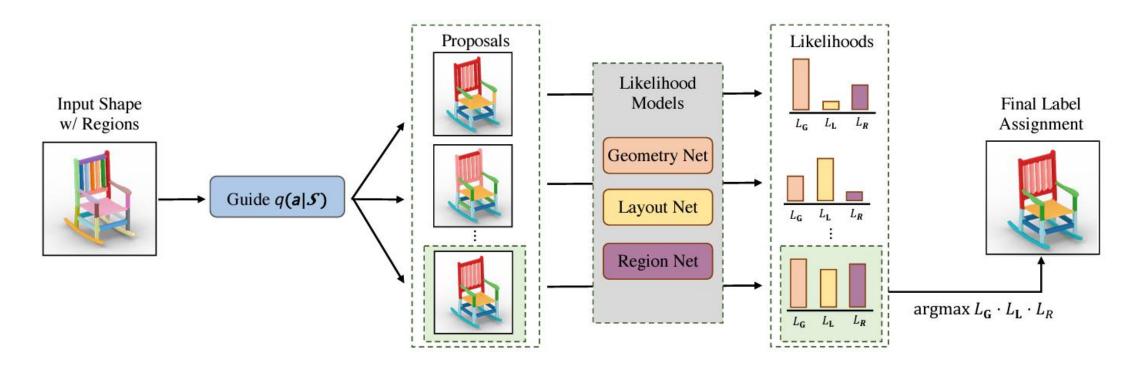
• Related works



The active learning framework for high-level semantic segmentation [1]

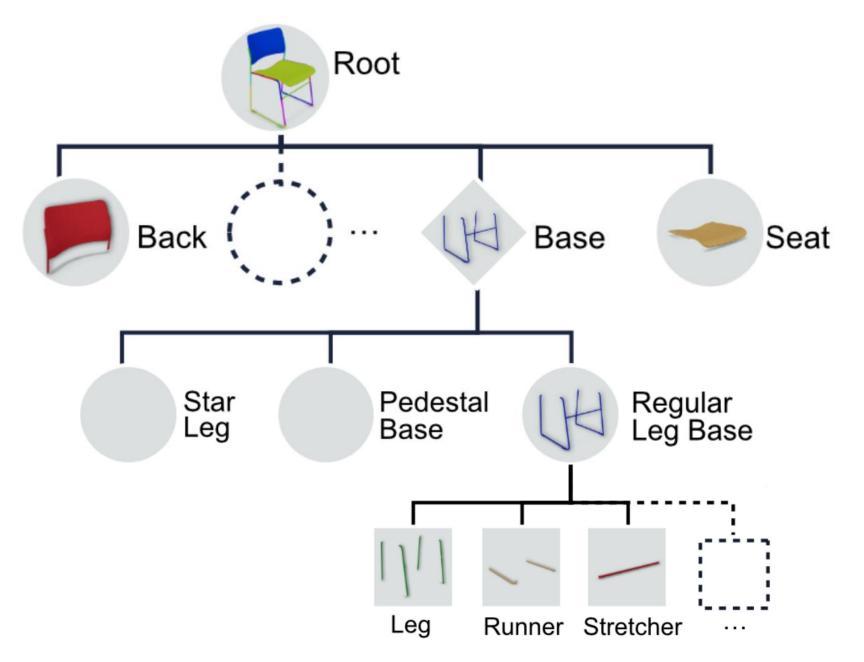
HAL3D

• Related works

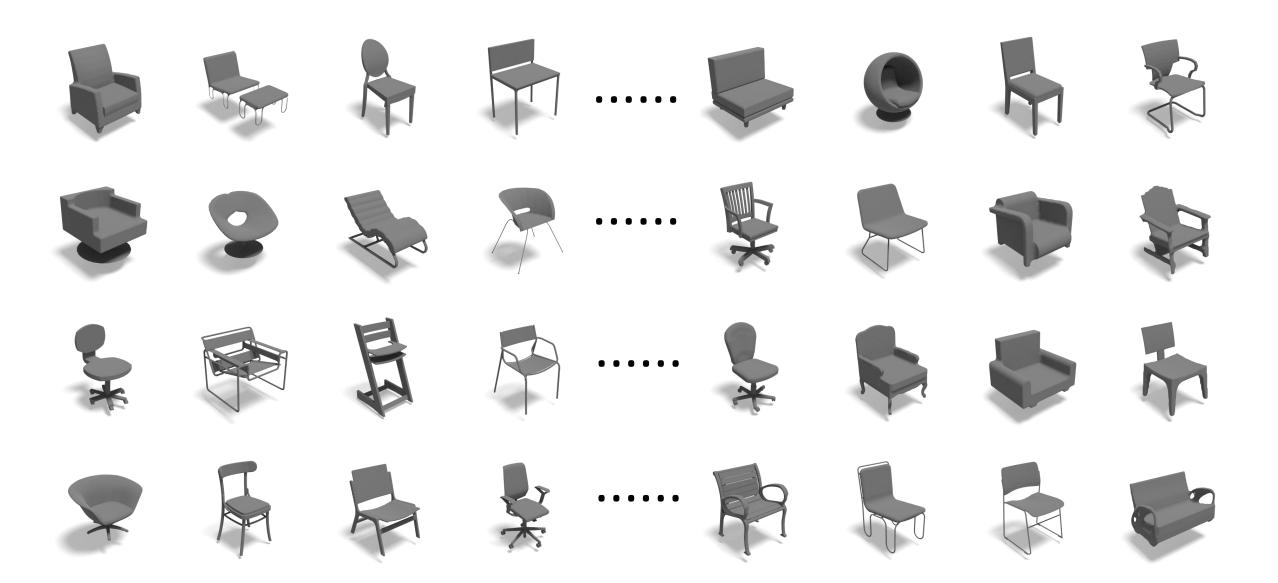


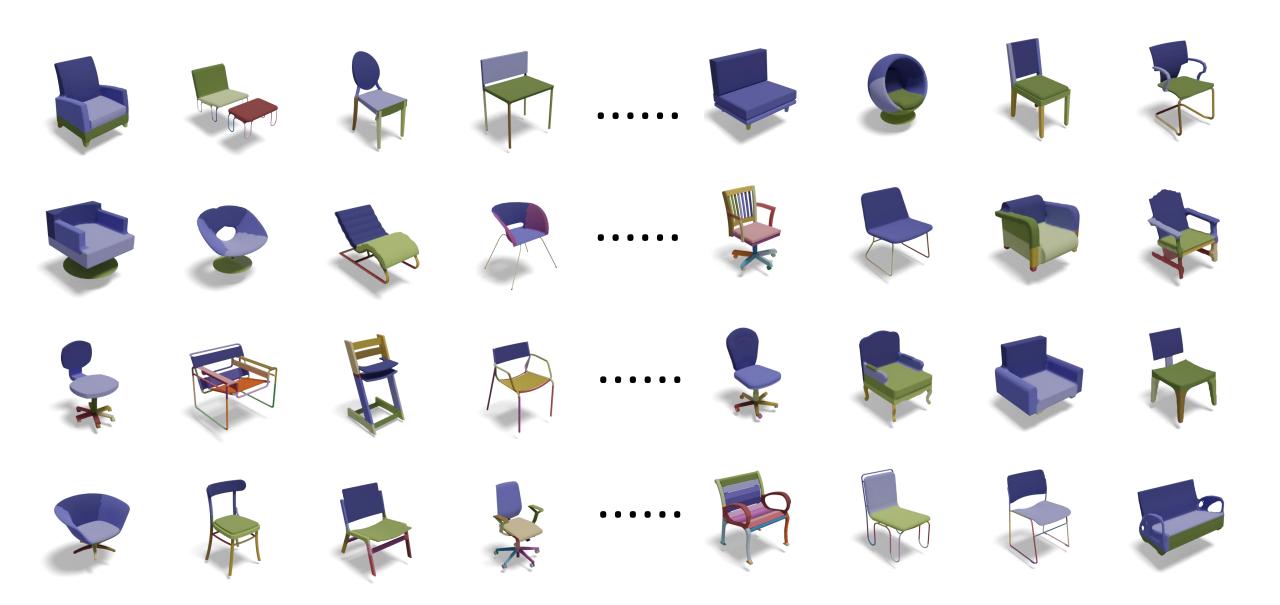
The fine-grained 3D part labeling challenges even the most advanced deep learning (DL) methods

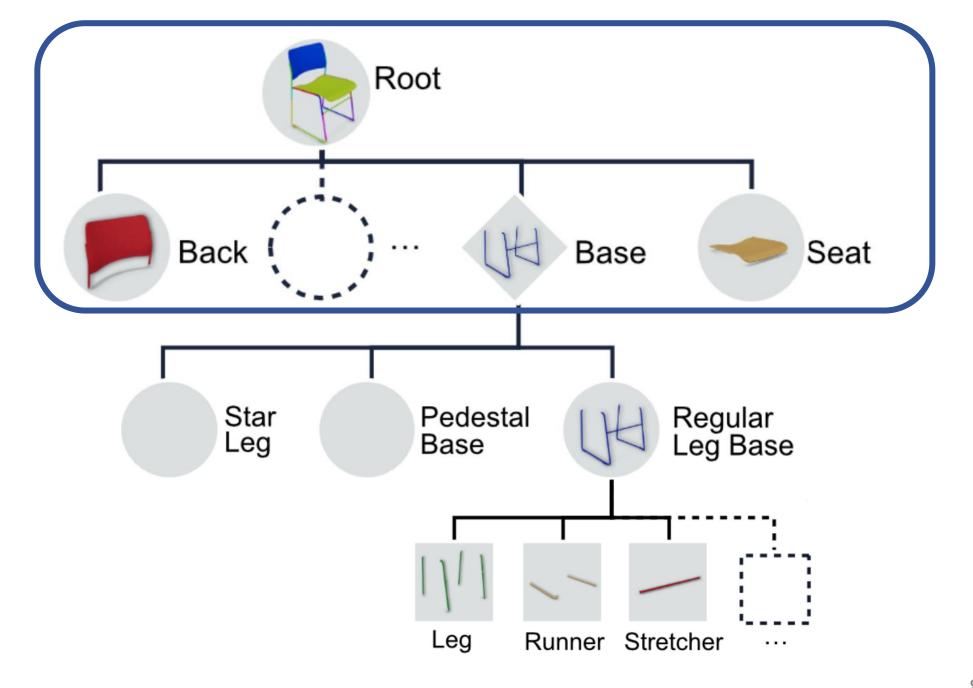
[1] The Neurally-Guided Shape Parser: Grammar-Based Labeling of 3D Shape Regions With Approximate Inference, CVPR 2022 81



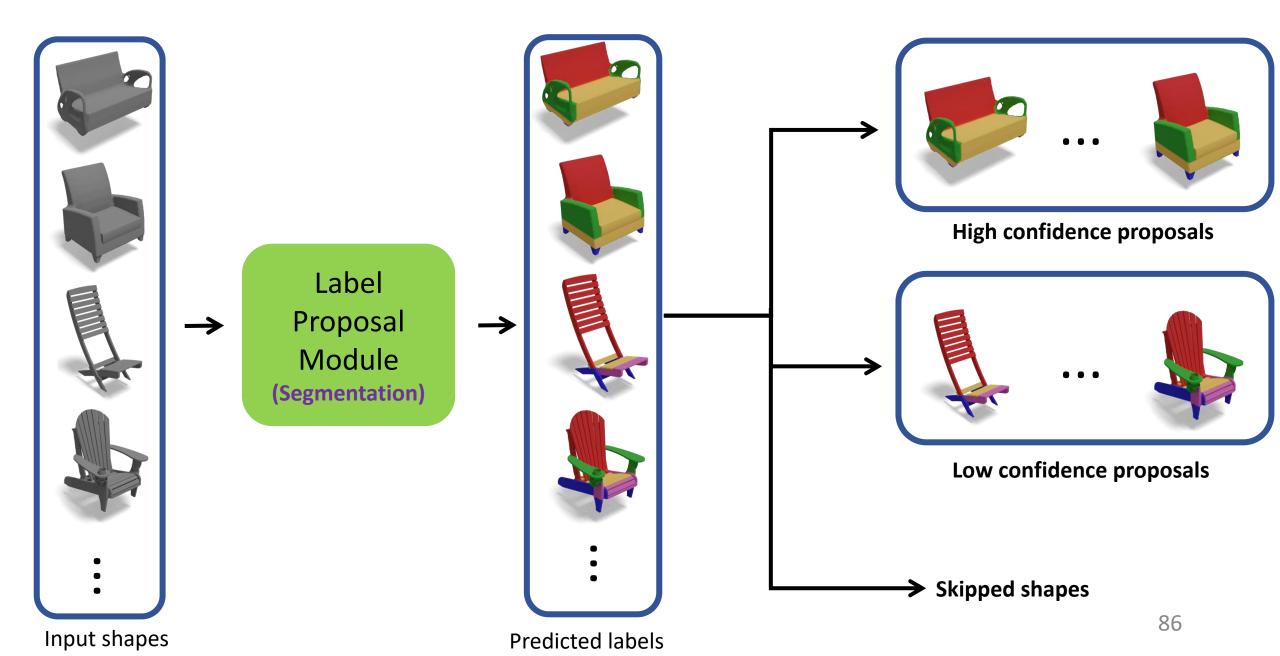
The first active learning framework for fine-grained 3D part labeling

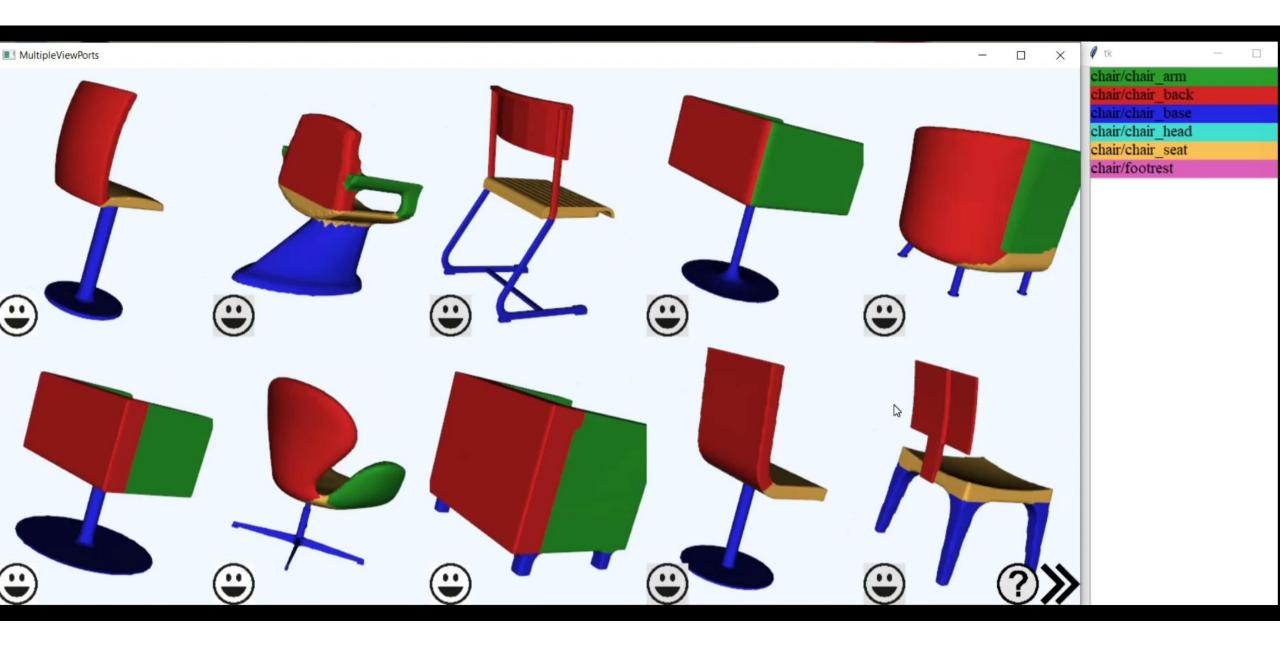




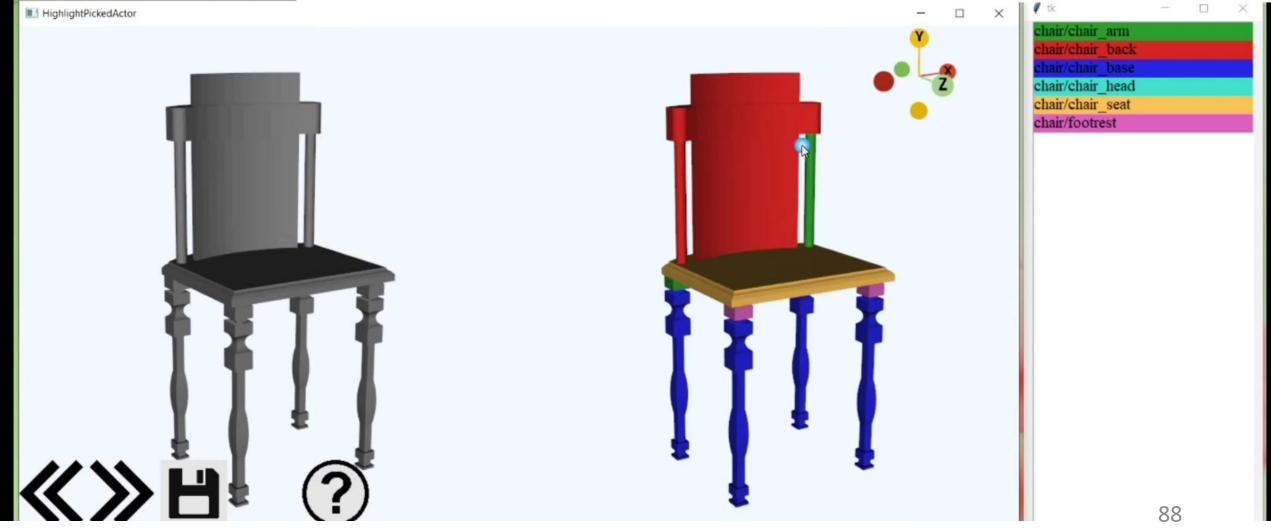


The first iteration at root node of chair category

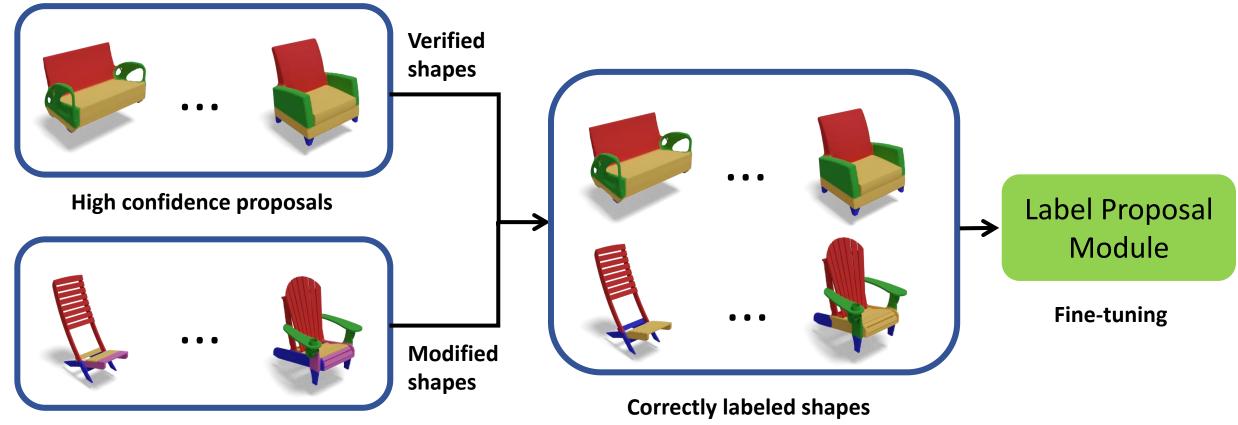




HighlightPickedActor

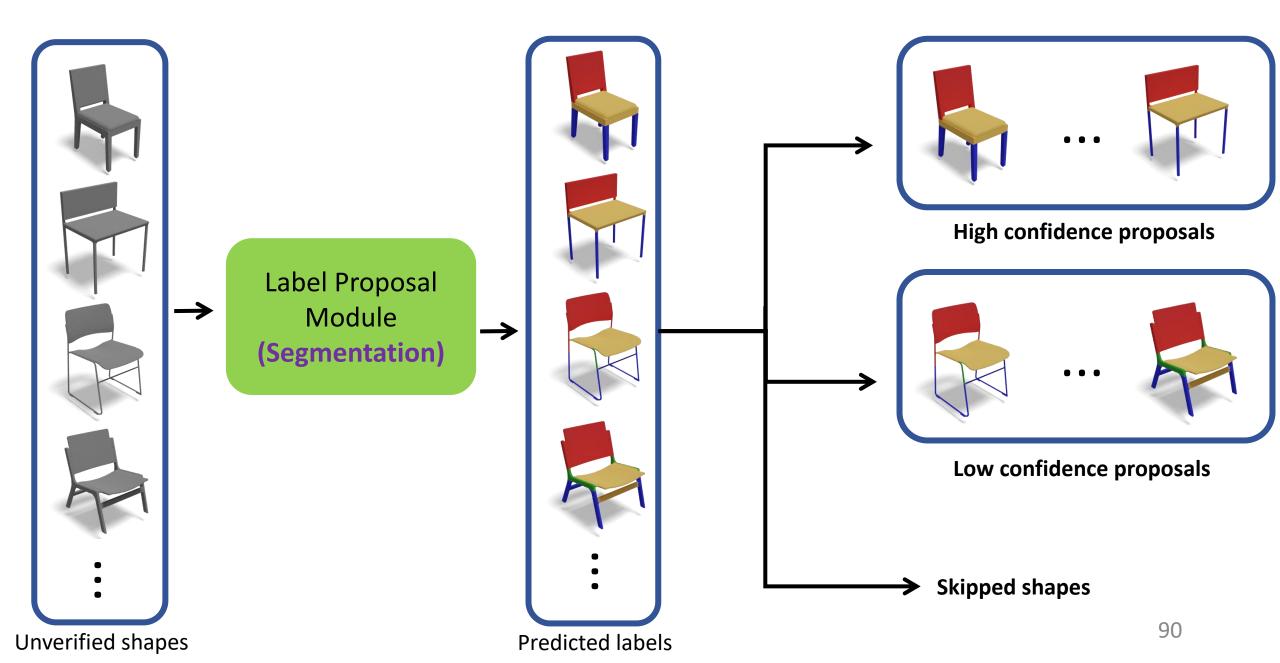


The first iteration is completed after fine-tuning

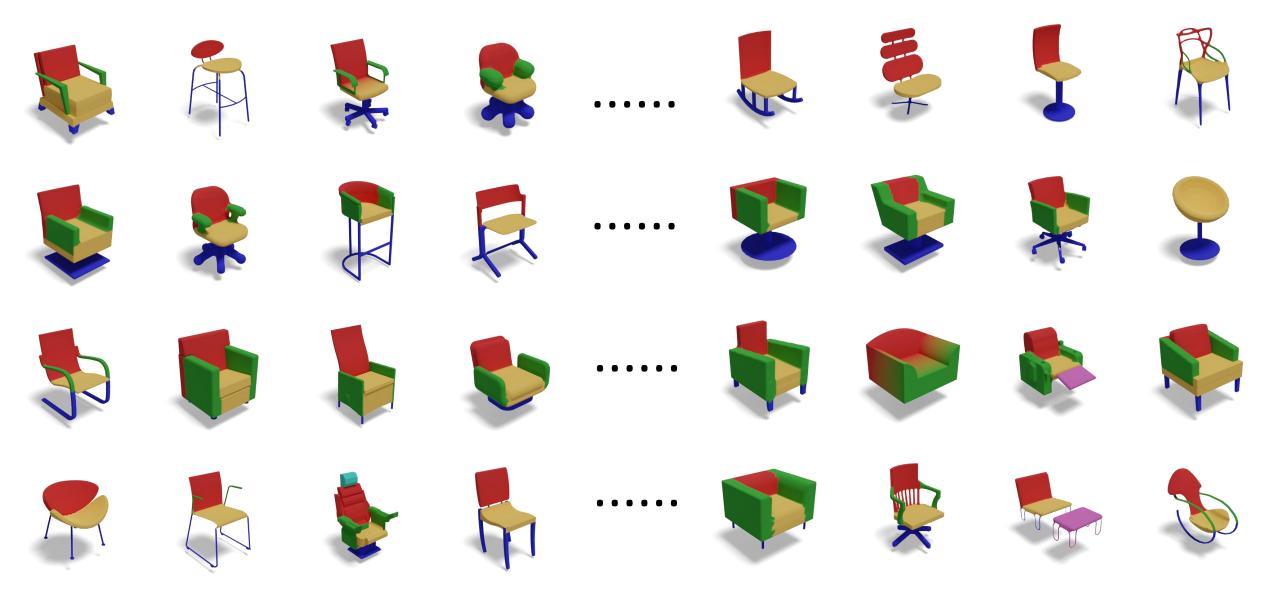


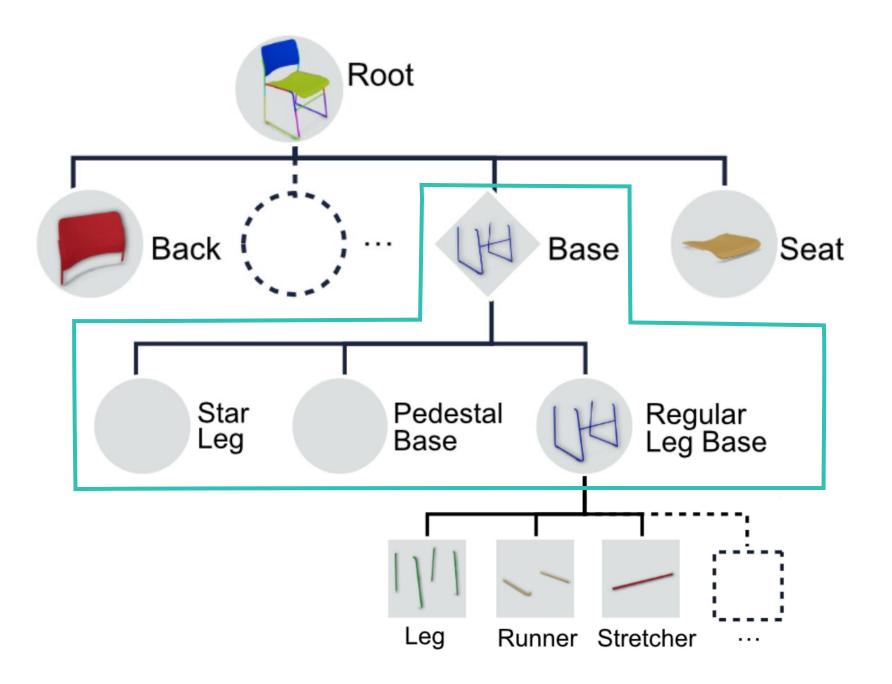
Low confidence proposals

The second iteration at root node of chair category

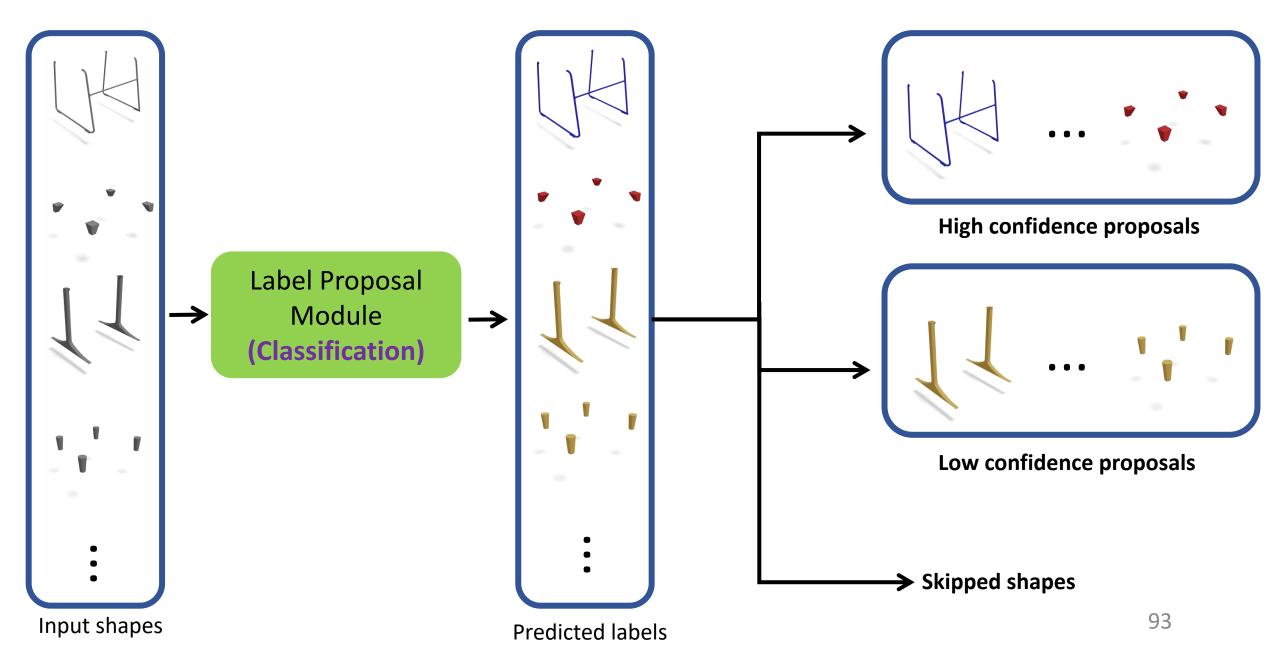


Final labeled results at root node

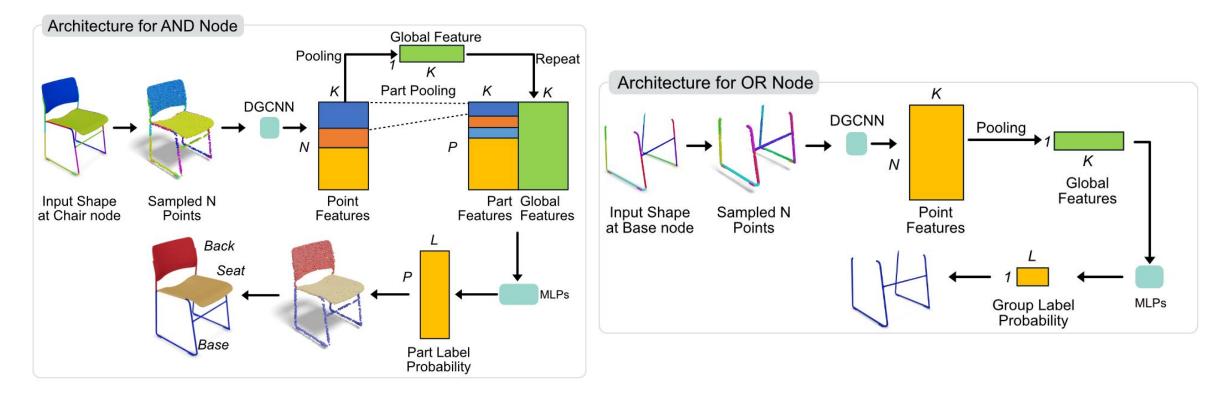




The first iteration at chair base node

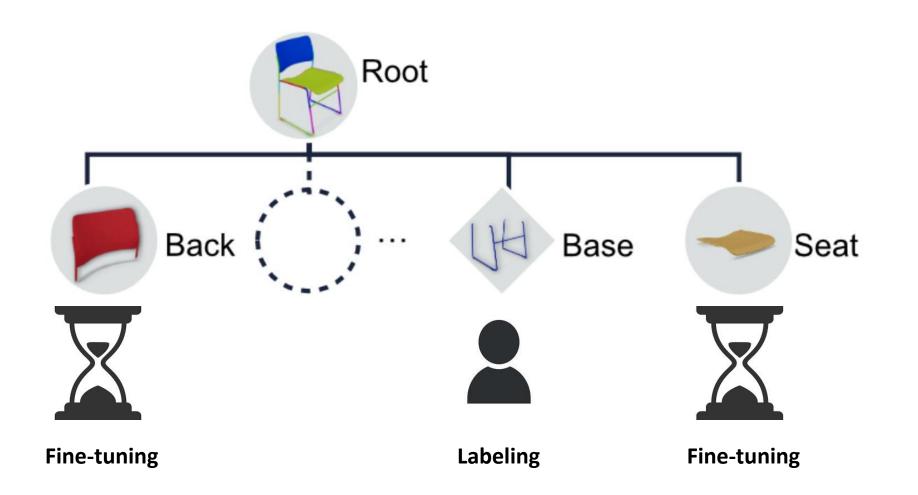


Proposal Modules

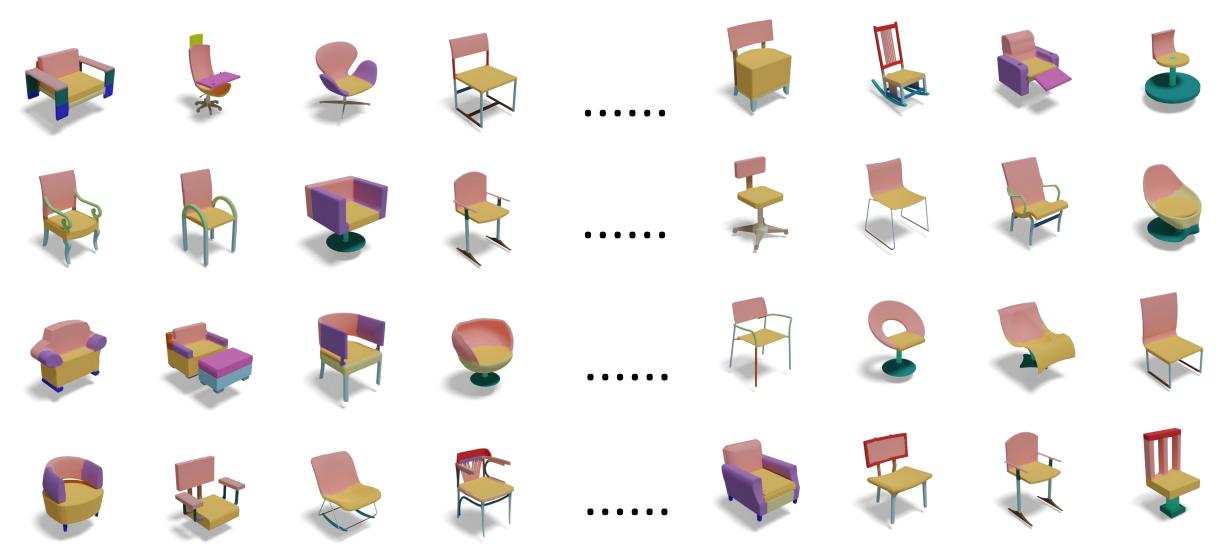


Segmentation

Classification



Final labeled results after finishing labeling at all internal nodes



Results

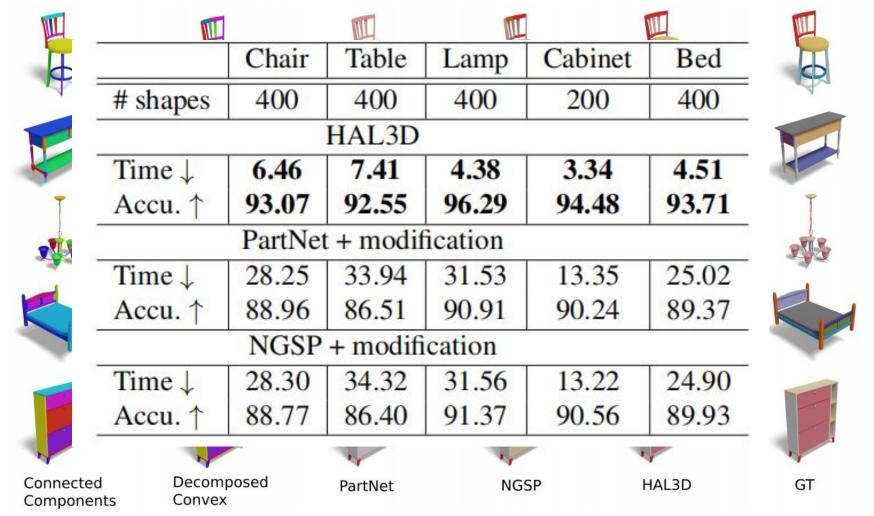
• Ablation study on Stanford PartNet chair dataset

Row ID	Prop.	Hier.	Sym.	AL	Lab-T↓	Accu↑
2nd	-	-	-	-	22.05	89.16
3rd	\checkmark	-	-	_	8.65	88.53
4th	\checkmark	\checkmark	\checkmark	-	6.37	93.87
5th	\checkmark	-	\checkmark	\checkmark	5.99	89.84
6th	\checkmark	\checkmark	-	\checkmark	5.21	93.45
7th	\checkmark	\checkmark	\checkmark	\checkmark	4.34	94.13

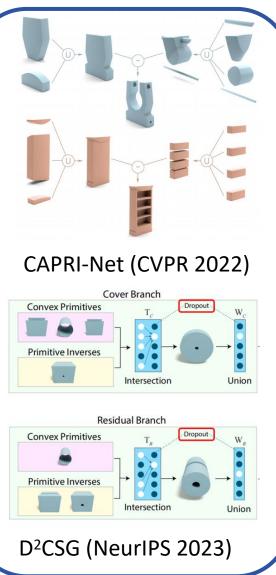
Prop: proposal module Sym: symmetry constraint Lab-T: human labeling time Hier: hierarchical labeling AL: active learning Accu: labeling accuracy

Results

• Results on the ABO dataset

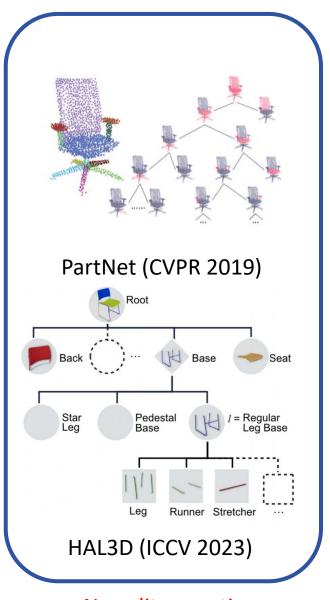


Limitations



Limited primitives Learning surface prior

Camera pose required Test-time fine-tuning



No split operation Inter-shape correspondence

Future Direction

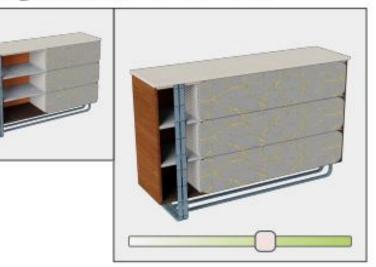
• Large language model + CAD [1]

Let's use OpenJSCAD to design a cabinet ... with 3/4" wood sheets, and final exterior dimensions of 30 inches tall, 20 inches wide, and 18 inches deep. The stationary part of the cabinet should be comprised of 6 boards: bottom, top, back, two sides, and one shelf centered inside the cabinet. (... omitted by authors: OpenJSCAD modeling hints; see Appendix A.1 ...)

(... omitted by authors: import statements and variable setup ...)

pieces.push(colorize ([1, 0, 0],	translate ([0, 0, -height/2 + thickness /2],				
	cuboid({ size : [width, depth, thickness]})))) // bottom				
pieces . push(colorize ([0, 1, 0],	translate ([0, 0, height/2 – thickness /2],				
	cuboid({ size : [width, depth, thickness]})))) // top				
pieces . push(colorize ([0, 0, 1],	translate ([0, -depth/2 + thickness /2, 0],				
	cuboid({ size : [width, thickness , height]})))) // back				
pieces . push(colorize ([1, 1, 0],	translate ([-width/2 + thickness /2, 0, 0],				
	cuboid({ size : [thickness , depth, height]})))) // left				
pieces . push(colorize ([0, 1, 1],	translate ([width/2 – thickness /2, 0, 0],				
	cuboid({ size : [thickness , depth, height]})))) // right				
pieces . push(colorize ([1, 0, 1],	translate ([0, –thickness/2, 0],				
	cuboid({ size : [innerWidth, thickness , innerDepth]})))) //				
	shelf				
(omitted by authors: rest of design)					

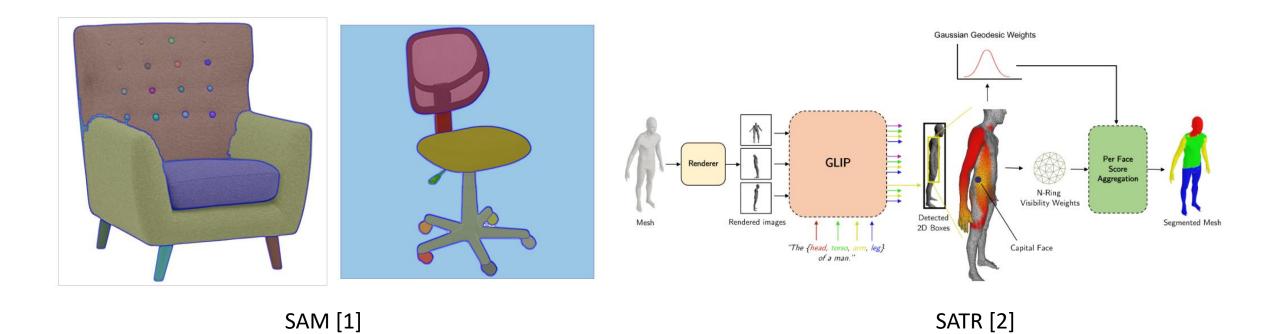
"Lengthen the drawers ..."



[1] How Can Large Language Models Help Humans in Design And Manufacturing?[2] ParSEL: Parameterized Shape Editing with Language

Future Direction

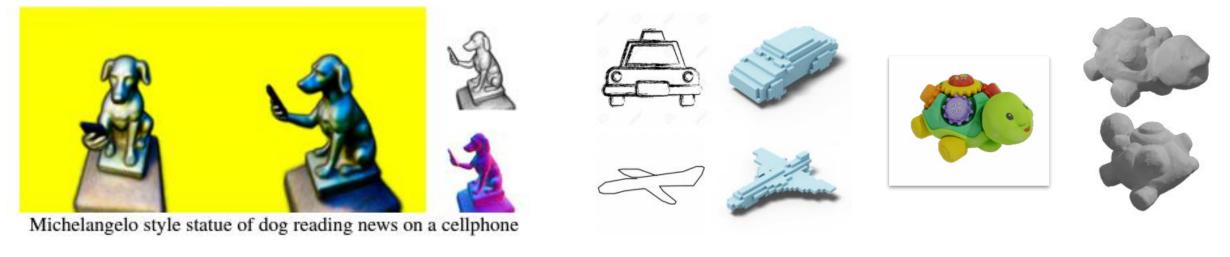
• Large image foundation model + 3D segmentation



[1] Segment anything[2] SATR: Zero-Shot Semantic Segmentation of 3D Shapes

Future Direction

• 3D CAD model generation from multi-modality data



Text-to-3D [1]

Sketch-to-3D [2]

Single image-to-3D [3]

[1] Dreamfusion: Text-to-3d using 2d diffusion

[2] Sketch-A-Shape: Zero-Shot Sketch-to-3D Shape Generation

[3] MVDiffusion++: A Dense High-resolution Multi-view Diffusion Model for Single or Sparse-view 3D Object Reconstruction

Acknowledgement



Hao (Richard) Zhang

Zhiqin Chen

Mingrui Zhao

Manyi Li

Ali Mahdavi Amiri

Qimin Chen

Maham Tanveer

Yizhi Wang

Gruvi Lab, Simon Fraser University

Acknowledgement

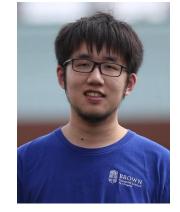
Brian Jackson

Eric Bennett

Yiming Qian

Francisca Gil-Ureta

Xu Zhang



Kai Wang

Hooman Shayani

Aditya Sanghi

Autodesk Al Lab 104

Amazon

Thank you!