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- How to use practical to improve .

- Attention: Math ahead!

/
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Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 BACKGROUND P

Lol = J f(x)dx X-=paths
X

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications



5 OURS @

Ipixel — J f(x)dx X = paths
X

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 BACKGROUND P

fG) 4
' L\J/ A U :
[ F= +
Jg(x)dx [ f(x) — g(x)dx
Importance Sampling Control Variate

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 BACKGROUND P

AN

X

Importance Sampling

Jx) 4

>

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 IMPORTANCE SAMPLING (@) SSGhaRH 2023

»

Jx)

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 IMPORTANCE SAMPLING (@) SSGhaRH 2023

»

Jx)

v

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




3 IMPORTANCE SAMPLING (@) SSGhaRH 2023

v
\ 4
\ 4

p1(x) Pr(x) P3(x)

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




$ MULTIPLE IMPORTANCE SAMPLING P

(F)mis = Z zk f<Xi’k) .

k=1 Pk (xi,k)

pi(x) Po(x) p3(x)

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




$ MULTIPLE IMPORTANCE SAMPLING P

light source sampling
[Veach 1997]
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BSDF sampling
[Veach 1997]
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MIS weighted
[Veach 1997]
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Different weighting functions
Provably good: Balance, Power, Maximum [Veach and Guibas 19935]
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$ MULTIPLE IMPORTANCE SAMPLING P

(F)mis = Z Zk f<Xi’k) .

k=1 Pk (xi,k)

Different weighting functions

Provably good: Balance, Power, Maximum [Veach

Optimal: Optimal MIS [Kondapaneni et al. 2019] weights 3

MSE: 1.82
(9.6x)

Power
heuristic A
MSE: 174
(baseline)

[Kondapaneni et al. 2019] Fig. 1(c)
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Per-light mixture
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Generic theory
Benefits from Optimal MIS and optimised mixture sampling
Applicable to any MIS/mixture sampling technique
Optimise one CV for multiple integrals => Global lllumination
Practical use case
Multi-light & Bsdf sampling

'Baseline (1.00x) Ours (1.48x) Vévoda et al. (1.05x)
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( p; integrates to 1)

Owen and Zhou 2000 <F>mixCV — +
Mixture Sampling Zk C. pr(x)
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BSDF Mixture
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Per-light Mixture
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Reference Balance MIS  Optimal MIS Ours

Reference relMSE 4.41e-02 (1.00x) 3.58e-02 (1.23x) 2.41e-02 (1.83x)
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Optimizing Control Variate Estimator:

Shaohua Fan', Stephen Chonneyz. Bo Hu!, Kam-Wah Tsui',

! University of Wisconsin — Madison
ZEmergent Game Technologies

Abstract

We present the Optimizing Control Variate (OCV) estimator; a new estimator fo
upon a deterministic sampling framework, OCV allows multiple importance sat
in one algorithm. Its optimizing nature addresses a major problem with contrt
ing: users supply a generic correlated function which is optimized for each estii
tuned one that must work well everywhere. We demonstrate OCV with both direct
examples, showing improvements in image error of over 35% in some cases, for .

Categories and Subject Descriptors (according to ACM CCS): L.3.7 [Computer
Graphics and Realism Color, shading, shadowing, and texture G.3 [Probability ar
rithms

Keywords: direct lighting, deterministic mixture sampling, control variates

Optimal Multiple Importance Sampling

IVO KONDAPANENTI", Charles University, Prague

PETR VEVODA’, Charles University, Prague and Render Legion, a. s.
PASCAL GRITTMANN, Saarland University

TOMAS SKRIVAN, IST Austria

PHILIPP SLUSALLEK, Saarland University and DFKI
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Trained technique Uniform technique 1 —
o)
fg Optimal - ‘
g weights A =
= MSE: 1.82
£ (9.6x) ‘
a
°© \\\. 0 QNS
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2 Power ‘
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S MSE: 17.4 -
g \ (baseline) -
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a) Reference b) MIS weights

Fig. 1. Equal-sample comparison (20 per technique per pixel) of direct illumination estim
(Trained and Uniform, see Sec. 8.2 for details) with our optimal weights (top row) and the
per-pixel average MIS weight values as determined by the two weighting strategies. Unlike 2
can have negative values, which provides additional opportunity for variance reduction, lead
power heuristic in this scene.
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Regression-based Monte Carlo Integration
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Fig. 1. Given an integrand (a), we first sample (b) £(x) as in Monte Carlo (MC) integration. (c-d) Traditional MC estimator can be interpreted as fitting
a constant model function to the sample values, with the integral of this constant function equals to F. (¢) We, instead, propose to use a non-constant
model function such as a polynomial, which is then fitted to the sampled values. (f) The resulting estimator is based on control variates; we add the
analytical integral of the model function to MC integration of the difference between the original integrand and the model function. The bottom row
shows renderings and the corresponding crror images to demonstrate the impact of our regression approach against the traditional MC integration
The insets on the right compare our method with different orders (Ox) of polynomials. Our method has significant error reduction at equal time.
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Bayesian online regression for adaptive direct illumination sampling

PETR VEVODA', Charles University, Prague and Render Legion, a. s.
IVO KONDAPANENI", Charles University, Prague
JAROSLAV KRIVANEK, Charles University, Prague and Render Legion, a. s.

Exposure value = 0.3

Our method No learning Our method
RMSE 0.0031 (0.0014 for DI only) RMSE 0.0012, 6.7x speedup (0.000062, 510x for DI only)

Fig. 1. Equal-time comparison (60 s) of path-traced global illumination solutions computed using our learning-based direct illumination sampling method (right)
and a baseline sampling method without learning (left). While both methods start off by sampling lights proportionally to rough estimates of their unoccluded
contribution, our method progressively incorporates information about their actual contributions, including visibility, dramatically reducing image variance.

Hua et al. 2023, Revisiting Controlled Mixture Sampling for Rendering Applications




5 OURCV @

Bsdf Mixture

Vévoda et al.
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, el E
Baseline (1.00x) /| Ours (1.72x) o T X ’ / :
il Baseline (1.00x) | Ours (2.75x) Vévoda et al.(1.29x)

Baseline:(1.09%) Ours (1.48x) Vévoda et al. (1.05x)
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Baseline Baseline Baseline

Baseline depth’S Ours

2.4¢%02 (1.00% 1.2e-02 (| 4.0e-03 (1.00x) "~ 3.4e-03 (1.19x)
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Baseline Vévoda et al.

3.79¢-02 (1.00x) [l 2.94e-02 (1.29x)

Ours (256)

21402 (1.77%) [ 4.21e-02 (0.90%)

Baseline (1.00x) Ours (2.75x) Vévoda et al.(1.29x)
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Ours vs baseline
Equal-sample Equal-time Time overhead

DINING RoOM 2.20% 1.90% 15.46%
RGB Sora 2.17% 2.03% 11.72%
BATHROOM 1.03% 1.01X% 13.65%
VEACH MIS 1.78% 1.60% 16.82%
MODERN HALL 3.52X% 3.28X% 15.27%

Ours vs Vévoda et al.
Equal-sample Equal-time Time overhead

DINING RoOM 1.63% 1.41X% 15.31%
RGB Sora 1.11X 0.98% 15.42%
BATHROOM 1.00% 0.92% 17.12%
VEACH MIS 1.64% 1.41% 27.30%
MODERN HALL 2.62X 2.32X 18.26%
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Better spatial subdivision criteria

More applications...

Path Guiding
Spectral Rendering

Differentiable Rendering
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5 SUMMARY @

Generic theory:
Optimise one CV for multiple integrals
Optimal MIS + optimised mixture sampling
Applicable to any sampling technique
Practical use case
Multi-light & Bsdf sampling
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Paper and source code
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