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Introduction
• What is Computer-Aided-Design (CAD) model?

Uniform structures with smooth surfaces and edges  Complex structures, regular surfaces, and sharp edges 
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3D human-made objects 3D organic models



Introduction
• Why do we need CAD models?

Video game, movie AR/VR, online e-commerce Industrial design, manufacturing
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Introduction
• Unstructured 3D representations
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Introduction
• Disadvantages of unstructured 3D representations

     Imperfect shape surface
(Non-manifold, non-watertight)

Not friendly for functionality and 
semantic understanding

     Not friendly for shape editing 
(Additional segmentation needed)
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Introduction
• Structured 3D representations: atomic elements and assembly patterns.

Hierarchy-tree [2] CSG-treeGraph [1]
[1] SDM-NET: Deep Generative Network for Structured Deformable Mesh
[2] GRASS: Generative Recursive Autoencoders for Shape Structures 6



Introduction
• Advantages of structured 3D representations

Shape editing/manipulation Semantic understanding Part functionality 
annotation

Physics animation
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Introduction
• Talk topic: learning structured representations of 3D CAD models

Constructive Solid Geometry (CSG) Hierarchical tree 8Part Set



Introduction
• Challenge: intricate 3D CAD model structure

Small and different number of parts 3D CAD components: complex and various topologies 
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Introduction
• Challenge: intricate 3D CAD model structure
• Our solution: hierarchical learning strategy to reduce learning complexity
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Hierarchical semantic tree structureHierarchical CSG tree structure



Introduction
• Challenge: limited training data in structured representations

PartNet: less than 30K, most of categories have 
less than 1K shapes

Objverse-XL: no category or part-level annotation
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Introduction
• Challenge: limited training data in structured representations
• Our strategy: unsupervised learning and active learning

12Unsupervised learning

Loss

Active learning



Introduction
• Challenge: reconstructing CSG Representation by the neural network

13Generalization challenge

Input

BSP-Net CSG-Stump

Various primitives and 
operations

Input

Learning compact and meaningful 
structure is challenging



This Talk: Learning Structured 3D Representations
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CAPRI-Net: Learning Primitive Assembly for 3D CAD Models

• Related works: unsupervised learning CSG representation

BSP-Net (CVPR 2020) UCSG (NeurIPS 2020) CSG-Stump (ICCV 2021)
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CSG Tree Comparison

Complex CSG structure
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Incompact solution
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Redundant difference operations

Primitive reverse
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Better solution!
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GT



Method

           Weighted implicit reconstruction loss    Quadric implicit representation
   |ap|x2+|bp|y2+|cp|z2+dpx+epy+fpz+gp=0
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CAD Model Meshing Process
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ABC Model Reconstruction From Voxels
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ShapeNet Model Reconstruction From Voxels
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Ablation Studies
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QS: quadric surface          Diff: difference operation          Weight: weighted implicit reconstruction loss 



ABC Model Reconstruction From Point Clouds
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Limitation of CAPRI-Net

Not general
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Convex shapes only

No explicit compactness 
constraint



D2CSG: Unsupervised Learning of Compact CSG 
Trees with Dual Complements and Dropouts

General, compact 
and accurate!
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Network Overview
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Dropout



Learned CSG Tree

30



Generalization Proof
• The operation sequence in D2CSG is able to support any CSG sequence
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Experiments: Mesh-to-CSG

ABC DataSet ShapeNet
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Experiments: Ablation Studies

33CP: Complementary primitives           DB: Dual branches            DP: Dropout



Application: PointCloud-to-CSG

ABC DataSet ShapeNet
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Application: Shape Editing
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Simplify complex shapes with fundamental and manageable primitives

Facilitate high-level perception
• Compress data
• Reduce computational cost

On-target communication and visualization

3D Abstraction



Structured 3D Abstraction from Sparse Views 
via Differentiable Primitive Assembly
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Structured 3D Abstraction from Sparse Views 
via Differentiable Primitive Assembly
• Related works

Gaussian splatting (SIGRRAPH 2023)
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pixelNerf (CVPR 2021)

Not friendly for manipulation and editing



Structured 3D Abstraction from Sparse Views 
via Differentiable Primitive Assembly
• Related works

ExtrudeNet (ECCV 2022)
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Cuboids Abstraction (SIGGRAPH 2021)BSP-Net (CVPR 2020)

3D training data is needed



Structured 3D Abstraction from Sparse Views 
via Differentiable Primitive Assembly
• Related works

Differentiable block world (NeurIPS 2023)
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ISCO (ICCV 2023)

Not general, require dense views



Overview of DPA-Net
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Improvements

• Improve structure: overlapping loss and dropout strategy

Details of the multi-stage fine-tuning
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Improvements

• Improve reconstruction accuracy: silhouette-aware adaptive sampling
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Input Image Adaptive camera ray 
direction sampling 

Ray casting

Camera



Ablation Studies
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Results on ShapeNet Cross-categories
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Results on Real Images
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Application: Shape Editing
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Shape editing in MeshLab

Shape editing in OpenSCAD



Application: Conditional Shape Generation
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Limitation of Previous Representation

50
Not general for curvy objects

DPA-Net
(Convex shape)

Extrude-Net 
(Extrusion)



SweepNet: Unsupervised Learning of Shape 
Abstraction via Neural Sweepers
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What is a sweep surface?
2D profile 3D sweeping axis Constant Sweep Dynamic Sweep: �



Sweep Surface Parametrization – Profile

Superellipse 

• Efficient parametrization – 3 float numbers
• Wide shape vocabulary – star, circle, ellipse, rectangle
• Guaranteed close-loop without self-intersection



Sweep Surface Parametrization – Sweeping Axis

B-spline curves

4 control points3 control points 5 control points



Sweep Surface Parametrization: Scaling function

Quadratic scaling function s(t) = ��2 + �� + 1 

Axis Scale



Sweep Surface Parametrization

Sweeping axis Profile Scaling function

With 3 control points B-spline and fixed-constant quadratic scaling function
A sweep surface only need 14 float numbers to represent



Sweep Surface Construction

(a) (b) (c) (d) (e) (f)

Occupancy field

• Resolution-invariant – allow dense sampling

• Robust against union operations, suitable for 

primitive assembly

• Gradient friendly – easy to train 

Parameter space

3D realm

A 3D representation



Neural Sweeper

(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)
(a) (b) (c) (d) (e) (f)

Sweeping axis Profile Scaling function

Neural Sweeper

A differentiable surrogate!

Non-differentiable
Significant computation cost

Complex implicit fomula



Neural Sweeper

Train on 20,000 sweep surfaces
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SweepNet
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Loss function
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Loss function

SQInput SEC AD O urs O racle

Input SQ SEC AD O urs O racle

Full N o ℒ! " #$

O racle

Input O racleN o ℒ%& N o ℒ" ' ($SQInput SEC AD O urs O racle

Input SQ SEC AD O urs O racle

Full N o ℒ! " #$

O racle

Input O racleN o ℒ%& N o ℒ" ' ($

SQInput SEC AD O urs O racle

Input SQ SEC AD O urs O racle

Full N o ℒ! " #$

O racle

Input O racleN o ℒ%& N o ℒ" ' ($

Axis Loss



Results



Results



Ablation Study

72
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Editability
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Understanding Parts 

• Advantages of part segmentation 

[1]Zhu et al 2018, SCORES: Shape Composition with Recursive Substructure Priors 
[2]Wang et al 2019, Shape2Motion:Joint Analysis of Motion Part sand Attributes from 3D Shapes
[3]Yawar Siddiqui et al 2022, Texturify: Generating Textures on 3D Shape Surfaces

Shape editing Part motion Part texture editing



PartNet: A Recursive Part Decomposition Network for 
Fine-grained and Hierarchical Shape Segmentation

• Input: 3d point cloud
• Output: fine-grained part instance segmentation and part relations



PartNet: Method



Part Segmentation Results



HAL3D: Hierarchical Active Learning for Fine-Grained 3D Part Labeling

• Online 3D assets created by human artists usually are made by 
connected components

Connected components in the ABO dataset

[1] ABO: Dataset and Benchmarks for Real-World 3D Object Understanding, CVPR 2022 79

Unlabeled abstraction from DPA-Net



HAL3D
• Related works

The active learning framework for high-level semantic segmentation [1]

80[1] A Scalable Active Framework for Region Annotation in 3D Shape Collections, SIGGRAPH Asia 2016 



HAL3D
• Related works

The fine-grained 3D part labeling challenges even the most advanced deep learning (DL) methods

81[1] The Neurally-Guided Shape Parser: Grammar-Based Labeling of 3D Shape Regions With Approximate Inference,CVPR 2022



82The first active learning framework for fine-grained 3D part labeling
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Label 
Proposal 
Module

(Segmentation)

...

Input shapes
...

Predicted labels

...

...

High confidence proposals

Low confidence proposals

Skipped shapes

The first iteration at root node of chair category
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...

...

Low confidence proposals

High confidence proposals

Verified 
shapes

Modified
shapes

...

...

Correctly labeled shapes

Label Proposal 
Module

Fine-tuning

The first iteration is completed after fine-tuning
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Label Proposal 
Module

(Segmentation)

The second iteration at root node of chair category

...

Unverified shapes
...

Predicted labels

...

...

High confidence proposals

Low confidence proposals

Skipped shapes
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......

......

......

......

Final labeled results at root node 
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Label Proposal 
Module

(Classification)

The first iteration at chair base node

...

Input shapes
...

Predicted labels

...

...

High confidence proposals

Low confidence proposals

Skipped shapes
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Proposal Modules

94

Segmentation Classification



Fine-tuning Fine-tuningLabeling
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......

......

......

......

Final labeled results after finishing labeling at all internal nodes 
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Results
• Ablation study on Stanford PartNet chair dataset
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Prop: proposal module              Hier: hierarchical labeling 
Sym: symmetry constraint        AL: active learning
Lab-T: human labeling time      Accu: labeling accuracy



Results
• Results on the ABO dataset
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CAPRI-Net (CVPR 2022)

D2CSG (NeurIPS 2023) HAL3D (ICCV 2023)

DPA-Net (ECCV 2024)
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Sweep-Net (ECCV 2024)

PartNet (CVPR 2019)

Limitations

Limited primitives
Learning surface prior

Camera pose required
Test-time fine-tuning

         No split operation
Inter-shape correspondence



Future Direction

• Large language model + CAD [1]

[1] How Can Large Language Models Help Humans in Design And Manufacturing?
[2] ParSEL: Parameterized Shape Editing with Language 100



Future Direction

• Large image foundation model + 3D segmentation

[1] Segment anything
[2] SATR: Zero-Shot Semantic Segmentation of 3D Shapes 101

SAM [1] SATR [2]



Future Direction

• 3D CAD model generation from multi-modality data

[1] Dreamfusion: Text-to-3d using 2d diffusion
[2] Sketch-A-Shape: Zero-Shot Sketch-to-3D Shape Generation
[3] MVDiffusion++: A Dense High-resolution Multi-view Diffusion Model for Single or Sparse-view 3D Object Reconstruction

Text-to-3D [1] Sketch-to-3D [2] Single image-to-3D [3]
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Thank you!
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