Physics-based Character Control with Model-based RL and Unified Motion Representations

Heyuan Yao Peking University

Physics-based Character Animation

Kinematic motion generated with Unity Demo

Physics-based motion

Related Work

Demonstration Motion

Control Policy

Liu et al.[2018]

Park et al.[2022]

Peng et al.[2018]

Xie et al.[2022]

Related Work

Demonstration Motion Task1 Task2 **Dedicated Reward Control Policy Control Policy Dedicated Policy Learn from Scratch**

ControlVAE: Model-Based Learning of Generative Controllers for Physics-Based Characters

Heyuan Yao, Zhenhua Song, Baoquan Chen, Libin Liu

Motion Primitives

Motion Space Variational Autoencoder

What is Decoder?

SuperTrack, Fussell et al.[2021]

What is Decoder?

 \bar{S}_N

$$L = \sum_{t=1}^{N} ||s_i - \bar{s}_i||$$

SuperTrack, Fussell et al.[2021]

Physics-based Decoder

Learning a World Model

Red: prediction

White: simulation

Sampling with ControlVAE

$$L_{task} = \sum_{t=1}^{N} \left\| \bar{\theta}_i - \tilde{\theta}_i \right\| + \cdots$$

Some Motivations

Stable Diffusion(140M images)

T2M-GPT(14K motions)

Some Motivations

Stable Diffusion(VQ-VAE+Diffusion)

T2M-GPT(VQ-VAE+GPT)

Some Motivations

Peng et al.[2022]

Won et al.[2022]

Yao et al.[2022]

< 1*h*

Scale up?

MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete Representations

Tracking Capacity

Methods

Learn representations and dynamics together

Methods

Gaussian

Mixture of Gaussian

Categorical/
Mixture of
Categorical

VQ-VAE

Pipeline

Coarse to Fine Reconstruction

Interactive Control

Text2Motion

Integration with LLM

••••

Comparison with ControlVAE

Field	ControlVAE	MoConVQ
Compress	VAE	Residual VQ-VAE
Latent Dynamic	MLP	MLP/Transformer
Data	10 min	20~70 hours
Task	Locomotion only	Generalized Control, Text2Motion

Universal Tracking Control

Unseen Motion

Coarse to Fine Reconstruction

Tracking Unseen & Corrupted Motion

Tracking Motion Generation Result

Tracking Motion Generation Result

Downstream Tasks: Interactive Control

PFNN[2017]

Interactive Control

Downstream Tasks: Text2Motion

Text2Motion with MoConGPT

"a man walks forward and jumps and walks forward"

Text2Motion with MoConGPT

"a person is boxing and jumping"

Text2Motion with MoConGPT

"a person slightly crouches down and walks forward, then he stand still"

Downstream Tasks: LLM+

Codebook Here are some examples Physics-based z_0 of our motion embedding. Decoder A person is taking a long jump. [39, 762, 4, 483, ...] The peraon is getting down to play leapfrog. [421, 67, 30, ...] A person waves with right hand. [157, 157, 420, ...] Question: A person walks forward and sits down. [297, 471, 246, 463, 463, 511, 456, 206, 274, 370, 41, 41, 370, 370]

Integration with LLM

Question: "a person picking up a item and about to place it down"

Integration with LLM

Question: "a person walks forward for a long time and kicks, then he begins to dance"

Abstract Tasks with LLM

How do you make a character walk in a square trajectory?

I would need the character to take straight walks forward, combined with 90 degree turns at each corner.

Forward walk: [297, 471, 246, 463, 463] Sharp right turn: [360, 360, 360, 108,...]

Abstract Tasks with LLM

Suppose there is a door in front of you, and a key on the ground. you want to open the door and sit on the chair, how do you perform?

I would:

- 1. Walk forward [297,...]
- 2. Bend down and pick up the key [246,...]
- 3. Insert the key into the door [129,...]
- 4. Walk through the doorway [297,...]
- 5. Sit down on chair [241,...]

