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Specialized hardware

C. Schwartz et al. University 
of Bonn’s Dome II

Holroyd et al. 2010Dana and Wang 2004

• High quality

• Dense sampling of light/view angle pairs

• Requiring a prohibitive amount of time

Asselin et al. 2020 Ma et al. 2023
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Light-weight setups

Aittala et al. 2015 Li et al. 2018 Guo et al. 2020 Guo et al. 2021

• A great trend in SVBRDF acquisition

• Fast, convenient, low-cost

• Generally only using a cell phone with flash

• Relying on deep neural networks (in particular CNNs)



RELATED WORK

• Potential limitations of CNN-based SVBRDF acquisition methods when facing 
Ultra-High Resolution inputs:
− Memory constraints of GPUs

− Difficulties in capturing global features

5

4K input
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Deschaintre et al. 2020

• HR Image cropping

• Material Exemplar prediction

• Exemplar-specific fine-tuning

• Post-processing: image stitching

Runs extremely slow even with 1K 
inputs (> 200 seconds per-image)



OUR GOAL
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• Single, casually captured image as input 
(without camera calibration)

• Supporting Ultra-high resolution inputs 
(2K or 4K)

• Light-weight setup
• Low computational cost
• Fast evaluation with end-to-end prediction



KEY IDEA

8

Resampling to low resolution

Extracting local features per-patchExtracting global features

Decoder

A divide-and-conquer solution
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LOCAL FEATURE EXTRACTOR
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Providing a “local view” of the underlying material

stacked convolutional blocks



LOCAL FEATURE EXTRACTOR
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Simply stitching local feature maps generated by LFE will cause noticeable 
inconsistency among different patches.



GLOBAL FEATURE EXTRACTOR
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Conv(k4s2)+LeakyReLU
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Material Vision Transformer
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Providing a “global view” of the underlying material

Serving as the guidance to assemble local feature maps.

Material Vision Transformers



MATERIAL VISION TRANSFORMER
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Each MVT has a global 
receptive field that is 
beneficial for preserving 
globally coherent material 
properties



GLOBAL FEATURE EXTRACTOR
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COORDINATE-AWARE FEATURE ASSEMBLY MODULE
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COORDINATE-AWARE FEATURE ASSEMBLY MODULE

Removing seams in a recovered diffuse map by introducing some overlaps 
between adjacent patches.



COMPLETE NETWORK ARCHITECTURE
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• Loss Function

DATASET AND LOSS FUNCTION

• UHR dataset

 https://ambientcg.com/
 https://polyhaven.com/
 https://www.sharetextures.com
 https://www.cgbookcase.com/textures/

Collected by Deschaintre et al. [2020]• Part1

• Part2

https://ambientcg.com/
https://polyhaven.com/
https://www.sharetextures.com/
https://www.cgbookcase.com/textures/
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We compare our method to

• Des18: a classic U-Net based end-to-end method that can recover 

SVBRDFs from a single image, proposed by Deschaintre et al. [2018],

• Gao19: a deep inverse rendering method that can recover high-resolution 

SVBRDFs from multiple images, proposedby Gao et al. [2019],

• HANet: a state-of-the-art method for singe-image (usually low-resolution) 

SVBRDF recovery, proposed by Guo et al.[2021],

• Guided: a recent method that can support 4K SVBRDF recovery by 

transferring low-resolution exemplar SVBRDFs to a target UHR image, 

proposed by Deschaintre et al. [2020].



PERFORMANCE ANALYSIS
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GPU memory consumption Runtime performance 
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SVBRDF maps                    Rendering SVBRDF maps                    Rendering



COMPARISONS ON SYNTHETIC DATA    4K
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SVBRDF maps                                           Rendering



COMPARISONS ON REAL DATA   2K     
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COMPARISONS ON REAL DATA   2K     
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COMPARISONS ON REAL DATA   2K     
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Guided HANet Ours

COMPARISONS ON REAL DATA   2K     
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Guided HANet Ours

COMPARISONS ON REAL DATA   2K     



COMPARISONS ON REAL DATA   4K 
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For Guided, we show the 
prediction results from two input 
images of the same material 
taken under environment lighting 
(Env.) and a flash point light 
(Point), respectively.

The choice of exemplars to Guided



COMPARISONS ON REAL DATA   4K 
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Low-resolution (256) vs. High-resolution (4096)
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COMPARISONS ON REAL DATA   4K 

OursGuided
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COMPARISONS ON REAL DATA   4K 

OursGuided



COMPARISONS ON REAL DATA   4K 
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COMPARISONS ON REAL DATA   4K 
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CONCLUSION
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• A consistent and implicit neural representation for SVBRDF 
recovery that can preserve both global structures.

• Material vision Transformer, a convolution-augmented vision 
transformer, to extract rich global features from the UHR input, 
providing the “global environment” of the material.

• A coordinate-aware feature assembly module to assemble “local 
views” of the underlying material in the feature space, 
guaranteeing spatial coherency.

• Our method is able to recover material maps as large as 4K, 
which is a challenge for previous learning-based methods.



FUTURE WORK
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• Increasing the normal map diversity in the dataset would 
further improve the quality of reconstructed normal maps.

• Incorporating some special designs, e.g. highlight-aware 
convolution.

• Extending our method to curved surfaces.
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