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for pixel in image: 
  Li = [0, 0, 0] 
  ray = camera.generate_ray(pixel) 
  for depth in range(bounces): 
    hit = scene.trace_closest(ray) 
    Li += hit.material.shade(ray, hit) 
    ray = hit.material.sample(ray, hit) 
  film[pixel] += Li

Step 1: CPU 上的玩具渲染器
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kernel render(scene, camera, film): 
  Li = [0, 0, 0] 
  ray = camera.generate_ray(pixel) 
  for depth in range(bounces): 
    hit = scene.trace_closest(ray) 
    Li += hit.material.shade(ray, hit) 
    ray = hit.material.sample(ray, hit) 
  film[pixel] += Li 

gpu_device.dispatch(render, pixels)

Step 2: GPU 上的玩具渲染器

复杂度提升：着⾊器编写、资源管理、执⾏调度、数据交换…



Step 3.1: 丰富 GPU 渲染器的材质/光照/…

❌ 着⾊语⾔表达⼒不佳
• ⼤量的运⾏时分⽀/着⾊器变体？
• 如何动态扩展新插件？
• 如何⽀持 Shader Graph？



Step 3.2: ⽀持其他硬件/平台…
❌ 着⾊语⾔表达⼒不佳

❌ 分裂的 API 和着⾊语⾔
• 相同的逻辑编写 N 遍？
• 使⽤⼤量宏统⼀语法？
• 复杂的着⾊器交叉编译？



Step 4: 维护和性能优化…

❌ 着⾊语⾔表达⼒不佳

❌ 分裂的 API 和着⾊语⾔

❌ 维护复杂，优化困难，极易出错



Step 4: 维护和性能优化…

❌ 着⾊语⾔表达⼒不佳

❌ 分裂的 API 和着⾊语⾔

❌ 维护复杂，优化困难，极易出错 "
⼤
量
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性能低下的 Shader Virtual Machine

多平台的⼤量重复代码

繁杂的编译
/配置流程

混乱的宏开
关

扩展能⼒低下



❌ 着⾊语⾔表达⼒不佳

❌ 分裂的 API 和着⾊语⾔

❌ 维护复杂，优化困难，极易出错⾼性能

跨平台

可编程性



⾼性能

跨平台可编程性
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相关⼯作

• Slang [He et al. 2017] 

•扩展 HLSL，提供泛型和接⼝语法，⽤于多态编程与着⾊器特化 

•引⼊“参数块”功能以提升着⾊器参数绑定效率 
• Rodent [Pérard-Gayot et al. 2019] 

•利⽤ AnyDSL [Leißa et al. 2018] 的 Partial Evaluation 能⼒为每个场景特化渲染器 
• Dr.JIT [Jakob et al. 2022] 

•嵌⼊ C++ 和 Python 的追踪式的可微分领域特定语⾔（DSL） 

•渲染之外：Halide [Ragan-Kelley et al. 2012]、Taichi [Hu et al. 2019]
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⾼性能 跨平台可编程性

即时编译 特化领域特定语⾔ 硬件亲和性



可编程性

•嵌⼊式领域特定语⾔
•设备端与宿主端代码交互便利：参数绑定、布局兼容…
•⽀持⾼级抽象模式的语法元素，如动态多态、泛型、模板…
•复⽤宿主语⾔的类型检查与推断、提供丰富的内置函数…



跨平台

•利⽤抽象层实现“⼀次编写，各处运⾏”
•跨平台统⼀的运⾏时编程接⼝
•跨平台统⼀的着⾊器编程 DSL

•适配各平台特性，⽆需逐平台性能调优
•不同后端根据硬件平台特性，充分利⽤相应资源



⾼性能

•动态代码⽣成与编译优化
•良好的分层设计，粒度合适的低开销抽象
•⾼硬件亲和性的后端实现

•单指令多线程（SIMT）的编程模式
•根据硬件特性利⽤专有硬件和编译器指令



着⾊器编程 统⼀运⾏时

⾼质量后端实现

⾼性能 跨平台可编程性

即时编译 特化领域特定语⾔ 硬件亲和性



着⾊器编程 统⼀运⾏时

捕获

跟踪

追踪

抽象语法树

嵌⼊式 DSL

管理⽣成

派发抽象指令 设备接⼝

资源包装器

⾼性能 跨平台可编程性

即时编译 特化领域特定语⾔ 硬件亲和性

⾼质量后端实现

CUDA DirectX Metal LLVM ISPC



样例
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⌥ ⌅
1 $if (cond) { /*...*/ };
2 $if (cond) { /*...*/ } $else { /*...*/ };
3 $if (cond) { /*...*/ } $elif (cond2) { /*...*/ };
4 $while (cond) { /*...*/ };
5 $for (variable , n) { /*...*/ };
6 $for (variable , begin , end) { /*...*/ };
7 $for (variable , begin , end , step) { /*...*/ };
8 $loop { /*...*/ }; // infinite loop , unless $break �ed
9 $switch (variable) {
10 $case (value) { /*...*/ };
11 $default { /*...*/ };
12 };
13 $break; $continue;⌃ ⇧

Listing 3. Special macros for control flows in the DSL.

arithmetic, relational, and assignment operators of DSL variables for
basic computation in kernels. Exploiting operator overloading and
type traits, we furnish the DSLwith almost the same interfaces as the
original C++ syntax, together with static type checking, inference,
and conversion support, even when mixed with native types.⌥ ⌅

1 auto a = def(0u); // Var <uint > defined in DSL
2 auto b = def(1u); // Var <uint > defined in DSL
3
4 /* operators , assignments , and type inference */
5 auto c = a + b; // operator +: (uint , uint) -> uint
6 auto d = a < b; // operator <: (uint , uint) -> bool
7 b = a - c * 3u; // operator - and *, and assignment
8
9 /* static type check and conversion */
10 auto u = 1 + c; // literal int (1) converted to uint
11 // float3 (1.f) + u => compile -time error: float3 + uint⌃ ⇧
4.1.3 Control flows. In addition to arithmetic and assignment state-
ments, control �ows also play important roles in program construc-
tion. Unfortunately, they are not overloadable in C++, nor can we
detect and extract them within the language itself. Therefore, in
the DSL, we opt for special macros to imitate them (see Listing 3),
which are pre�xed by the $ sign, a rarely used but valid character
in identi�ers, to be told apart from the native C++ counterparts. We
will describe their implementation in Sec. 4.2.

4.1.4 Kernels and callable functions. L����R����� supports two
categories of device functions, namely, 1) Kernels (1D, 2D, or 3D),
which are entries to the parallelized computation tasks on the device;
and 2) Callables that are function objects invocable from kernels or
other callables. Both kinds are template classes that are constructible
from C++ functions or function objects including lambda expres-
sions. Again, leveraging CTAD guides, the template parameters can
optionally be omitted and deduced by the C++ compiler. At the code
generation stage in the backend, they are mapped and translated to
corresponding function entities in the target shading/programming
language, e.g., Kernels into __global__ functions and Callables into
__device__ functions in CUDA.

It is also worth mentioning that, since our DSL is itself valid
C++, ordinary C++ functions and function objects, including class
member functions and lambda expressions, are naturally available
too. When used together with the DSL, they act like macros that
are directly expended into the ASTs, without generating function
entities as Kernels and Callables. In other words, they are meta-
stages that control the assembly of the kernel ASTs, which can be

extremely powerful for composing higher-order abstraction patterns
as will be discussed in Sec. 4.3.
Listing 4 shows example callable and kernel functions written

in our DSL, which, in combination, write gradient color to an im-
age (i.e., 2D texture) in sRGB encoding. By exploiting type-traits
and de�ning deduction guides, the template arguments for types
Callable and Kernel2D are automatically inferred from the signa-
tures of the lambdas, e.g., deduced to be Callable<float3(float3)>
and Kernel2D<ImageView<float>>, respectively.⌥ ⌅

1 Callable to_srgb = []( Float3 x) {
2 $if (x <= 0.00031308f) {
3 x = 12.92f * x;
4 } $else {
5 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
6 };
7 return x;
8 };
9 Kernel2D fill = [&]( ImageFloat image) {
10 auto coord = dispatch_id ().xy();
11 auto size = make_float2(dispatch_size ().xy());
12 auto rg = make_float2(coord) / size;
13 // invoke the callable
14 auto srgb = to_srgb(make_float3(rg, 1.f));
15 image.write(coord , make_float4(srgb , 1.f));
16 };⌃ ⇧

Listing 4. An example code snippet using our DSL.

Note that for Kernels and Callables to correctly trace the ASTs,
parameters of the underlying de�nition functions must be wrapped
in Var<T>, or equivalently, use aliases such as Float3 and ImageFloat.

4.1.5 Built-in functions. Besides user-de�ned functions, we also
provide a rich library of built-in DSL functions. They are typically
intrinsic functions that are not possible (or at least not e�cient) to
be implemented in user code and hence must be supplied by the
framework. In L����R�����, built-in functions include

• Thread coordinate and launch con�guration queries, includ-
ing block_id, thread_id, dispatch_size, and dispatch_id;

• Mathematical routines, such as max, abs, sin, pow, and sqrt;
• Resource accessing andmodi�cation methods, such as texture
sampling, bu�er read/write, and ray intersection;

• Variable construction and type conversion, e.g., def<T> for
making variable copies, make_int3 for creating 3D integer
vectors, and as<T> for bitwise type casting; and

• Optimization hints for backend compilers, which currently
consist of assume and unreachable.

We exploit concepts in C++20 to constrain the signatures of built-
in functions such that the compiler would not confuse themwith the
host functions. In the DSL, invocations to themwill record CallExprs
with special tags in the AST.

During code generation, the backend maps the built-in invocation
nodes to platform-speci�c code. Simple functions like thread_id

and abs are directly mapped to shader intrinsics, possibly backed
by hardware instructions, while the more complicated ones, such
as ray intersection, might be forwarded to pre-de�ned functions or
even external libraries. Also, on platforms without native support
for some functionalities, we have to simulate the corresponding
semantics with software implementations. For example, on Metal,

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.
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• Fine granularity
• Hardware affinity
• Native control flows
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⌥ ⌅
1 // initialize the device
2 auto device = context.create_device(�cuda�);
3
4 // define the rendering kernel
5 Kernel2D kernel = [&]( ImageFloat image) {
6 auto pos = dispatch_id ().xy();
7 auto color = sin(make_float2(p)) * .5f + .5f;
8 image.write(pos , make_float4(color , 1.f, 1.f));
9 };
10
11 // create resources on the device and on the host
12 auto size = make_uint2 (1024u);
13 auto render = device.compile(kernel );
14 auto image = device.create_image <float >(BYTE4 , size);
15 auto host_image = std::vector <float4 >(size.x * size.y);
16
17 // create a stream for submitting tasks
18 auto stream = device.create_stream ();
19
20 // dispatch tasks and wait for completion
21 stream << render(image ). dispatch(size)
22 << image.copy_to(host_image.data ())
23 << synchronize ();⌃ ⇧

Listing 1. A short example program with our framework.

code. They are strongly and statically typed modern C++ objects,
which not only simplify the generation of commands via convenient
member methods but also support close interaction with the DSL.
Moreover, with the resource usage information in kernels and com-
mands, the runtime automatically probes the dependencies between
commands and re-schedules them to improve hardware utilization.

3.2.3 Backend implementations. The backends are the �nal realizers
of computation. They generate concrete shader sources from the
ASTs and compile them into native shaders. They implement the
virtual device interfaces with low-level platform-dependent API
calls and translate the intermediate command representations into
native kernel launches and command dispatches.

Currently, we have 5 backends, including 3 GPU backends based
on CUDA, Metal, and DirectX, respectively, a scalar CPU backend
on LLVM, and a vectorized CPU backend on ISPC.

4 EMBEDDED DOMAIN-SPECIFIC LANGUAGE
To enable a uni�ed experience of kernel authoring, we implement
an embedded domain-speci�c language in C++, which is designed
to maximize familiarity with native C++ and other popular shading
languages. Meanwhile, embedding the language in pure C++ greatly
simpli�es the compilation process and allows a seamless interac-
tion with other parts of the system as well as powerful, high-level
programming patterns hardly seen in previous work.

In this section, we will discuss the basic components and usages
of the DSL, introduce the techniques behind the scene to materialize
and drive the syntax and compilation, and describe some high-level
abstraction patterns to showcase its rich expressiveness.

4.1 Basic Components and Usages
The embedded language is designed to enable a �uent experience
authoring kernels and blur the boundaries with the host code. To
achieve this, we provide language constructs similar to the original
C++, honoring its features and idioms.

⌥ ⌅
1 template <typename T>
2 class Var { /*...*/ };
3
4 /* aliases for commonly used instantiations */
5 using Int = Var <int >;
6 using Int2 = Var <int2 >;
7 using Int3 = Var <int3 >;
8 using Int4 = Var <int4 >;
9 /* ... */
10
11 /* aliases for runtime resources */
12 using BufferInt = Var <Buffer <int >>;
13 using ImageInt = Var <Image <int >>;
14 /* ... */⌃ ⇧

Listing 2. Types of the variables in the DSL.

4.1.1 Types and variables. As in most imperative programming
languages, the basic building blocks of kernels in our DSL are vari-
ables, which are typed as wrapper templates upon the scalar types
(i.e., int, uint, float, and bool) and the derived vector and matrix
types (i.e., int2, bool3, float3x3, etc.) resembling those in popular
shading languages, as well as the runtime resources aforementioned
in Sec. 5.2.

Listing 2 displays the de�nition of the Var<T> template, which is
the core basis for all the behind-scene techniques of AST tracing and
recording that are revealed in Sec. 4.2. Unlike vanilla C++ variables,
the class is substantially designed as proxies to kernel variables,
whose operators and methods are overloaded to only record the
operations rather than actually perform the calculation. Also, for
users’ convenience, we pre-de�ne aliases to the most commonly
used instantiations, which are in a capitalized naming convention,
clearly distinguishable from the native types.
De�nitions of DSL variables are the same as ordinary objects

in C++: the name of the variable preceded by its type, optionally
followed by an initializer. Leveraging user-de�ned guides for the
class template argument deduction (CTAD) in C++, we can omit
explicit speci�cations of the template arguments of the Var class
and let the compiler automatically deduce them from the initializers,
analogous to the auto keyword. Besides, implemented in pure C++,
the DSL types are naturally allowed as class members, function
parameters, and return types, even in a mixture with other C++
types. The following listing shows some of the use cases.⌥ ⌅

1 /* defining local variables as natively in C++ */
2 Int a; // an int variable without initializers
3 Float b = 1.f; // a float variable initialized to 1.0f
4 Int c = a; // initialized with other variables , or
5 Bool2 d{true , false }; // with an initializer list
6
7 /* defining local variables with type deduction */
8 Var e = 256u; // deduced to UInt by user -defined CTAD
9 auto f = Var {256u}; // alternative style 1: ad hoc Var
10 auto g = def (256u); // alternative style 2: def helper
11
12 /* in a function signature mixed with ordinary types */
13 Bool3 test(BufferFloat b, int static_index) { /*...*/ }
14
15 /* as class members , mixable with ordinary types */
16 class Bar { std:: string name; int id; Float3 v; };⌃ ⇧
4.1.2 Expressions and statements. Program logic is assembled by
transforming and transfering data held in variables. We provide

ACM Trans. Graph., Vol. 41, No. 6, Article 232. Publication date: December 2022.
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⌥ ⌅
1 $if (cond) { /*...*/ };
2 $if (cond) { /*...*/ } $else { /*...*/ };
3 $if (cond) { /*...*/ } $elif (cond2) { /*...*/ };
4 $while (cond) { /*...*/ };
5 $for (variable , n) { /*...*/ };
6 $for (variable , begin , end) { /*...*/ };
7 $for (variable , begin , end , step) { /*...*/ };
8 $loop { /*...*/ }; // infinite loop , unless $break �ed
9 $switch (variable) {
10 $case (value) { /*...*/ };
11 $default { /*...*/ };
12 };
13 $break; $continue;⌃ ⇧

Listing 3. Special macros for control flows in the DSL.

arithmetic, relational, and assignment operators of DSL variables for
basic computation in kernels. Exploiting operator overloading and
type traits, we furnish the DSLwith almost the same interfaces as the
original C++ syntax, together with static type checking, inference,
and conversion support, even when mixed with native types.⌥ ⌅

1 auto a = def(0u); // Var <uint > defined in DSL
2 auto b = def(1u); // Var <uint > defined in DSL
3
4 /* operators , assignments , and type inference */
5 auto c = a + b; // operator +: (uint , uint) -> uint
6 auto d = a < b; // operator <: (uint , uint) -> bool
7 b = a - c * 3u; // operator - and *, and assignment
8
9 /* static type check and conversion */
10 auto u = 1 + c; // literal int (1) converted to uint
11 // float3 (1.f) + u => compile -time error: float3 + uint⌃ ⇧
4.1.3 Control flows. In addition to arithmetic and assignment state-
ments, control �ows also play important roles in program construc-
tion. Unfortunately, they are not overloadable in C++, nor can we
detect and extract them within the language itself. Therefore, in
the DSL, we opt for special macros to imitate them (see Listing 3),
which are pre�xed by the $ sign, a rarely used but valid character
in identi�ers, to be told apart from the native C++ counterparts. We
will describe their implementation in Sec. 4.2.

4.1.4 Kernels and callable functions. L����R����� supports two
categories of device functions, namely, 1) Kernels (1D, 2D, or 3D),
which are entries to the parallelized computation tasks on the device;
and 2) Callables that are function objects invocable from kernels or
other callables. Both kinds are template classes that are constructible
from C++ functions or function objects including lambda expres-
sions. Again, leveraging CTAD guides, the template parameters can
optionally be omitted and deduced by the C++ compiler. At the code
generation stage in the backend, they are mapped and translated to
corresponding function entities in the target shading/programming
language, e.g., Kernels into __global__ functions and Callables into
__device__ functions in CUDA.

It is also worth mentioning that, since our DSL is itself valid
C++, ordinary C++ functions and function objects, including class
member functions and lambda expressions, are naturally available
too. When used together with the DSL, they act like macros that
are directly expended into the ASTs, without generating function
entities as Kernels and Callables. In other words, they are meta-
stages that control the assembly of the kernel ASTs, which can be

extremely powerful for composing higher-order abstraction patterns
as will be discussed in Sec. 4.3.
Listing 4 shows example callable and kernel functions written

in our DSL, which, in combination, write gradient color to an im-
age (i.e., 2D texture) in sRGB encoding. By exploiting type-traits
and de�ning deduction guides, the template arguments for types
Callable and Kernel2D are automatically inferred from the signa-
tures of the lambdas, e.g., deduced to be Callable<float3(float3)>
and Kernel2D<ImageView<float>>, respectively.⌥ ⌅

1 Callable to_srgb = []( Float3 x) {
2 $if (x <= 0.00031308f) {
3 x = 12.92f * x;
4 } $else {
5 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
6 };
7 return x;
8 };
9 Kernel2D fill = [&]( ImageFloat image) {
10 auto coord = dispatch_id ().xy();
11 auto size = make_float2(dispatch_size ().xy());
12 auto rg = make_float2(coord) / size;
13 // invoke the callable
14 auto srgb = to_srgb(make_float3(rg, 1.f));
15 image.write(coord , make_float4(srgb , 1.f));
16 };⌃ ⇧

Listing 4. An example code snippet using our DSL.

Note that for Kernels and Callables to correctly trace the ASTs,
parameters of the underlying de�nition functions must be wrapped
in Var<T>, or equivalently, use aliases such as Float3 and ImageFloat.

4.1.5 Built-in functions. Besides user-de�ned functions, we also
provide a rich library of built-in DSL functions. They are typically
intrinsic functions that are not possible (or at least not e�cient) to
be implemented in user code and hence must be supplied by the
framework. In L����R�����, built-in functions include

• Thread coordinate and launch con�guration queries, includ-
ing block_id, thread_id, dispatch_size, and dispatch_id;

• Mathematical routines, such as max, abs, sin, pow, and sqrt;
• Resource accessing andmodi�cation methods, such as texture
sampling, bu�er read/write, and ray intersection;

• Variable construction and type conversion, e.g., def<T> for
making variable copies, make_int3 for creating 3D integer
vectors, and as<T> for bitwise type casting; and

• Optimization hints for backend compilers, which currently
consist of assume and unreachable.

We exploit concepts in C++20 to constrain the signatures of built-
in functions such that the compiler would not confuse themwith the
host functions. In the DSL, invocations to themwill record CallExprs
with special tags in the AST.

During code generation, the backend maps the built-in invocation
nodes to platform-speci�c code. Simple functions like thread_id

and abs are directly mapped to shader intrinsics, possibly backed
by hardware instructions, while the more complicated ones, such
as ray intersection, might be forwarded to pre-de�ned functions or
even external libraries. Also, on platforms without native support
for some functionalities, we have to simulate the corresponding
semantics with software implementations. For example, on Metal,
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⌥ ⌅
1 $if (cond) { /*...*/ };
2 $if (cond) { /*...*/ } $else { /*...*/ };
3 $if (cond) { /*...*/ } $elif (cond2) { /*...*/ };
4 $while (cond) { /*...*/ };
5 $for (variable , n) { /*...*/ };
6 $for (variable , begin , end) { /*...*/ };
7 $for (variable , begin , end , step) { /*...*/ };
8 $loop { /*...*/ }; // infinite loop , unless $break �ed
9 $switch (variable) {
10 $case (value) { /*...*/ };
11 $default { /*...*/ };
12 };
13 $break; $continue;⌃ ⇧

Listing 3. Special macros for control flows in the DSL.

arithmetic, relational, and assignment operators of DSL variables for
basic computation in kernels. Exploiting operator overloading and
type traits, we furnish the DSLwith almost the same interfaces as the
original C++ syntax, together with static type checking, inference,
and conversion support, even when mixed with native types.⌥ ⌅

1 auto a = def(0u); // Var <uint > defined in DSL
2 auto b = def(1u); // Var <uint > defined in DSL
3
4 /* operators , assignments , and type inference */
5 auto c = a + b; // operator +: (uint , uint) -> uint
6 auto d = a < b; // operator <: (uint , uint) -> bool
7 b = a - c * 3u; // operator - and *, and assignment
8
9 /* static type check and conversion */
10 auto u = 1 + c; // literal int (1) converted to uint
11 // float3 (1.f) + u => compile -time error: float3 + uint⌃ ⇧
4.1.3 Control flows. In addition to arithmetic and assignment state-
ments, control �ows also play important roles in program construc-
tion. Unfortunately, they are not overloadable in C++, nor can we
detect and extract them within the language itself. Therefore, in
the DSL, we opt for special macros to imitate them (see Listing 3),
which are pre�xed by the $ sign, a rarely used but valid character
in identi�ers, to be told apart from the native C++ counterparts. We
will describe their implementation in Sec. 4.2.

4.1.4 Kernels and callable functions. L����R����� supports two
categories of device functions, namely, 1) Kernels (1D, 2D, or 3D),
which are entries to the parallelized computation tasks on the device;
and 2) Callables that are function objects invocable from kernels or
other callables. Both kinds are template classes that are constructible
from C++ functions or function objects including lambda expres-
sions. Again, leveraging CTAD guides, the template parameters can
optionally be omitted and deduced by the C++ compiler. At the code
generation stage in the backend, they are mapped and translated to
corresponding function entities in the target shading/programming
language, e.g., Kernels into __global__ functions and Callables into
__device__ functions in CUDA.

It is also worth mentioning that, since our DSL is itself valid
C++, ordinary C++ functions and function objects, including class
member functions and lambda expressions, are naturally available
too. When used together with the DSL, they act like macros that
are directly expended into the ASTs, without generating function
entities as Kernels and Callables. In other words, they are meta-
stages that control the assembly of the kernel ASTs, which can be

extremely powerful for composing higher-order abstraction patterns
as will be discussed in Sec. 4.3.
Listing 4 shows example callable and kernel functions written

in our DSL, which, in combination, write gradient color to an im-
age (i.e., 2D texture) in sRGB encoding. By exploiting type-traits
and de�ning deduction guides, the template arguments for types
Callable and Kernel2D are automatically inferred from the signa-
tures of the lambdas, e.g., deduced to be Callable<float3(float3)>
and Kernel2D<ImageView<float>>, respectively.⌥ ⌅

1 Callable to_srgb = []( Float3 x) {
2 $if (x <= 0.00031308f) {
3 x = 12.92f * x;
4 } $else {
5 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
6 };
7 return x;
8 };
9 Kernel2D fill = [&]( ImageFloat image) {
10 auto coord = dispatch_id ().xy();
11 auto size = make_float2(dispatch_size ().xy());
12 auto rg = make_float2(coord) / size;
13 // invoke the callable
14 auto srgb = to_srgb(make_float3(rg, 1.f));
15 image.write(coord , make_float4(srgb , 1.f));
16 };⌃ ⇧

Listing 4. An example code snippet using our DSL.

Note that for Kernels and Callables to correctly trace the ASTs,
parameters of the underlying de�nition functions must be wrapped
in Var<T>, or equivalently, use aliases such as Float3 and ImageFloat.

4.1.5 Built-in functions. Besides user-de�ned functions, we also
provide a rich library of built-in DSL functions. They are typically
intrinsic functions that are not possible (or at least not e�cient) to
be implemented in user code and hence must be supplied by the
framework. In L����R�����, built-in functions include

• Thread coordinate and launch con�guration queries, includ-
ing block_id, thread_id, dispatch_size, and dispatch_id;

• Mathematical routines, such as max, abs, sin, pow, and sqrt;
• Resource accessing andmodi�cation methods, such as texture
sampling, bu�er read/write, and ray intersection;

• Variable construction and type conversion, e.g., def<T> for
making variable copies, make_int3 for creating 3D integer
vectors, and as<T> for bitwise type casting; and

• Optimization hints for backend compilers, which currently
consist of assume and unreachable.

We exploit concepts in C++20 to constrain the signatures of built-
in functions such that the compiler would not confuse themwith the
host functions. In the DSL, invocations to themwill record CallExprs
with special tags in the AST.

During code generation, the backend maps the built-in invocation
nodes to platform-speci�c code. Simple functions like thread_id

and abs are directly mapped to shader intrinsics, possibly backed
by hardware instructions, while the more complicated ones, such
as ray intersection, might be forwarded to pre-de�ned functions or
even external libraries. Also, on platforms without native support
for some functionalities, we have to simulate the corresponding
semantics with software implementations. For example, on Metal,
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⌥ ⌅
1 $if (cond) { /*...*/ };
2 $if (cond) { /*...*/ } $else { /*...*/ };
3 $if (cond) { /*...*/ } $elif (cond2) { /*...*/ };
4 $while (cond) { /*...*/ };
5 $for (variable , n) { /*...*/ };
6 $for (variable , begin , end) { /*...*/ };
7 $for (variable , begin , end , step) { /*...*/ };
8 $loop { /*...*/ }; // infinite loop , unless $break �ed
9 $switch (variable) {
10 $case (value) { /*...*/ };
11 $default { /*...*/ };
12 };
13 $break; $continue;⌃ ⇧

Listing 3. Special macros for control flows in the DSL.

arithmetic, relational, and assignment operators of DSL variables for
basic computation in kernels. Exploiting operator overloading and
type traits, we furnish the DSLwith almost the same interfaces as the
original C++ syntax, together with static type checking, inference,
and conversion support, even when mixed with native types.⌥ ⌅

1 auto a = def(0u); // Var <uint > defined in DSL
2 auto b = def(1u); // Var <uint > defined in DSL
3
4 /* operators , assignments , and type inference */
5 auto c = a + b; // operator +: (uint , uint) -> uint
6 auto d = a < b; // operator <: (uint , uint) -> bool
7 b = a - c * 3u; // operator - and *, and assignment
8
9 /* static type check and conversion */
10 auto u = 1 + c; // literal int (1) converted to uint
11 // float3 (1.f) + u => compile -time error: float3 + uint⌃ ⇧
4.1.3 Control flows. In addition to arithmetic and assignment state-
ments, control �ows also play important roles in program construc-
tion. Unfortunately, they are not overloadable in C++, nor can we
detect and extract them within the language itself. Therefore, in
the DSL, we opt for special macros to imitate them (see Listing 3),
which are pre�xed by the $ sign, a rarely used but valid character
in identi�ers, to be told apart from the native C++ counterparts. We
will describe their implementation in Sec. 4.2.

4.1.4 Kernels and callable functions. L����R����� supports two
categories of device functions, namely, 1) Kernels (1D, 2D, or 3D),
which are entries to the parallelized computation tasks on the device;
and 2) Callables that are function objects invocable from kernels or
other callables. Both kinds are template classes that are constructible
from C++ functions or function objects including lambda expres-
sions. Again, leveraging CTAD guides, the template parameters can
optionally be omitted and deduced by the C++ compiler. At the code
generation stage in the backend, they are mapped and translated to
corresponding function entities in the target shading/programming
language, e.g., Kernels into __global__ functions and Callables into
__device__ functions in CUDA.

It is also worth mentioning that, since our DSL is itself valid
C++, ordinary C++ functions and function objects, including class
member functions and lambda expressions, are naturally available
too. When used together with the DSL, they act like macros that
are directly expended into the ASTs, without generating function
entities as Kernels and Callables. In other words, they are meta-
stages that control the assembly of the kernel ASTs, which can be

extremely powerful for composing higher-order abstraction patterns
as will be discussed in Sec. 4.3.
Listing 4 shows example callable and kernel functions written

in our DSL, which, in combination, write gradient color to an im-
age (i.e., 2D texture) in sRGB encoding. By exploiting type-traits
and de�ning deduction guides, the template arguments for types
Callable and Kernel2D are automatically inferred from the signa-
tures of the lambdas, e.g., deduced to be Callable<float3(float3)>
and Kernel2D<ImageView<float>>, respectively.⌥ ⌅

1 Callable to_srgb = []( Float3 x) {
2 $if (x <= 0.00031308f) {
3 x = 12.92f * x;
4 } $else {
5 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
6 };
7 return x;
8 };
9 Kernel2D fill = [&]( ImageFloat image) {
10 auto coord = dispatch_id ().xy();
11 auto size = make_float2(dispatch_size ().xy());
12 auto rg = make_float2(coord) / size;
13 // invoke the callable
14 auto srgb = to_srgb(make_float3(rg, 1.f));
15 image.write(coord , make_float4(srgb , 1.f));
16 };⌃ ⇧

Listing 4. An example code snippet using our DSL.

Note that for Kernels and Callables to correctly trace the ASTs,
parameters of the underlying de�nition functions must be wrapped
in Var<T>, or equivalently, use aliases such as Float3 and ImageFloat.

4.1.5 Built-in functions. Besides user-de�ned functions, we also
provide a rich library of built-in DSL functions. They are typically
intrinsic functions that are not possible (or at least not e�cient) to
be implemented in user code and hence must be supplied by the
framework. In L����R�����, built-in functions include

• Thread coordinate and launch con�guration queries, includ-
ing block_id, thread_id, dispatch_size, and dispatch_id;

• Mathematical routines, such as max, abs, sin, pow, and sqrt;
• Resource accessing andmodi�cation methods, such as texture
sampling, bu�er read/write, and ray intersection;

• Variable construction and type conversion, e.g., def<T> for
making variable copies, make_int3 for creating 3D integer
vectors, and as<T> for bitwise type casting; and

• Optimization hints for backend compilers, which currently
consist of assume and unreachable.

We exploit concepts in C++20 to constrain the signatures of built-
in functions such that the compiler would not confuse themwith the
host functions. In the DSL, invocations to themwill record CallExprs
with special tags in the AST.

During code generation, the backend maps the built-in invocation
nodes to platform-speci�c code. Simple functions like thread_id

and abs are directly mapped to shader intrinsics, possibly backed
by hardware instructions, while the more complicated ones, such
as ray intersection, might be forwarded to pre-de�ned functions or
even external libraries. Also, on platforms without native support
for some functionalities, we have to simulate the corresponding
semantics with software implementations. For example, on Metal,
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auto l = def<float3>(); 
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⌥ ⌅
1 // with LuisaRender
2 stream << texture.copy_from(buffer );
3
4 // with native CUDA
5 CUDA_MEMCPY3D copy {};
6 copy.srcMemoryType = CU_MEMORYTYPE_DEVICE;
7 copy.srcDevice = /* buffer address */;
8 copy.srcPitch = /* texture pitch (in bytes) */;
9 copy.srcHeight = /* texture height (in texels) */;
10 copy.dstMemoryType = CU_MEMORYTYPE_ARRAY;
11 copy.dstArray = /* texture handle */;
12 copy.WidthInBytes = /* texture pitch (in bytes) */;
13 copy.Height = /* texture height (in texels) */;
14 copy.Depth = /* texture depth (in texels) */;
15 cuMemcpy3DAsync (&copy , /* stream handle */);⌃ ⇧
Listing 15. Translation of the bu�er-to-texture copying command in L����
�R����� to the native CUDA driver API.

defects and complement missing functionalities in the backend
shading languages and compilers. For example, the ISPC compiler
does not allow visiting structure members of rvalues, so we detect
and have special handling for such cases by transforming them into
built-in function calls. ISPC is also sensitive to variables de�ned in
outer scopes but used in branches because it has to generate SIMD
masks for their loads and stores. Therefore, we analyze and tweak
the de�nition site of each local variable, narrowing its lifetime scopes
and decreasing the number of necessary masks, which brings up
to 100⇥ faster compilation and 5⇥ runtime performance boost (e.g.,
on M1 Max with the mega-kernel path integrator, this optimization
reduces the compilation time from 2152.3s to 23.9s for the Co�ee
scene and the 1024spp rendering time decreases from 2627.2s to
493.6s at the resolution of 1200 ⇥ 1800).

Data layouts are another important aspect to pay attention to.
We allow users to specify the alignments of structures, which is
easily realizable in Metal and CUDAwith the built-in support for the
alignas speci�er. However, such language constructs are missing
in HLSL and ISPC, so we have to manually pad the structures to
achieve a conforming layout. Moreover, the intricate constant bu�er
packing rules in DirectX requires correct transformation of the input
host data. We bypass these rules by using argument bu�ers.

6.3 Shader Compilation
The generated shader sources are JIT compiled, typically via in-
memory compilation interfaces (e.g., LLVMMCJIT, NVRTC, and the
DirectX Shader Compiler) to elide disk I/O. We ensure a thread-safe
design to allow accelerated parallel compilation with multithread-
ing. Also, by employing memory and disk caches, redundant code
generation and compilation for identical kernels are eliminated,
further reducing the runtime overhead.

7 APPLICATIONS AND EXTENSIONS
7.1 Physically Based O�line Renderer
To better understand and demonstrate the practicality of L����R���
���, we build a high-performance cross-platform physically based
o�ine renderer atop, utilizing almost all the available features, con-
structs, and patterns provided by the framework.

7.1.1 Architecture design. The high-level interfaces of the renderer
are expressed as a node system, where the scenes are organized
as graphs with component nodes, such as cameras, shapes, and
materials, each tracking reference to child nodes as well as necessary
parameters and resource descriptors (e.g., paths to textures). To
maximize the extensibility of the renderer, all the components are
implemented as decoupled, dynamically loaded plug-ins, so that
users can freely add new functionalities to the renderer without
modifying and rebuilding the entire application.
After loading the scene, a build process instantiates the scene

graph into a data-oriented pipeline on a speci�ed backend device.
With the embedded DSL enabling the powerful multiple-stage pro-
gramming capability (discussed in Sec. 4.2), the scene components,
each responsible for amodular functionality in the renderer, are actu-
ally playing the roles of AST builders, expanding the corresponding
logic. The system fuses the nodes into �attened rendering kernels,
while automatically tracking resources in use and scheduling an
optimized execution order.
In other words, we provide a �exible and easy-to-use interface

and clean implementation comparable to research- and education-
oriented CPU renderers that heavily exploit dynamism and polymor-
phism, while achieving much better performance across platforms.
Sec. 8 gives the comparison with several popular open-source re-
search and production renderers.

7.1.2 Di�erentiable rendering. Beyond the conventional forward
rendering workloads, inverse rendering, typically via physically
based di�erentiable rendering techniques, is arousing growing at-
tention and interest both in academia and industry nowadays. There-
fore, we also equip our renderer with two di�erential light transport
algorithms, namely Radiative Backpropagation [Nimier-David et al.
2020] and Path Replay Backpropagation [Vicini et al. 2021], both im-
plemented as integrator plug-ins. We showcase an inverse rendering
example in Sec. 8.2.2.

7.2 Python Frontend
The layered architecture of our system well decouples di�erent lev-
els of abstraction and thus enables extending and replacing speci�c
layers while reusing the others. We provide a Python frontend for
fast prototyping, which binds to the same runtime, AST, and back-
end layers as the C++ frontend but replaces the embedded DSL and
resource wrappers with a re-implementation in pure Python.
Being a dynamic language, Python allows us to inspect the user

source code and parse it into ASTs. Therefore, di�erent from the
tracing strategy in C++, we directly obtain and traverse the ASTs
of Python functions and classes, and translate them into the in-
ternal AST representations in L����R����� through the exported
FunctionBuilder. Resource wrappers, as well as other high-level
logic and user-side interfaces, are also implemented within Python
in a “Pythonic” way, whose functionalities are eventually converted
to lower-level API calls forwarded to the core system in C++.

The Python frontend achieves a similar performance to the native
C++ implementation on dense, compute-heavy workloads, outper-
forming existing frameworks such as T����� [Hu et al. 2019]. Mean-
while, it provides richer constructs necessary in rendering than
existing frameworks, such as textures and acceleration structures,
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⌥ ⌅
1 // with LuisaRender
2 stream << texture.copy_from(buffer );
3
4 // with native CUDA
5 CUDA_MEMCPY3D copy {};
6 copy.srcMemoryType = CU_MEMORYTYPE_DEVICE;
7 copy.srcDevice = /* buffer address */;
8 copy.srcPitch = /* texture pitch (in bytes) */;
9 copy.srcHeight = /* texture height (in texels) */;
10 copy.dstMemoryType = CU_MEMORYTYPE_ARRAY;
11 copy.dstArray = /* texture handle */;
12 copy.WidthInBytes = /* texture pitch (in bytes) */;
13 copy.Height = /* texture height (in texels) */;
14 copy.Depth = /* texture depth (in texels) */;
15 cuMemcpy3DAsync (&copy , /* stream handle */);⌃ ⇧
Listing 15. Translation of the bu�er-to-texture copying command in L����
�R����� to the native CUDA driver API.

defects and complement missing functionalities in the backend
shading languages and compilers. For example, the ISPC compiler
does not allow visiting structure members of rvalues, so we detect
and have special handling for such cases by transforming them into
built-in function calls. ISPC is also sensitive to variables de�ned in
outer scopes but used in branches because it has to generate SIMD
masks for their loads and stores. Therefore, we analyze and tweak
the de�nition site of each local variable, narrowing its lifetime scopes
and decreasing the number of necessary masks, which brings up
to 100⇥ faster compilation and 5⇥ runtime performance boost (e.g.,
on M1 Max with the mega-kernel path integrator, this optimization
reduces the compilation time from 2152.3s to 23.9s for the Co�ee
scene and the 1024spp rendering time decreases from 2627.2s to
493.6s at the resolution of 1200 ⇥ 1800).

Data layouts are another important aspect to pay attention to.
We allow users to specify the alignments of structures, which is
easily realizable in Metal and CUDAwith the built-in support for the
alignas speci�er. However, such language constructs are missing
in HLSL and ISPC, so we have to manually pad the structures to
achieve a conforming layout. Moreover, the intricate constant bu�er
packing rules in DirectX requires correct transformation of the input
host data. We bypass these rules by using argument bu�ers.

6.3 Shader Compilation
The generated shader sources are JIT compiled, typically via in-
memory compilation interfaces (e.g., LLVMMCJIT, NVRTC, and the
DirectX Shader Compiler) to elide disk I/O. We ensure a thread-safe
design to allow accelerated parallel compilation with multithread-
ing. Also, by employing memory and disk caches, redundant code
generation and compilation for identical kernels are eliminated,
further reducing the runtime overhead.

7 APPLICATIONS AND EXTENSIONS
7.1 Physically Based O�line Renderer
To better understand and demonstrate the practicality of L����R���
���, we build a high-performance cross-platform physically based
o�ine renderer atop, utilizing almost all the available features, con-
structs, and patterns provided by the framework.

7.1.1 Architecture design. The high-level interfaces of the renderer
are expressed as a node system, where the scenes are organized
as graphs with component nodes, such as cameras, shapes, and
materials, each tracking reference to child nodes as well as necessary
parameters and resource descriptors (e.g., paths to textures). To
maximize the extensibility of the renderer, all the components are
implemented as decoupled, dynamically loaded plug-ins, so that
users can freely add new functionalities to the renderer without
modifying and rebuilding the entire application.
After loading the scene, a build process instantiates the scene

graph into a data-oriented pipeline on a speci�ed backend device.
With the embedded DSL enabling the powerful multiple-stage pro-
gramming capability (discussed in Sec. 4.2), the scene components,
each responsible for amodular functionality in the renderer, are actu-
ally playing the roles of AST builders, expanding the corresponding
logic. The system fuses the nodes into �attened rendering kernels,
while automatically tracking resources in use and scheduling an
optimized execution order.
In other words, we provide a �exible and easy-to-use interface

and clean implementation comparable to research- and education-
oriented CPU renderers that heavily exploit dynamism and polymor-
phism, while achieving much better performance across platforms.
Sec. 8 gives the comparison with several popular open-source re-
search and production renderers.

7.1.2 Di�erentiable rendering. Beyond the conventional forward
rendering workloads, inverse rendering, typically via physically
based di�erentiable rendering techniques, is arousing growing at-
tention and interest both in academia and industry nowadays. There-
fore, we also equip our renderer with two di�erential light transport
algorithms, namely Radiative Backpropagation [Nimier-David et al.
2020] and Path Replay Backpropagation [Vicini et al. 2021], both im-
plemented as integrator plug-ins. We showcase an inverse rendering
example in Sec. 8.2.2.

7.2 Python Frontend
The layered architecture of our system well decouples di�erent lev-
els of abstraction and thus enables extending and replacing speci�c
layers while reusing the others. We provide a Python frontend for
fast prototyping, which binds to the same runtime, AST, and back-
end layers as the C++ frontend but replaces the embedded DSL and
resource wrappers with a re-implementation in pure Python.
Being a dynamic language, Python allows us to inspect the user

source code and parse it into ASTs. Therefore, di�erent from the
tracing strategy in C++, we directly obtain and traverse the ASTs
of Python functions and classes, and translate them into the in-
ternal AST representations in L����R����� through the exported
FunctionBuilder. Resource wrappers, as well as other high-level
logic and user-side interfaces, are also implemented within Python
in a “Pythonic” way, whose functionalities are eventually converted
to lower-level API calls forwarded to the core system in C++.

The Python frontend achieves a similar performance to the native
C++ implementation on dense, compute-heavy workloads, outper-
forming existing frameworks such as T����� [Hu et al. 2019]. Mean-
while, it provides richer constructs necessary in rendering than
existing frameworks, such as textures and acceleration structures,
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⌥ ⌅
1 // with LuisaRender
2 stream << texture.copy_from(buffer );
3
4 // with native CUDA
5 CUDA_MEMCPY3D copy {};
6 copy.srcMemoryType = CU_MEMORYTYPE_DEVICE;
7 copy.srcDevice = /* buffer address */;
8 copy.srcPitch = /* texture pitch (in bytes) */;
9 copy.srcHeight = /* texture height (in texels) */;
10 copy.dstMemoryType = CU_MEMORYTYPE_ARRAY;
11 copy.dstArray = /* texture handle */;
12 copy.WidthInBytes = /* texture pitch (in bytes) */;
13 copy.Height = /* texture height (in texels) */;
14 copy.Depth = /* texture depth (in texels) */;
15 cuMemcpy3DAsync (&copy , /* stream handle */);⌃ ⇧
Listing 15. Translation of the bu�er-to-texture copying command in L����
�R����� to the native CUDA driver API.

defects and complement missing functionalities in the backend
shading languages and compilers. For example, the ISPC compiler
does not allow visiting structure members of rvalues, so we detect
and have special handling for such cases by transforming them into
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reduces the compilation time from 2152.3s to 23.9s for the Co�ee
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alignas speci�er. However, such language constructs are missing
in HLSL and ISPC, so we have to manually pad the structures to
achieve a conforming layout. Moreover, the intricate constant bu�er
packing rules in DirectX requires correct transformation of the input
host data. We bypass these rules by using argument bu�ers.

6.3 Shader Compilation
The generated shader sources are JIT compiled, typically via in-
memory compilation interfaces (e.g., LLVMMCJIT, NVRTC, and the
DirectX Shader Compiler) to elide disk I/O. We ensure a thread-safe
design to allow accelerated parallel compilation with multithread-
ing. Also, by employing memory and disk caches, redundant code
generation and compilation for identical kernels are eliminated,
further reducing the runtime overhead.

7 APPLICATIONS AND EXTENSIONS
7.1 Physically Based O�line Renderer
To better understand and demonstrate the practicality of L����R���
���, we build a high-performance cross-platform physically based
o�ine renderer atop, utilizing almost all the available features, con-
structs, and patterns provided by the framework.

7.1.1 Architecture design. The high-level interfaces of the renderer
are expressed as a node system, where the scenes are organized
as graphs with component nodes, such as cameras, shapes, and
materials, each tracking reference to child nodes as well as necessary
parameters and resource descriptors (e.g., paths to textures). To
maximize the extensibility of the renderer, all the components are
implemented as decoupled, dynamically loaded plug-ins, so that
users can freely add new functionalities to the renderer without
modifying and rebuilding the entire application.
After loading the scene, a build process instantiates the scene

graph into a data-oriented pipeline on a speci�ed backend device.
With the embedded DSL enabling the powerful multiple-stage pro-
gramming capability (discussed in Sec. 4.2), the scene components,
each responsible for amodular functionality in the renderer, are actu-
ally playing the roles of AST builders, expanding the corresponding
logic. The system fuses the nodes into �attened rendering kernels,
while automatically tracking resources in use and scheduling an
optimized execution order.
In other words, we provide a �exible and easy-to-use interface

and clean implementation comparable to research- and education-
oriented CPU renderers that heavily exploit dynamism and polymor-
phism, while achieving much better performance across platforms.
Sec. 8 gives the comparison with several popular open-source re-
search and production renderers.

7.1.2 Di�erentiable rendering. Beyond the conventional forward
rendering workloads, inverse rendering, typically via physically
based di�erentiable rendering techniques, is arousing growing at-
tention and interest both in academia and industry nowadays. There-
fore, we also equip our renderer with two di�erential light transport
algorithms, namely Radiative Backpropagation [Nimier-David et al.
2020] and Path Replay Backpropagation [Vicini et al. 2021], both im-
plemented as integrator plug-ins. We showcase an inverse rendering
example in Sec. 8.2.2.

7.2 Python Frontend
The layered architecture of our system well decouples di�erent lev-
els of abstraction and thus enables extending and replacing speci�c
layers while reusing the others. We provide a Python frontend for
fast prototyping, which binds to the same runtime, AST, and back-
end layers as the C++ frontend but replaces the embedded DSL and
resource wrappers with a re-implementation in pure Python.
Being a dynamic language, Python allows us to inspect the user

source code and parse it into ASTs. Therefore, di�erent from the
tracing strategy in C++, we directly obtain and traverse the ASTs
of Python functions and classes, and translate them into the in-
ternal AST representations in L����R����� through the exported
FunctionBuilder. Resource wrappers, as well as other high-level
logic and user-side interfaces, are also implemented within Python
in a “Pythonic” way, whose functionalities are eventually converted
to lower-level API calls forwarded to the core system in C++.

The Python frontend achieves a similar performance to the native
C++ implementation on dense, compute-heavy workloads, outper-
forming existing frameworks such as T����� [Hu et al. 2019]. Mean-
while, it provides richer constructs necessary in rendering than
existing frameworks, such as textures and acceleration structures,
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Example: reordering wavefront path tracing commands reduces rendering time up to 19%
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后端实现

• Various parallel computing backends are supported 
• CPU: LLVM (scalar) 
• GPU: DirectX, CUDA, Metal 
• Optimized and tuned for the underlying platform APIs 

• Abstraction layers ease addition of new backend 
• Vulkan & Remote (WIP)
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CUDA DirectX Metal LLVM
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蒙特卡洛渲染系统 LuisaRender
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[Rendering Resources, Bitterli 2016]
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蒙特卡洛渲染系统 LuisaRender
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On RTX-3080Ti 
5-11x faster than PBRT-v4 
4-16x faster than Mitsuba 3
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可微分渲染

• Path Replay Backpropagation [Vicini et al. 2021] 
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~ 4x faster
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通⽤计算（来⾃ Taichi Examples）
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Python 前端

•强调易⽤性与快速原型设计 
•动态语⾔，⽆需编译 
•完整⽀持各种设备资源：Buffers, Textures, Acceleration Structures, … 

•重计算任务上性能与 C++ ⼀致 

•与 C++ ⼀致的 SIMT 编程模型和流式执⾏模型，可控性⾼ 

•翻译 Python 原⽣ AST ⾄ LC AST 

•可作为脚本为核⼼模块扩展功能





Rust 前端
•使⽤过程宏实现语法 

• if/while/switch 等控制流 

•动态多态、资源捕获等 
•（⼏乎）安全的 Rust ⻛格 API 

• IR 与⾃动微分



扩展与集成

•提供 DeviceExtension 接⼝ 

•⽅便对框架做⾃定义扩展， 
如贴图压缩、⽑发求交等 

•⽀持资源导⼊/导出，实现 
与其他系统的交互
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总结

•我们实现了⼀个适⽤于渲染等场景的并⾏计算框架 LuisaCompute

•提供嵌⼊于 C++ 和 Python 等前端的⾼表达⼒ DSL

•可利⽤最新光线追踪硬件的统⼀运⾏时抽象层
•在此框架基础上实现了⾼性能渲染系统 LuisaRender

•在未来…

•⽀持更多的前端（如 Rust 前端正在开发中）、后端

•更⽅便灵活的编程模式与更好的性能
•更多功能与应⽤场景（如⾃动微分、光栅化渲染功能正在开发中）
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