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Explicit 3D Representation

v'Structured geometry
v'Discrete and well-defined

v'Visually intuitive

Volumetric Point Cloud Mesh Part Assembly




Implicit Neural Representation

vInfinite-resolution
v'Lightweight
v'Continuity and differentiability

fo(p) =7 o

DeepSDF Occupancy Networks
[Park et al., 2019] [Mescheder et al., 2019]



Neural Radiance Fields

» Neural Radiance Fields (NeRF) can represent a scene as the weights of an

MLP, trained on many images with known camera poses.

Courtesy of Ben Mildenhall,
Pratul P. Srinivasan and
Matthew Tancik

NeRF: Representing Scenes as Neural Radiance Fields, Mildenhall et al. ECCV 2020



Neural Radiance Fields

» NeRF has attracted extensive attention in both academy and industry.

Nerf: Representing scenes as neural radiance fields for view synthesis

B Mildenhall, PP Srinivasan, M Tancik... - Communications of the ..., 2021 - dl.acm.org

We present a method that achieves state-of-the-art results for synthesizing novel views of
complex scenes by optimizing an underlying continuous volumetric scene function using a ...
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NeRF at CVPR 2023

ninread - @ NeRF, Literature Review

It is now my third time writing a summary of NeRFy things ata
conference. This time it is the big one: CVPR. The list of accepted papers is
massive again, with 2359 papers.

What is even more astounding is that the number of NeRF papers has
grown significantly. I scanned the provisional program for potential NeRF
titles and manually confirmed a relationship to the NeRF field.
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NeRF: Neural Radiance Field in 3D Vision,
Introduction and Review

Kyle (Yilin) Gao, Graduate Student Member, IEEE, Yina Gao, Hongjie He, Dening Lu, Linlin
Xu, Member, IEEE, Jonathan Li, Fellow, IEEE

Abstract—Neural Radiance Field (NeRF) has recently become a significant development in the field of Computer Vision, allowing for
implicit, neural network-based scene represantation and novel view synthesis. NeRF models have found diverse applications in
robotics. urban mapping. autonomous navigation, virtual reality/augmented reality, and more. Due to the growing popularity of NeRF
and its expanding research area, we present a comprehensive survey of NeRF papers from the past two years. Qur survey is
onganized into architecture and application-based taxonomies and pluwdes an \mmdu:llun to the theory of NeRF and its training via

differentiable volume rendering. We also present a

and speed of kay NeRF modsls. By

creating this survey, we hope to infroduce new researchers to NeRF, pmlﬂe a hanpml reference for influsntial works in this fikd, s well

as maotivate future research directions with our discussion section.

Index Terms—Neural Radiance Field, NeRF, Computer Vision Survey, Novel View Synthesis, Neural Rendering, Volume Rendering,

3D Reconstruction

+

INTRODUCTION

N EURAL Radiance Field (NeRF) models are novel view

synthesis methods which use volume rendering with

(typically) implicit neural scene representation via Multi
Layer Perceptrons (MLPs) to learn the geometry and light-
ing of a 3D scene. Mildenhall et al. first introduced NeRF at
ECCV 2020 [1], and since then, it has achieved state-of-the-
art visual quality, produced impressive demonstrations, and
inspired many subsequent works. Recently, NeRF models
have found applications in photo-editing, 3D surface ex-
traction, human avatar modelling, and large /city-scale 3D
representation and view synthesis.

NeRF models have important advantages over other

methods of novel view synthesis and scene representation.

+ NeRF models are self supervised. They can be
trained using only multi-view images of a scene. Un-
like many other neural representations of 3D scenes,
NeRF models require only images and poses to learn
a scene, and do not require 30/depth supervision
The poses can also be estimated using Structure from
Motion (SfM) packages such as COLMAP [2], as was
done in certain scenes in the original NeRF paper.

+  NeRF models are photo-realistic. Compared to classi-
cal techniques such as [3] [4], as well as earlier novel
view synthesis methods such as [SI[6][7], neural 3D
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representation methods [8][9][10], the original NeRF
model converged to better results in terms of visual
quality, with more recent models performing even
better.

NeRF models have attracted much attention in the com-
puter vision community in the recent past, with hundreds
of papers and preprints appearing on popular code aggre-
gation website ! with many eventually appearing in top-tier
computer vision conference. In 2022, the impact of NeRF
is large and ever increasing, with the original NeRF paper
by Mildenhall et al. receiving more than 2000 citations (as
of May 2023), and growing interest year-over-year. Given
current interest, we believe it necessary to organize a survey
paper to help computer vision practitioners with this new
topic. We also introduce some of the more recent literature
missed out by previous surveys.

The rest of this manuscript is organized as follows.

+  Section 2 introduces existing NeRF surveys preprints
(2.1), explains the theory behind NeRF volume ren-
dering (2.2), introduces the commaonly used datasets
(2.3} and quality assessment metrics (24).

+ Section 3 forms the main body of the paper, and
introduces the influential NeRF publications, and
contains the tkaxonomy we created to organize these
works. Its subsections detail the different families of
NeRF innovations proposed in the past two years,
as well as recent applications of NeRF models to
various computer vision tasks.

«  Sections 5 and 6 discuss potential future research di-
rections and applications, and summarize the survey.

1. hitps:/ / paperswitheode.com / method fnerf

[Gao et al., 2023]



Neural Radiance Fields

» NeRF has attracted extensive attention in both academy and industry.

Instant NeRFs [NVIDIA, 2022] Immersive Map [Google, 2022]



Challenges

» As a new 3D representation, NeRF faces the following challenges:

Efficiency: Faster training and inference

Scalability: From object-scale to city-scale

Robustness: Robust to input images and camera poses
Generalization: Scene agnostic without training on the test data
Dynamics: Modeling of dynamic objects

Editability: Editable as traditional representations

Application: Applied to facilitate other 3D tasks
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Outline

3D Editing with NeRF Online Perception with NeRF
[ICCV'21, ECCV'22, CVPR'23] [CVPR'22, ICCV'23, Arxiv'23]



3D Editing with NeRF

[ICCV'21, ECCV'22, CVPR'23]



01.1

Can we edit the objects In the scene?



Object-Compositional Neural Radiance Field

Ours

Input Images

Decompose to object level Editable Scene Rendering




Object-Compositional Neural Radiance Field

We design a two-pathway architecture.

Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering, Yang et al., ICCV 2021



Object-Compositional Neural Radiance Field

Scene Branch: renders the entire view of the scene.

X i

Scene Branch  Rendered Background

.x Scene Branch
w

Full Scene Rendering

___________________________________________________



Object-Compositional Neural Radiance Field

Scene Branch: renders the background for editable scene rendering.

X i

Scene Branch  Rendered Background

Scene Branch

Background Rendering

(pruning ray samples user-defined region)

___________________________________________________



Object-Compositional Neural Radiance Field

Object branch: renders each standalone object
conditioned on the object actlvatlon code.

Object Activation
Code Library

Object Branch

Object Branch
» Conditioned on

___________________________________________________



Object-Compositional Neural Radiance Field

Object branch: renders each standalone object
conditioned on the object actlvatlon code.

Object Activation
Code Library

L/
Code2 x
» ~

Object Branch

Jd .

» Conditioned on

Object Branch

___________________________________________________



Object-Compositional Neural Radiance Field

We can render the manipulated objects by transforming the
shooting rays.

___________________________________________________

Object Activation
Code Library

Codel

X/v Manlpulatlon

Object Branch

Object Branch

» Conditioned on
@ User Manipulation

___________________________________________________



Object-Compositional Neural Radiance Field

We can render the manipulated objects by transforming the
shooting rays.

___________________________________________________

Object Activation
Code Library

Code2 x Manipulation

Object Branch

Object Branch
Conditioned on
@ User Manipulation

___________________________________________________



Editable Scene Rendering

We jointly render the objects and the background.

Object Activation
Code Library

/ Scene Branch  Rendered Background -
. 5t

- —t

Codel

x/‘

Object Branch

o ol

Rendered Manipulated
Objects Objects

v \ ....... ;
Manlpulatlon o

Duplicate Objects
= |

Move Objects

Rendered with Manipulation



Framework Detalls

fSCIl
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2 Interpolation | |
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Object-level Supervision

* Objective Rendering

) N ) N a; = 1 — exp(—oep;;0i)
C(7r)ob; = ZTiaz‘Cobj,,; O(7)ob; = ZTz'Of?:
i=1 i=1 Sum of the product of
Object Color Object Opag:ity transmittance and alpha of

..__.-" points along the ray.



Object-level Supervision

* Objective Rendering

X N ) N a;, = 1 — exp(—0oop;,0;)
’P)obj = Zﬂaicobji O('r)obj = ZTz-au,;
i=1 — Sum of the product of
Object Color Object Opag:ity . transmittance and alpha of
N\ -7 points along the ray.

e Loss Definition

Loy =D, D, MM(@)MC(r)s, — Cr)I3

rEN, k€[1..K]
+A2w(r)*[|O(7) 5y, — M (7)"]]3

M(r)*

, Rendered objects should be close to
" the observations.

Only opague at the object area and

v
transparent elsewhere.



Object-level Supervision

Image View Input Segmentation Annotated Segmentation

Rendered Object Rendered Opacity Rendered Object Rendered Opacity
(Segmentation) (Segmentation)

© Robust to segmentation noise © Even works for complex shapes



Handling Occlusion in Clustered Scenes

L

Incomplete Reconstruction

Directly apply

object supervision

Clustered Real-world Scene



Handling Occlusion in Clustered Scenes

Directly apply g
o -
object supervision , s,

Clustered Real-world Scene Incomplete Reconstruction

2D instance masks is facing the 3D space ambiguity
@ in the occluded region.



Handling Occlusion in Clustered Scenes

Directly apply

object supervision

Clustered Real-world Scene Incomplete Reconstruction

@ 2D instance masks is facing the 3D space ambiguity

Our Solution in the occluded region.

P P r . ‘
___________ ., | Biased and masked
! \ ~ — > |
Ray Dista)nce Ray Dista)nce 3D guard mas SuperVISlon )
Scene Branch Object Branch Occluded :
. o . Complete Reconstruction
Sampling Distribution Block Gradient to the P

Guidance Occluded Space



Examples on the ScanNet Dataset
| 2= - | o .

Novel View Synthesis

,

Editable Scene Rendering



Editable Scene Rendering



Q1.2

Can we edit both the geometry and
texture of neural radiance fields?



NeuMesh: Geometry&Texture Disentangled NeRF

Pure MLP Model Mesh-based Representation

>{ Baked — Not Editable Disentangled — Editable

Transfer a pure MLP model into a mesh-based editable representation

NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for Geometry and Texture Editing, Yang et al., ECCV 2022



NeuMesh: Geometry&Texture Disentangled NeRF

Volume Rendering of the Object



NeuMesh: Geometry&Texture Disentangled NeRF

Disentangled Geometry / Texture
Codes in Mesh Vertices

Query Points to Obtain
Locally Interpolated Codes

Mesh-based Scaffold



NeuMesh: Geometry&Texture Disentangled NeRF

Codes
............................ > SDF CO|OI’
Distances

Geometry / Radiance Decoder

Mesh-based Scaffold



NeuMesh: Geometry&Texture Disentangled NeRF

MM

|EAGHIE]

VIOGIE]

WJ WJ W)

Supervision

Codes
............................ > SDF CO|OI’
Distances

Geometry / Radiance Decoder

Mesh-based Scaffold



Now, we will show how we enable editing.



How we enable editing - Geometry Editing

Synchronized Field

User Geometry Edit ]
y Deformation

Rendering Result



How we enable editing - Texture Swapping

User-Selected Area



How we enable editing - Texture Swapping

User-Selected Area Non-rigid Alignment



How we enable editing - Texture Swapping

User-Selected Area Texture Code Swapped



How we enable editing - Texture Swapping

- N 4
Before After
Area selection Texture Code Swapping Rendering Results




How we enable editing - Texture Filling

Original Model User Selected Area



How we enable editing - Texture Filling

User Selected Area



How we enable editing - Texture Filling

User Selected Area



How we enable editing - Texture Filling

/1[% ]L 'l s'l I]U[ |[I|L_|Ul
H: g .'UI'T Il
p\ 'Tf" Filing @
> « ‘ -
Latent Texture
Templates

Pre-captured Model

User Selected Area



How we enable editing - Texture Filling

Unwrap Filing @
» L4
UV-Map ‘
Latent Texture
Templates

Pre-captured Model
User Selected Area



How we enable editing - Texture Filling

.\ Filing @

Latent Texture
Templates

L4

Pre-captured Model

Original Rendering Edited Rendering



How we enable editing - Texture Painting

Original Object



How we enable editing - Texture Painting
9

User Paint on a Single 2D View



How we enable editing - Texture Painting
\

«CCV2
LN < .\
“‘-0 \
\

Only Update Affected Codes (highlighted)
User Paint on a Single 2D View Spatial-Aware Optimization



How we enable editing - Texture Painting
\ _

User Paint on a Single 2D View Rendered Object with
Transferred Painting



01.3

Can we edit neural radiance fields as
easy as 2D editing?



Semantic 2D Editing

|PRitrush color: () Brush shape:

5 RO~

%.ﬁ--ﬂﬂll
= e
<ae_anion Vphoad =

Appiy Predafined Editing Vecions
Chosen an speston. Whawtne
—

Fatune Stopa: Ho Firsana = Apply Editing

.\
? S S | e A
Input d Output

“giraffe with neck warmer”

“giraffe with a hairy colorful mane”

Source

Text-driven Synthesis & Editing Stroke-based Editing Attribute-based Editing
Stable Diffusion [CVPR’ 22] EditGAN [NeurlPS’ 21] StyleFlow [ACM ToG’ 21]
Text2LIVE [ECCV’ 22] SDEdit [ICLR’ 22] SofGAN [ACM ToG’ 22]



We aim at realizing the semantic-driven editing of...

Editing 3D from a single perspective.

G Supporting real-world objects and scenes.



SINE: Semantic-driven Image-based NeRF Editing

SINE
—

Semantic-driven Editing .

(1) Pre-traihéd NeRF

Edited NeRF
(2) Single-View 2D Editing



SINE: Semantic-driven Image-based NeRF Editing

Edited NeRF

Deforrﬁéd Field

/ Geometric Mod. Field —\

/—Texture Mod. Field —\




SINE: Semantic-driven Image-based NeRF Editing

Editing Field Template NeRF
e rr @—— . @ - . ®
Edited Template Density o’
o Space X _ Space _
Geometric Mod. x' Template Density
Fag
— ~@® | — — @
View
Mod. Color ¢’
Color
Texture Mod. m’ @ Template Radiance
Far
A >,

Edited NeRF Editing on the Template NeRF



SINE: Semantic-driven Image-based NeRF Editing

C Deformed Template 1, Rendered Edited View |

‘ Dual
o’ Volume — T Supervision
Renderin '
o— : X
m/ \ % | /
| ) I Color Compositing Layer " s
W; Color Modification fm

Prior Guidance



SINE: Semantic-driven Image-based NeRF Editing

Neural Decoded Shape Edited Space Template Space

v
L T R
e ¢

‘K?I '"‘ L e Geometric Mod. F o
:'-'. i o ., pe—
supervisn [ B




SINE: Semantic-driven Image-based NeRF Editing

Neural Decoded Shape Edited Space Template Space

e
!
_

N

Geometric Mod. Fpg

Cycle
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a /““" ‘ g =N ‘ ‘\
N\ /A ., WA'A" w;-?\ %
N IS v

%S

\

N

S

Shape Prior Mp Deformed Proxy Mesh My  Forward Mod. Fyg Proxy Mesh Mg



SINE: Semantic-driven Image-based NeRF Editing

Neural Prior Edited Space Template Space

Geometric M

Depth Estimation
& 2D Correspondance

!
S
S

ARAP

Cycle

- b Chamfer

[
s

Shape Prior M, Deformed Proxy Mesh Mz  Forward Mod. F



SINE: Semantic-driven Image-based NeRF Editing

VIT
' /
Self-Sim Target I
Constraint 1
— >
_ - CLS Token
Edited [ Constraint

Edited NeRF Rendered Pair Texture Transferring Loss



SINE: Semantic-driven Image-based NeRF Editing

Feature

*.
Clustering

Edited NeRF

p

o B

Edited |

\Regularization Mask é

Template I,

é_

Edlted Similarity S(I)

&

Edited Token t¢ys (1)

~ = /

Target Token to;s(1;)
.

Editing
Regularization

Self-Sim
Constraint

CLS Token
Constraint



Geometric Editing on the Real-world Cars

Source

2D
Editing

Edited




Geometric Editing on the Generic Objects

Source 2D Editing Source

Edited Edited



Texture Editing with Single-View User Editing

Source

Edited Edited



Texture Editing with Text-prompts

—
“Swarovski Blue Crystal Car”
—
Source Vie “Golden Pinecone” “Burning Pinecone”

Using single image editing from Text2LIVE [Bar-Tal, 2022].



Texture Editing with Text-prompts

Source View “Plastic Round Table” “Kids Plasticine Round Table”
Using single image editing from Text2LIVE [Bar-Tal, 2022].




Online Perception with NeRF

[CVPR'22, ICCV'23, Arxiv'23]



02.1

Can we exploit NeRF for online 3D
perception?



Challenges

> Efficiency

NeRF [Mildenhall et al., ECCV’20] F2-NeRF [Wang et al., CVPR’23]



Challenges

» Catastrophic forgetting

A single MLP

Predicted Poses

GT Poses

iMAP [Sucar et al., ICCV'21]




NICE-SLAM

\/4 4,4/
Feature grids + tiny MLPs

+ Pretrained tiny MLPs = Fast convergence
+ Local update - No forgetting problem

Predicted Poses

GT Poses

Zhu et al. NICE-SLAM: Neural Implicit Scalable Encoding for SLAM. CVPR 2022.



Pipeline
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Pretraining

Input =

PointMet

Encoder

B T

v 3D Feature Volume

=

Trilinear 3D Location p Occupancy
Interpolation™

o

¥ 3D Feature Volume

Convolutional occupancy network [Peng et al. 2020]

Probability
¢ folp.v(p.x))

Occupancy
MNetwork



iIMAP* NICE-SLAM

(our re-implementation of iMAP)

4x Speed

Predicted Poses

GT Poses




iIMAP* NICE-SLAM

(our re-implementation of iMAP)

10x Speed



Comparison

TSDF-Fusion w/ our pose ScanNet Mesh




Robustness to Dynamic Objects

Input Depth Generated Depth

Residual

Input RGB Generated RGB

Residual

it "%




Accuracy and Efficiency

Camera Tracking Results on TUM RGB-D. ATE RMSE[cm]

frl/desk fr2/xyz fr3/office

iIMAP [16] 4.9 2.0 5.8
iMAP* [46] 7.2 2.1 9.0
DI-Fusion [16] 4.4 2.3 15.6
[ NICE-SLAM 2.7 1.8 3.0
BAD-SLAM [47] 1.7 1.1 1.7
Kintinuous [5Y] 3.7 2.9 3.0
ORB-SLAM2 [26] 1.6 0.4 1.0

Computation & Runtime
FLOPs [x 103“ Tracking [ms]] Mapping [ms]]

iIMAP [46] 44391 101 448
NICE-SLAM  104.16 47 130




Q2.2

Can we use light-weight ToF sensors?



Motivation

Microsoft
Kinect

Dense _SLAM

l Heavily relies on

,I’ 7,
7,
L IIII/, ) 14,
244
L4

. Intel
" Realsense

Expensive
Heavy-sized
Not common on mobile devices

Light-Weight ToF Sensor

Visible Frustrum, ’ %

Object

Low-resolution
depth distributions

+ Cheap

+ Compact

+ Widely available on mobile
devices



Challenges

@ Unsuitable
>

e

Depth Estimation Poor Results

— Falilure

ﬁ

RGB/Light-
Weight ToF

DELTAR

+ High-resolution with rich details

- Not accurate & Containing artifacts
- Temporal inconsistency

Li et al. DELTAR: Depth Estimation from a Light-Weight ToF Sensor and RGB Image. ECCV 2022.



We propose the system
with a sensor

« Using a light-weight ToF instead of a heavy-sized depth sensor
« Cooperating with a monocular camera

RGB + Light-Weight ToF Camera Tracking a_nd
Dense Reconstruction

Liu et al. Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a Light-Weight ToF Sensor. ICCV 2023 (Oral).



Our Solution

Depth Prediction boosted
with Temporal Filtering

Multi-modal Scene
Representation

RGB Decoder Sample Point
Extract Feature

ToF Measurement Z, Input RGB

Prior Scene
Representation @
, > =

Rendered RGB

] '-‘r‘ ’ '
4 ]
T —r Predicted Depth —
~ZY “Prediction Update b 3 -
Step Step } l\")

Estimated ToF X, Refined ToF X,' . Zimed el
- S2 one-Leve! <
Rendered ToF Shared Rendering Mask .
: Weights
; Feature
Concat

=

Multi-Modal Feature Grid

Geometry Decoder

System Input . Depth Prediction Module Multi-Modal Scene Represention Masked-Rendering »Ev Neural Network < ‘ Inactive Neuron

* A novel framework for dense SLAM working with light-weight ToF sensors

* The raw signals of light-weight ToF are fully leveraged
« Temporal information is exploited to deal with the noisy signals









02.3

Can we just utilize the RGB sequences?



Challenges

Depth ambiguity Lack of geometry constraint

¥
_U_-
3
g

Monocular Depth Estimation + RGB Warping loss +
Scale&Shift-Invariant Depth Loss Explicit flow constraint



Pipeline

Input RGB Stream

Zhu et al. NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM. Arxiv 2023.



Pipeline

Input RGB Stream

Monocular

>
>

Normal > Jany”

o Estimator

Monocular
Depth
g Estimator




Pipeline

Input RGB Stream

Monocular
Normal
o Estimator

Camera Pose Estimate
Monocular

Depth
g Estimator




Pipeline

Input RGB Stream

Hierarchical Feature Grids

Geometry
Grids LL}

Color
Grids I

Monocular
Normal o v d
o Estimator s

Camera Pose Estimate

Monocular

Depth
Estimator




Pipeline

Input RGB Stream

Monocular
Normal o v d
o Estimator s

Monocular

Depth
Estimator

GeneratetgREH!

Mapping and Tracking
Output
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Geometry
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ifferentiable
Rend

- Camera Pose Estimate




Pipeline

Input RGB Stream Minimize Mapping and Tracking
Output

Hierarchical Feature Grids

Geometry
Grids LL}

ifferentiable
Rend

Monocular
Normal

IE Estimator

MLP

Ray + Point )
Sampler

Monocular
Depth
Estimator




Pipeline

Input RGB Stream Minimize Mapping and Tracking
Output

Hierarchical Feature Grids

Geometry
Grids

ifferentiable

Rznd@
MLP

Color
Grids

Monocular
Normal

IE Estimator

_Camera Pose Estimate

Ray + Point )
Sampler

Monocular
Depth
Estimator

\

Scale&Shift-Invariant Depth Loss



Pipeline

Input RGB Stream

Monocular
Normal

IE Estimator

Monocular

Minimize

Keyframe
Selection

Liow = Z Z [(rm — 1) — GM(rm—n) |

r€Rne,

Keytram uwﬁg’?

B

z

Warping Iaoss

Optical Flow Loss

(

Eikonal Loss

Mapping and Tracking
Output

ifferentiable
Rend

Geometry

Grids

Hierarchical Feature Grids

Ray + Point )
Sampler

Luw= 3 3 C(Em) = Clrmn)l,

rm€ERNEX,



Results

rm-0 rm-1 rm-2 off-0 off-1 off-2 0ff-3 off-4 Avg.

= Acc.[cm]] 11.84 10.62 11.86 932 1440 11.54 1631 11.11 12.13
;C()mp.[cm]i, 5.63 5.88 9.22 1329 10.17 695 781 526 8.03
g;-Comp.Rat.[‘( dem %]|T 61.13 68.19 47.85 37.64 56.17 66.20 55.67 61.86 56.84
Z Normal Cons.[%] 1 63.39 53.31 57.52 64.09 57.13 57.06 59.73 58.59 58.85

S Acc.[cm]] 14.19 956 841 10.16 7.86 16.50 13.01 13.08 11.60
< Comp.[cm]| 6.24 6.45 12.17 595 833 828 6.77 8.62 7385
ECOmp.Rat.[< ocm %]|T 69.77 66.30 51.21 74.16 62.10 5492 63.88 55.43 6222
A Normal Cons.[%]1 77.69 82.16 78.89 81.44 7941 73.68 77.09 78.05 78.55

EACC.[CHl]L 12,18 835 326 301 239 3566 449 465 35.50
ﬁICDmp.[cmH, 8.96 6.07 16.01 16.19 1620 1556 9.73 9.63 1229
%Comp.Rat.[< oem %]|T 60.07 76.20 61.62 64.19 60.63 56.78 61.95 67.51 63.62
% Normal Cons.[%] T 72.81 74771 79.21 77.53 7857 75779 77.69 76.38 76.59

= Acc.[cm]] 253 393 340 549 345 402 334 303 3.65 A

7 Comp.[cm]] 3.0 410 342 609 442 429 403 387 4.16

5C0mp.Rat.[<5€m%]T 88.75 76.61 86.10 65.19 77.84 7451 82.01 83.98 79.37

ENormal Cons.[%]T 93.00 91.52 92.38 87.11 86.79 90.19 90.10 90.96 90.27
\" Y,




Results

rm—-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input
NICE-SLAM 1.69 204 155 099 090 1.39 397 308 1.95
Vox-Fusion 027 133 047 0.70 1.11 046 026 058 0.65

RGB input
COLMAP 062 237 039 033 024 079 0.14 1.73 349
TANDEM 0.54 043 047 0.6l 0.33 542 068 0.75 1.15
DSO 026 025 019 038 020 253 022 038 0.55
Orbeez-SLAM 034 041 027 036 F F 0294 289 0.76

NeRF-SLAM 1726 1194 1576 1275 1034 1452 2032 1496 14.73
DIM-SLAM 048 0.78 035 0.67 0.37 0.36 0.33 0.36 046
DIM-SLAM™ 1.06 049 032 043 0.26 0.65 0.55 3.69 093
DROID-SLAM 034 013 027 025 042  0.32 052 040 033
DROID-SLAM™ 0.58 058 038 1.06 0.40 0.70 0.53 1.33 0.70
NICER-SLAM 136 1.60 1.14 212  3.23 2.12 1.42 201 1.88




Summary

» We can edit neural radiance fields with compositional NeRF represen-
tations.

» We can conduct online 3D tracking and mapping using NeRF with various
input signals.

» Future works:
e Attribute-compositional representation
* Scaling up to large scenarios
e Efficient and robust as traditional SLAM



Thank you!
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