

SDF Fields meet 3D shape generation

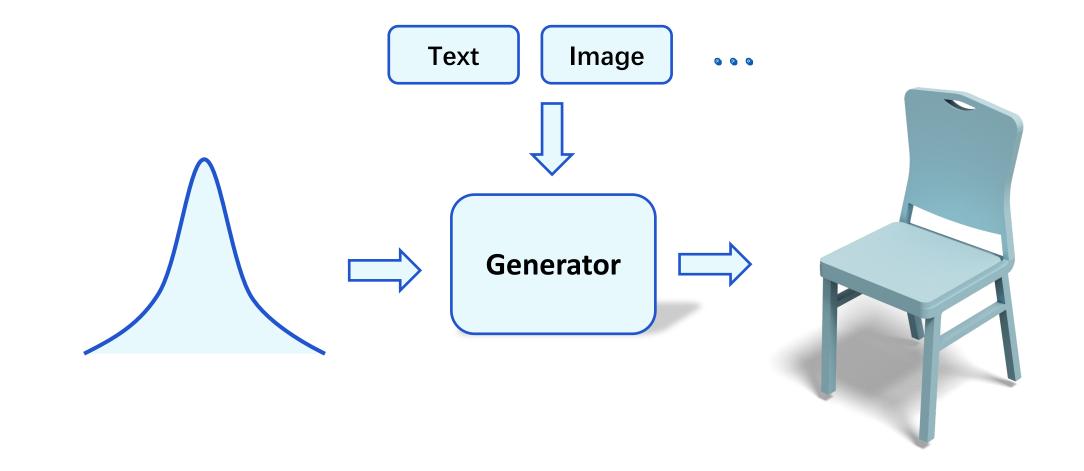
郑欣阳 清华大学&微软亚洲研究院

2023/9/7

Introduction

Virtual Reality

Introduction

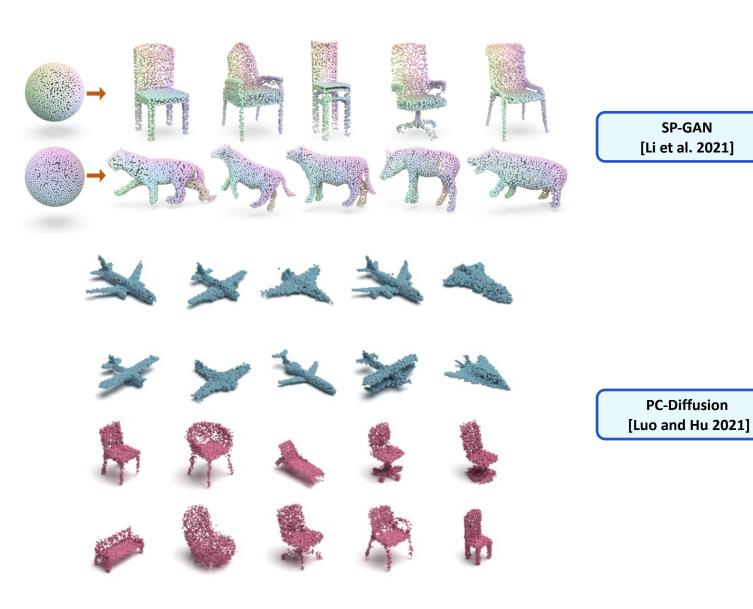


- 3D representations
 - Voxel

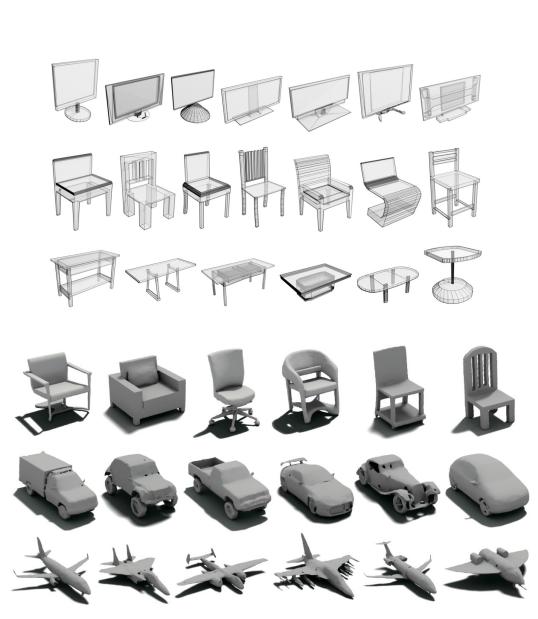
- - - - -• / • • • • 1

3D-GAN [Wu et al. 2016] 3D-IWGAN [Smith and Meger 2017]

- 3D representations
 - Voxel
 - Point Cloud



- 3D representations
 - Voxel
 - Point Cloud
 - Mesh



PolyGen [Nash et al. 2020]

MeshDiffusion [Liu et al. 2023]

- 3D representations
 - Voxel
 - Point Cloud
 - Mesh
 - Implicit Function
 - ...

ShapeGAN [Kleineberg et al. 2020]

ImplicitGrid [Ibing et al. 2021]

- GAN based method
 - 3DGAN [Wu et al. 2016], L-GAN [Achlioptas et al. 2018], SurfGen [Luo et al. 2021], IM-GAN [Chen and Zhang 2019], Implicit-Grid [Ibing et al. 2021]
- Diffusion based method
 - ShapeGF [Cai et al. 2020], PVD [Zhou et al. 2021], LION [Zeng et al. 2022], MeshDiffusion [Liu et al. 2023], Wavelet Diffusion [Hui et al. 2022], NFD [Shue et al. 2023], SDFusion [Cheng et al. 2023], DIffusionSDF [Chou et al. 2022]
 - Geometry quality determined by the chosen 3D representation and the capability of generative models
 Shape diversity affected by generative models

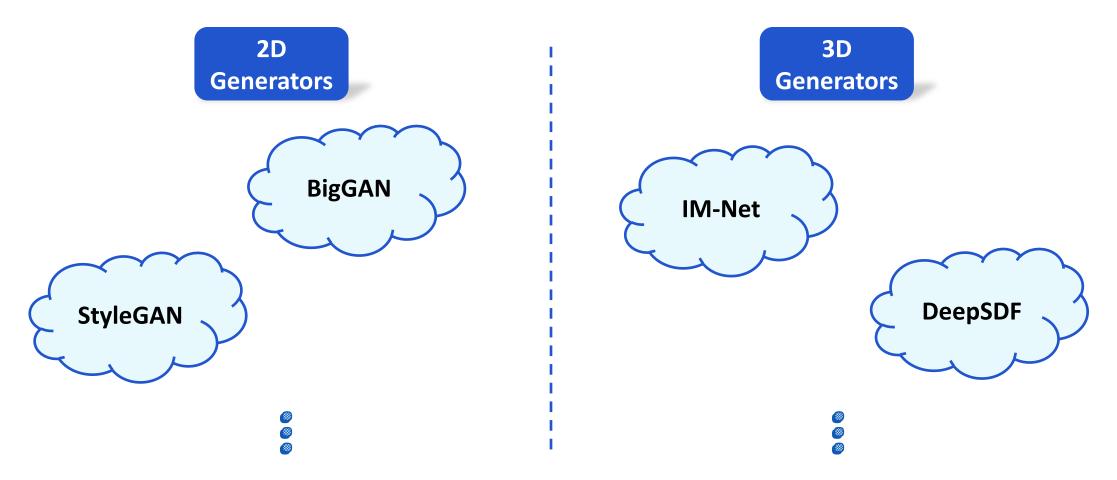
SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation

Xin-Yang Zheng¹, Yang Liu², Peng-Shuai Wang², Xin Tong²

¹Tsinghua University, ²Microsoft Research Asia

Our Observation

• Existing 3D generators are weaker than SOTA 2D generators

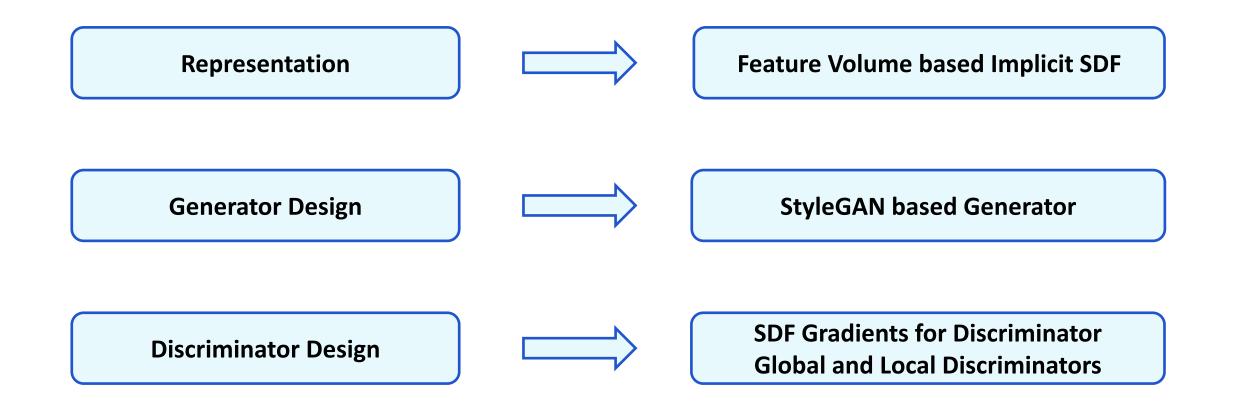


Our Observation

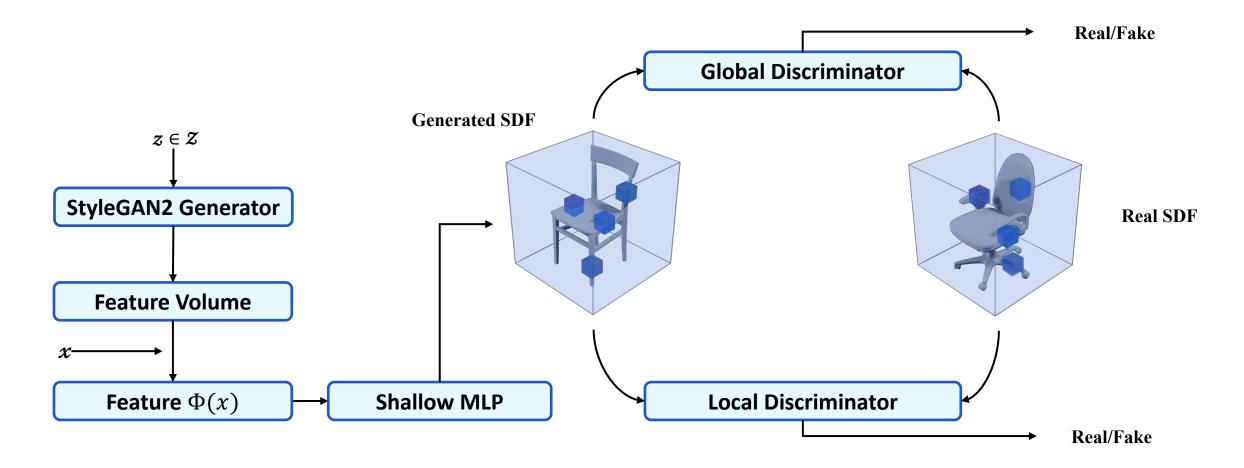
• Shape normal affects visual perception

0.5% noise level on SDF value

Our Solution



Network Overview



Experiment and Analysis

Dataset

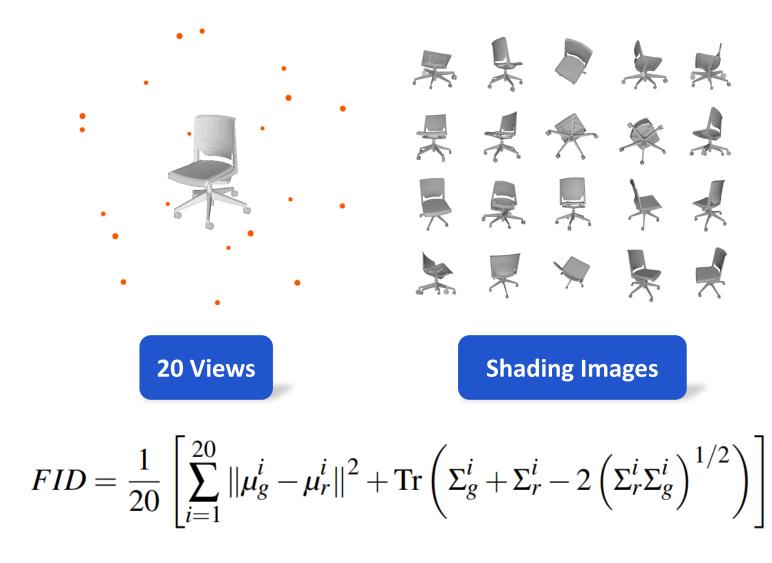
- Five categories from ShapeNet
 - chair (6778), airplane (4045), car (7497), table (8509), and rifle (2372)
- SDF field resolution: 128³
- Experiment Setup
 - 8 Tesla V100 GPUs (16 GB memory)
 - 2 days for training on average
 - Marching cube resolution: 128³

Metrics

- Previous Metrics
 - Distance based (CD, EMD, LFD [Chen et al. 2003])
 - COV [Achliopts et al. 2018]
 - MMD [Achliopts et al. 2018]
 - 1-NNA [Yang et al. 2019]
 - ECD [Ibing et al. 2021]
 - Learning based
 - FPD [Shu et al. 2019]
 - Mimic FID [Heuse et al. 2017]

Visual appearance

FID based on Shading Images



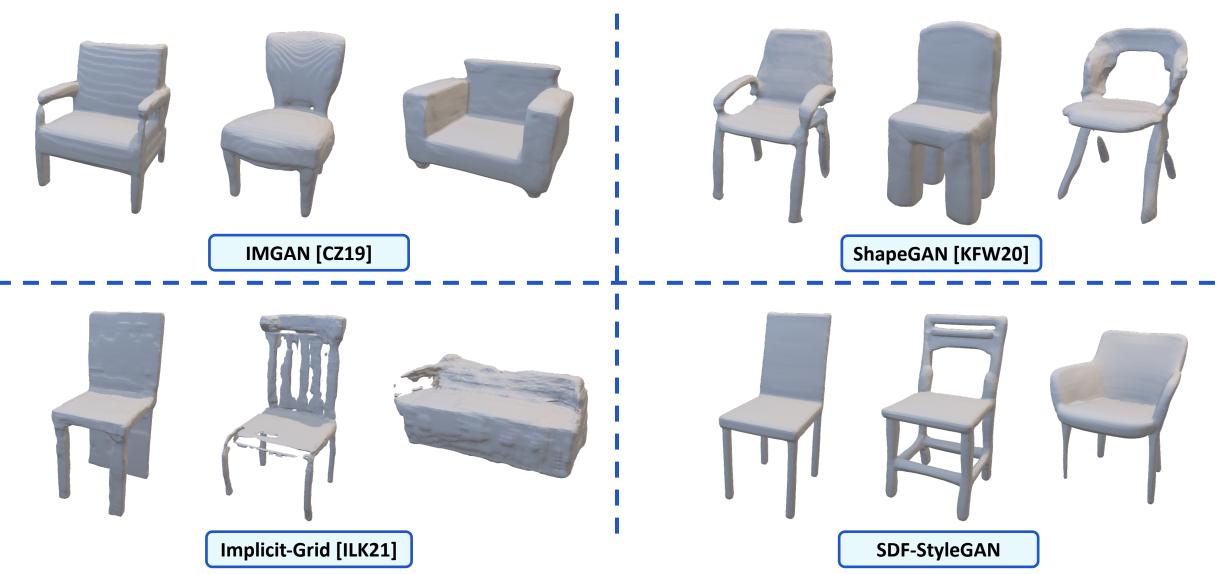
Quantitative Comparison

Training Configurations							
	chair table	airplane car rifle					
IMGAN [Chen and Zhang 2019]	64	128					
Implicit-Grid [Ibing et al. 2021]	256						
ShapeGAN [Kleineberg et al. 2020]	128						
ours		128					

Data	Method	COV(%) ↑	$\mathbf{MMD} \downarrow$	1-NNA↓	ECD↓	FID↓	FPD↓
Chair	IMGAN	72.57	3326	0.7042	1998	63.42	1.093
	Implicit-Grid	82.23	3447	0.6655	1231	119.5	1.456
	ShapeGAN	65.19	3726	0.7896	4171	126.7	1.177
	SDF-StyleGAN	75.07	3465	0.6690	1394	36.48	1.040
	IMGAN	76.89	4557	0.7932	2222	74.57	1.207
Airplane	Implicit-Grid	81.71	5504	0.8509	4254	145.4	2.341
irp	ShapeGAN	60.94	5306	0.8807	6769	162.4	2.235
A	SDF-StyleGAN	74.17	4989	0.8430	3438	65.77	0.942
Car	IMGAN	54.13	2543	0.8970	12675	141.2	1.391
	Implicit-Grid	75.13	2549	0.8637	8670	209.3	1.416
	ShapeGAN	57.40	2625	0.9168	14400	225.2	0.787
	SDF-StyleGAN	73.60	2517	0.8438	6653	97.99	0.767
	IMGAN	83.43	3012	0.6236	907	51.70	1.022
ole	Implicit-Grid	85.66	3082	0.6318	1089	87.69	1.516
Table	ShapeGAN	76.26	3236	0.7069	1913	103.1	0.934
	SDF-StyleGAN	69.80	3119	0.6692	1729	39.03	1.061
Rifle	IMGAN	71.16	5834	0.6911	701	103.3	2.102
	Implicit-Grid	77.89	5921	0.6648	357	125.4	1.904
	ShapeGAN	46.74	6450	0.8446	3115	182.3	1.249
	SDF-StyleGAN	80.63	6091	0.7180	510	64.86	0.978

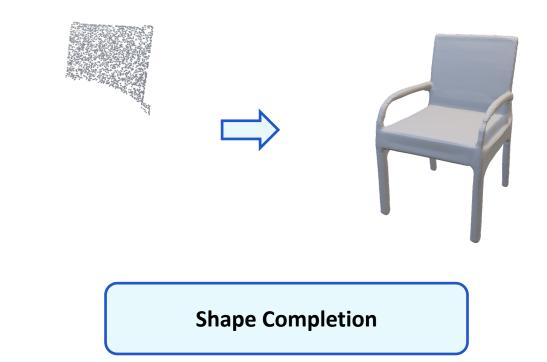
Qualitative Results

Qualitative comparison



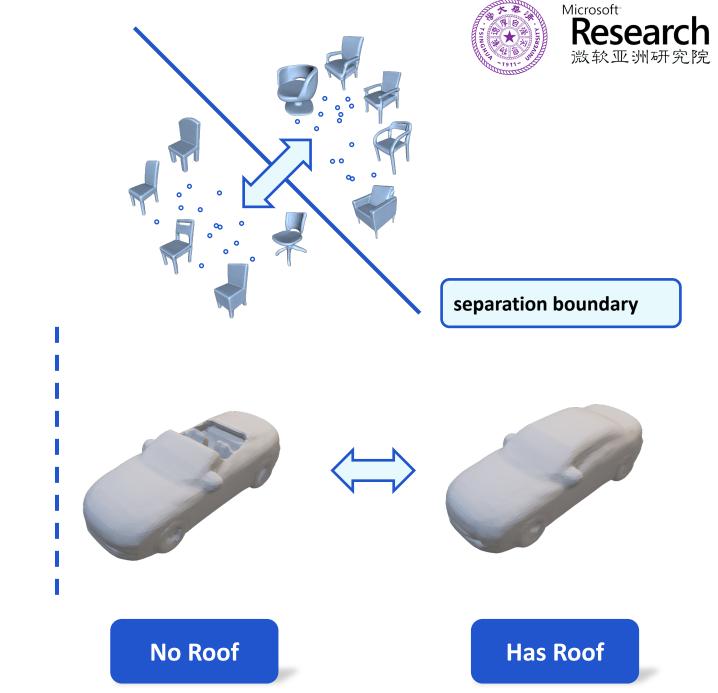
Applications

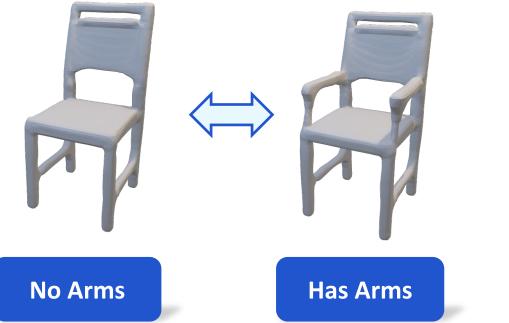
Single Image Based Reconstruction



Shape Style Edit

- InterfaceGAN [SYTZ20]
- Data label: from [MKC18]





Take-Away Messages

- SDF-StyleGAN: A GAN based method for 3D shape generation
 - Use strong generator backbone
 - Global and local discriminators
 - SDF gradients do matter
 - Better evaluation metric: calculate FID on shading images
- Welcome to visit our project page
 - <u>https://zhengxinyang.github.io/projects/SDF_stylegan.html</u>
 - For paper, code, model, and data

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

LOCALLY ATTENTIONAL SDF DIFFUSION FOR CONTROLLABLE 3D SHAPE GENERATION

XIN-YANG ZHENG¹, HAO PAN², PENG-SHUAI WANG³, XIN TONG², YANG LIU², HEUNG-YEUNG SHUM^{1,4}

¹TSINGHUA UNIVERSITY, ²MICROSOFT RESEARCH ASIA, ³PEKING UNIVERSITY, ⁴INTERNATIONAL DIGITAL ECONOMY ACADEMY

Controlled 3D shape Generation

• Conditioned 3D generation

- Text-based methods: CLIP-Forge [Sanghi et al. 2022], CLIP-Sculptor [Sanghi et al. 2023]
- Image-based methods: AutoSDF [Mittal et al. 2022], 3DILG [Zhang et a. 2022], DiffusionSDF [Chou et al. 2022]
- Lack of local controllability
- Sketch-based 3D reconstruction
 - Sketch2Model [Zhang et al. 2021] ,Sketch2Mesh [Guillard et al. 2021]...
 - Fail to handle one-to-many mapping between sketch and 3D shapes and result in low quality results

Our Contributions

- LAS-Diffusion: a 3D diffusion model for generating 3D shapes
 - High fidelity with rich geometric features

Our Contributions

- LAS-Diffusion: a 3D diffusion model for generating 3D shapes
 - High fidelity with rich geometric features
 - Efficient 2D sketch control for 3D shape generation

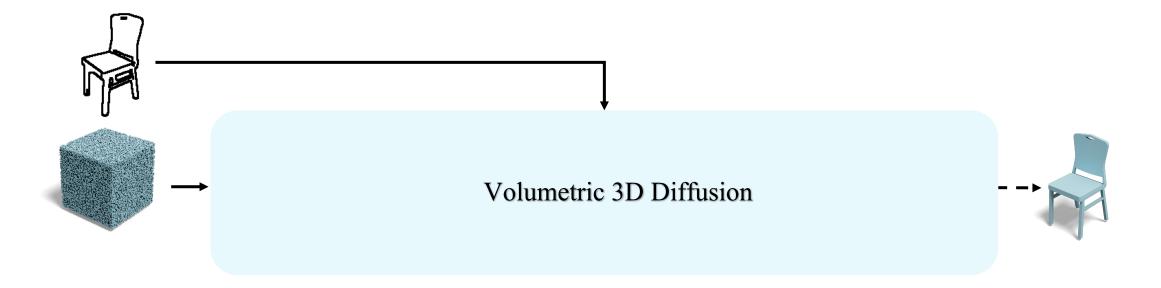
Our Contributions

- LAS-Diffusion: a 3D diffusion model for generating 3D shapes
 - High fidelity with rich geometry features
 - Efficient 2D sketch control for 3D shape generation
 - Capability for generating 3D shapes with unseen geometric features



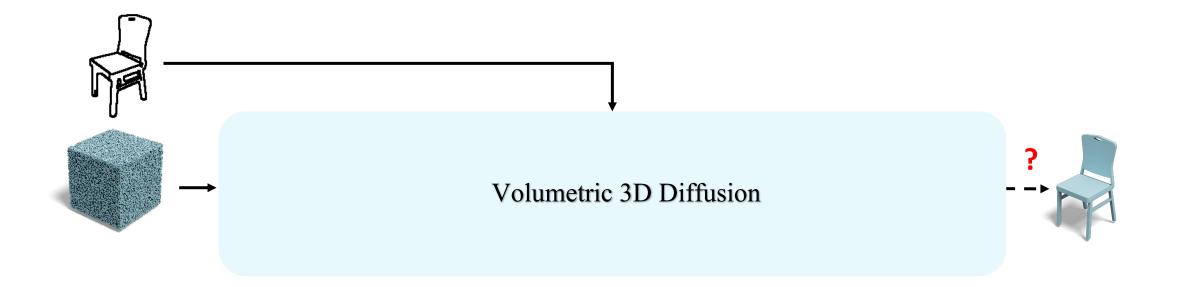
Our Method

- 3D shapes are modeled by signed distance functions (SDF)
- A volumetric 3D diffusion model for 3D SDF generation
- 2D sketch image as the condition of the diffusion model



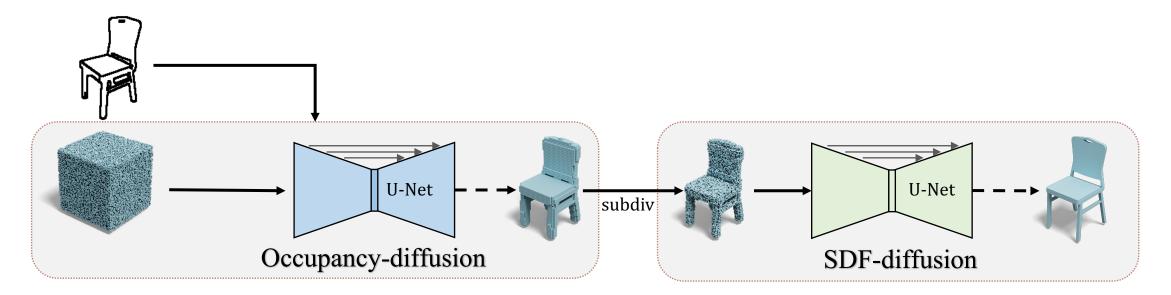
Key Challenge I

 How to generate high fidelity 3D shapes with various geometric features?



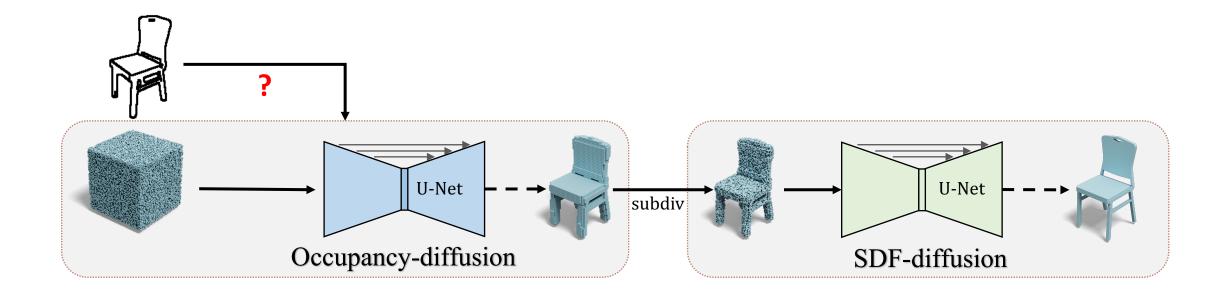
Our Key Idea I

- Two-stage diffusions
 - An occupancy diffusion for generating low-res occupancy field of 3D shapes
 - Subdividing the occupied voxels in high-res volume for SDF diffusion
 - An SDF diffusion for generating detailed shapes within the occupancy voxels



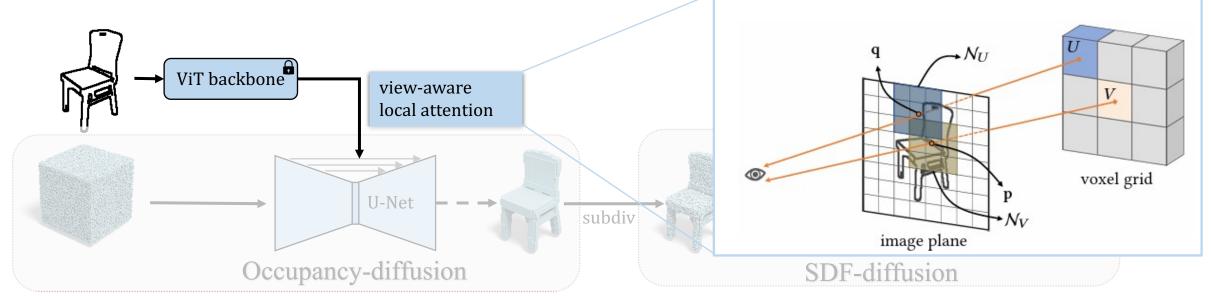
Key Challenge II

• How to control local geometric features of 3D shapes via 2D sketch?



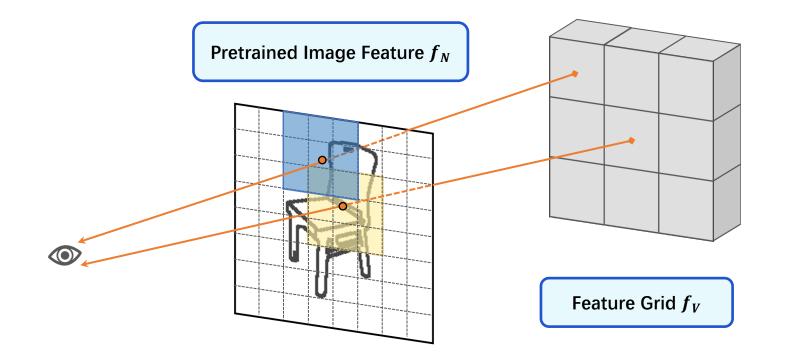
Our Key Idea II

- View-aware local attention scheme
 - Encoding sketch image into patch features
 - Projecting the diffusion feature volume into the image plane according to view direction of the sketch
 - Applying local attention for shape control



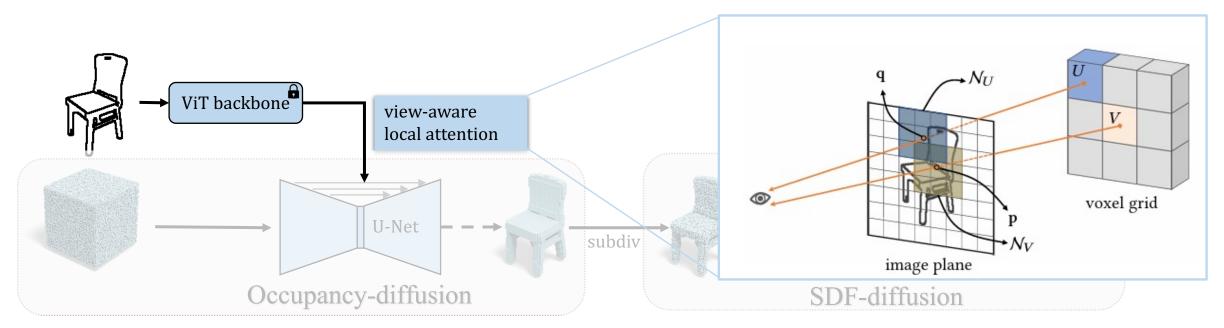
Our Key Idea II

• View-aware local attention scheme



Our Key Idea II

- View-aware local attention scheme
 - Manually specify one of five approximate view directions for input sketch
 - Left, front left, front, front right, right



Our Implementation

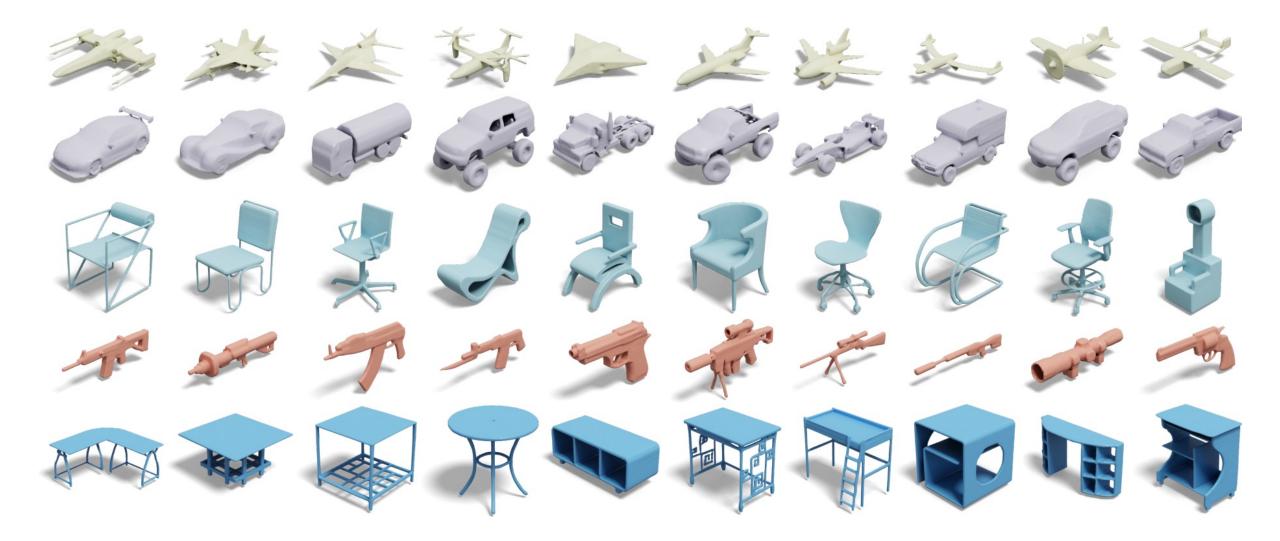
Dataset

- ShapeNet: chair, table, car, airplane, rifle (29K 3D shapes)
- Sketches: edge image by Canny detector on the rendered images
- Representation
 - 64³ for occupancy field
 - 128^3 for SDF
- Network design
 - UNet for occupancy diffusion
 - Octree-based UNet for SDF diffusion

• Training and inference

- 3 days for training on 8 V100 Nvidia GPUs (category agnostic)
- 10 sec for inference a 3D shape on Nvidia Geforce 1080 Ti
- Two stages are trained separately

Unconditional Generation Results



Quantitative evaluation

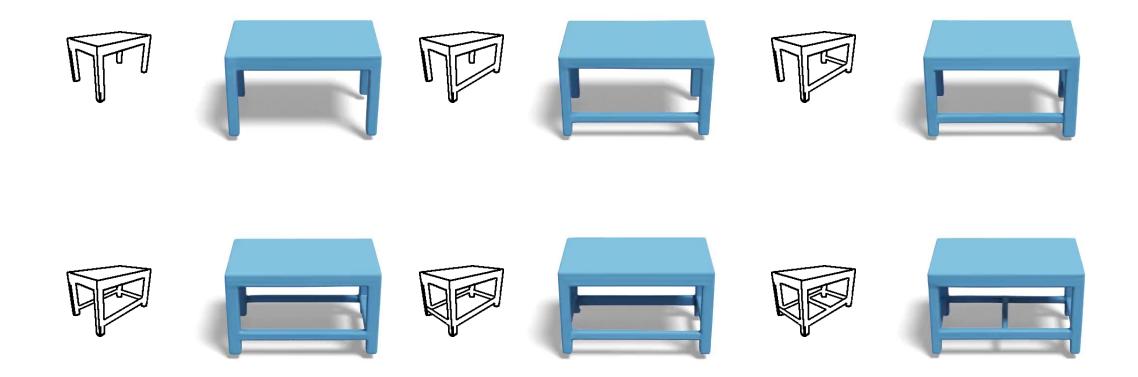
• Shading image based FID [Zheng et al. 2022]

$$FID = \frac{1}{20} \left[\sum_{i=1}^{20} \|\mu_{g}^{i} - \mu_{r}^{i}\|^{2} + \operatorname{Tr} \left(\Sigma_{g}^{i} + \Sigma_{r}^{i} - 2 \left(\Sigma_{r}^{i} \Sigma_{g}^{i} \right)^{1/2} \right) \right]$$

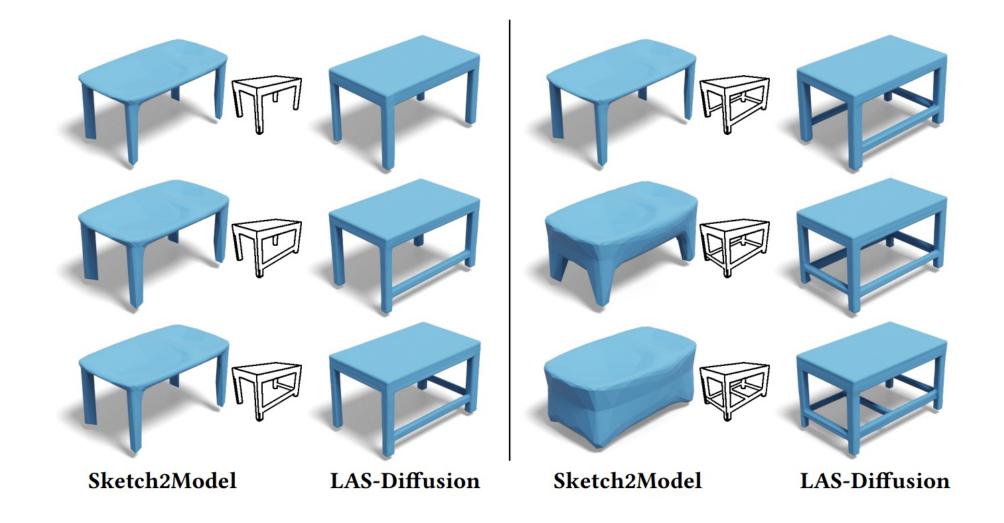
	Chair	Airplane	Car	Table	Rifle
IM-GAN	63.42	74.57	141.2	51.70	103.3
SDF-StyleGAN	36.48	65.77	97.99	39.03	64.86
Wavelet-Diffusion	28.64	35.05	N/A	30.27	N/A
Ours (unconditioned)	20.45	32.71	80.55	17.25	44.93
3DILG	31.64	54.38	164.15	54.13	77.74
Ours (conditioned)	21.55	43.08	86.34	17.41	70.39

• Refer to our paper for comparisons under other metrics (e.g. Cov, MMD)

Sketch Controlled Generation



Local Controllability



Model Robustness

Shape with Unseen Local Features

Take-Away Messages

- LAS-Diffusion: A diffusion-based method for 3D shape generation
 - Two-stage diffusion for generating diverse shapes with rich geometric features
 - View-aware local attention for better control and generalizability
- Welcome to visit our project page
 - <u>https://zhengxinyang.github.io/projects/LAS-Diffusion.html</u>
 - For paper, code, model, and data

Future Works

- Supporting shape appearance
- Scale to large and diverse data
 - Objaverse

Thank you!