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ISOSURFACING

Surface Mesh

𝑀 = (𝑉, 𝐹)
Fixed Scalar Field

𝑓 ∶ ℝ3 → 𝑅

𝑓 > 0

𝑓 = 0

𝑓 < 0

Gradient
𝐿𝑜𝑠𝑠 𝐿

Unknown Additional DoF offered by 

extra parameters.

Isosurfacing
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GENERATING MESH VIA GRADIENT-BASED OPTIMIZATION

an increasingly common paradigm in applications including

photogrammetry, generative modeling, and inverse physics

Why not directly optimize the implicit field?

𝐿𝑜𝑠𝑠 𝐿

Visual

Geometric

Physical

Efficient, benefit from mesh representation.

Ready to use in downstream applications.

Evaluating objectives on meshes:
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GENERATING MESH VIA GRADIENT-BASED OPTIMIZATION

an increasingly common paradigm in applications including

photogrammetry, generative modeling, and inverse physics

Why not directly optimizing the vertex positions of a mesh?

Surface Mesh

𝑀 = (𝑉, 𝐹)

𝜕𝐿

𝜕𝑀
𝐿𝑜𝑠𝑠 𝐿

Pixel2Mesh [Wang et al. 2018]

AtlasNet [Groueix et al. 2018]
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𝐿𝑜𝑠𝑠 𝐿

GENERATING MESH VIA GRADIENT-BASED OPTIMIZATION

Support Arbitrary topology.

Easy for machine learning algorithms.

Using implicit field to parametrize surface: 

Avoid topological errors.
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DESIRED ISOSURFACING METHOD

Isosurfacing

Accuracy + mesh quality.

Well-defined gradient differentiation.

𝝏𝑴

𝝏𝒇
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PREVIOUS METHODS FAIL TO SATISFY BOTH PROPERTIES

Neural Dual Contouring

Marching Cubes DMTet

Reference

Dual Contouring

Previous Methods

Convergence

Bad quality
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WE INTRODUCE FLEXICUBES

Reference

FlexiCubes

High-fidelity 

Good Quality 

Convergence 
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APPLICATIONS W/ FLEXICUBES

… and more!

Generative 3D Modeling

Animated 3D Reconstruction Physics Simulation

Mesh Regularizations3D Reconstruction from Images
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WHY IS PRIOR WORK NOT SUFFICIENT?
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MARCHING CUBES

Marching Cubes

Ground Truth

Signed Distance Field

Mesh vertices are constrained 

on lattice edges.

Grad.

𝑣𝑒𝑟𝑡𝑒𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝐷𝐹

𝑧𝑒𝑟𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔: 𝑢𝑒 =
𝑠 𝑥𝑖 𝑥𝑗 − 𝑠 𝑥𝑗 𝑥𝑖

𝑠 𝑥𝑖 − 𝑠 𝑥𝑗
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DEEP MARCHING TETRAHEDRA (DMTET)
𝑣𝑒𝑟𝑡𝑒𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝐷𝐹

𝑧𝑒𝑟𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔: 𝑢𝑒 =
𝑠 𝑥𝑖 𝑥𝑗 − 𝑠 𝑥𝑗 𝑥𝑖

𝑠 𝑥𝑖 − 𝑠 𝑥𝑗

Extracted 

Surface

GT Points
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MARCHING CUBES

Increase grid resolution

Not ideal for optimization settings.

Requires more SDF samples at every 

optimization step.

Excessive number of triangles 

-> bad for downstream applications.

Especially for neural implicits

s.t.

𝑠 = 𝑓𝜃(𝑥)

… 𝑠𝑥 ∈ ℝ3
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DUAL CONTOURING

Dual Contouring

Vertex placement is more adaptive to 

surface feature.

Grad. issue due to singularity in QEF.

𝑣𝑑

𝑢𝑒

Degenerated 

config. in DC
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DUAL CONTOURING

Dual Contouring

Vertex placement is more adaptive to 

surface feature.

Grad. issue due to singularity in QEF.

Produce non-manifold results

𝑣𝑑

𝑢𝑒
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OUR FORMULATIONS
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MAIN IDEA

Improve fitting with more elements?

More SDF quires.

More vertices.

More triangles.

Marching Cubes
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MAIN IDEA

Improve fitting with more elements?

Recall prior dual methods diverge during optimization.

Flexibility

additional flexibility!

Dual RepresentationMarching Cubes

Dual vertex
Corresponding 

primal vertices

Linear combination
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OUR FORMULATIONS

We introduce 3 types of parameters into Dual Marching Cubes:

• Interpolation weights to position dual vertices in space.

• Splitting weights to control how to split quadrilaterals into triangles.

• Deformation vector for spatial alignment.

… 𝑠𝑥 ∈ ℝ3

Appended as additional output 

channel in neural implicit.

new parameters
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OUR FORMULATION

Interpolation weights:

• 𝛼 per-cell adjusting interpolation along each edge.

Centroid With 𝛼

𝑢𝑒 =
𝜶𝒊𝑠 𝑥𝑖 𝑥𝑗 − 𝜶𝒋𝑠 𝑥𝑗 𝑥𝑖

𝜶𝒊𝑠 𝑥𝑖 − 𝜶𝒋𝑠 𝑥𝑗

Linear interpolation:
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OUR FORMULATION

Interpolation weights:

• 𝛼 per-cell adjusting interpolation along each edge.

• 𝛽 per-cell adjusting vertex position within each dual face

With 𝛽Centroid

𝑣𝑑 =
1

σ𝑢𝑒∈𝑉𝐸
𝜷𝒆

σ 𝜷𝒆𝑢𝑒

Weighted average: 
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With 𝛼 With 𝛽

+

INTERPOLATION WEIGHTS

• 𝛼 per-cell adjusting interpolation along each edge.

• 𝛽 per-cell adjusting vertex position within each dual face

=

Movable regions of the dual vertex.

Convex combinations
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INTERPOLATION WEIGHTS

• 𝛼 per-cell adjusting interpolation along each edge.

• 𝛽 per-cell adjusting vertex position within each dual face

𝛼, 𝛽 ∈ ℝ+ Preserves grad.

When a cell emits multiple dual vertices, 

they lies in non-overlapping convex hulls.
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EXTRACTING FACES
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SPLITTING WEIGHTS

Raw output from Dual Contouring are quadrilateral faces.

• Quad-split weights 𝛾 controlling how quads get split to tris.

At inference, we split 
along the diagonal with 

dominant γ 

During optimization, γ interpolates the 
surface between two possible splits.

𝑣𝑑
𝑐2

𝑣𝑑
𝑐3

𝑣𝑑
𝑐4

𝑣𝑑
𝑐1

𝑣𝑑

𝛾𝑐1
𝛾𝑐3

> 𝛾𝑐2
𝛾𝑐4
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ABLATING PARAMETERS

Baseline + interp. weights + grid deform + split weights
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EXTENSIONS

• Tetrahedral mesh extraction.

• Hierarchically adaptive meshing
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VALIDATIONS



30 FlexiCubes @ 64 resolution

FlexiCubes Reference Baselines

VISUAL COMPARISON
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QUANTITATIVE COMPARISONS OF RECONSTRUCTION ERROR

Extracting mesh from ground truth SDF

Reconstruct mesh via optimization 

Evaluated on dataset collected by Myles et al. [2014] which contains 79 highly-detailed, 
diverse 3D shapes.



32 

BETTER TRIANGLE QUALITY

Min angle of extracted triangles.

𝑀𝐶𝑆𝐷𝐹 𝐷𝐶 𝑁𝐷𝐶

𝑀𝐶 𝐷𝑀𝑇𝑒𝑡 𝑭𝒍𝒆𝒙𝒊𝑪𝒖𝒃𝒆𝒔
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MESH OPTIMIZATION WITH REGULARIZATIONS

We can further improve triangle quality by adding additional regularizers.

•  Equilateral Edge Length
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APPLICATIONS
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PHOTOGRAMMETRY THROUGH DIFFERENTIABLE RENDERING

Nvdiffrec jointly optimizes shape, materials, and lighting from images.
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PHOTOGRAMMETRY THROUGH DIFFERENTIABLE RENDERING

Extracting Triangular 3D Models, Materials, and Lighting From Images 

Munkberg et. al. CVPR 2022

Nvdiffrec w/ DMTet Nvdiffrec w/ FlexiCubes Reference

FlexiCubes improves geometric fidelity and mesh quality.
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PHOTOGRAMMETRY THROUGH DIFFERENTIABLE RENDERING

The outputs are compatible with standard graphics workflow.

Multiview inputs

Simulating reconstructed asset with physics in Omniverse
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MESH SIMPLIFICATION OF ANIMATED OBJECTS 

Appearance-Driven Automatic 3D Model Simplification

Hasselgren et. al. Eurographics Symposium on Rendering. 2021

End-to-end optimization Reference T-pose optimization

End-to-end optimization w/ FlexiCubes avoids mesh stretching.
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DIFFERENTIABLE PHYSICS SIMULATION WITH TET MESH

gradSim: Differentiable simulation for system identification and visuomotor control

Jatavallabhula and Macklin et. al. ICLR 2021
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DIFFERENTIABLE PHYSICS SIMULATION WITH TET MESH

gradSim: Differentiable simulation for system identification and visuomotor control

Jatavallabhula and Macklin et. al. ICLR 2021

Initialization Optimized Results w/ FlexiCubes Reference
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3D GENERATIVE MODELING FOR MESHES W/ GET3D

GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images 

Gao, Shen, Wang, Chen, Yin, Li, Litany, Gojcic, Fidler, NeurIPS 2022
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3D GENERATIVE MODELING FOR MESHES W/ GET3D
D
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Motorbike Chair Car

GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images 

Gao, Shen, Wang, Chen, Yin, Li, Litany, Gojcic, Fidler, NeurIPS 2022

GET3D w/ FlexiCubes generates meshes with better details and tessellation.
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3D GENERATIVE MODELING FOR MESHES W/ GET3D

GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images 

Gao, Shen, Wang, Chen, Yin, Li, Litany, Gojcic, Fidler, NeurIPS 2022

GET3D w/ FlexiCubes generates meshes with better details and tessellation.
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ADDING MESH REGULARIZATIONS

FlexiCubesMarching Cubes

Developability of triangle meshes

Stein et. al.  SIGGRAPH 2018

FlexiCubes supports optimizing regularizations defined on meshes.
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PERFORMANCE

Performance of Isosurfacing operations 

Performance of various application (1 iteration)
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LIMITATIONS AND FUTURE WORK

Limitations:

• Self-intersections

• Weaker guarantees of topological correctness in adaptive and tetrahedral meshing.

Future work:

• Integrate volumetric rendering with mesh-based representation.

• Extend to 4D spatiotemporal meshing.

• Integrate adaptive hierarchical meshing into generative modeling pipelines.
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THANK YOU FOR LISTENING!

Takeaways:

• FlexiCubes is designed for gradient-based mesh optimization.

• Incorporate additional DoFs into mesh extraction.

• Drop-in replacement for better mesh quality and geometric fidelity!

Populate your 3D world with assets generated w/ FlexiCubes!
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Visit our project page to explore 
additional results and learn more 

details!
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