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Al for VIS: Automated Visualization Design and
Evaluation

Visualization Design

bbb

ppppppppp

T Visualization Evaluation

(KG4Vis, IEEE VIS 21, b

V-CNN
Il || -

stniil I“l““ll n t n t
Query

S&V-Fusion II | I| II I |
. I . ||| ulilh I““lln II |

(Structure-aware Visualization Similarity, CHI 22,

)



Standard Charts

rtree
box2d

jsts-quadtree
p2-grid
rbush-bulk
rbush-incremental

box-intersect
brute-force
p2-sweep
simple-quadtree
jsts-strtree



Chart Recommendation

1. Rule-based Visualizations

IF THEN

2. ML-based

K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.
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Research Question

Can we achieve visualization recommendation that requires no manual
specifications of rules and quarantees good explainability?

1. Rule-based Visualizations

IF THEN

2. ML-based

K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019. 5




KG4Vis: A Knowledge Graph Based Approach for
Visualization Recommendation

Values in a column are numerical

Outlier exists in a column (1.5IQR)

Values are not evenly distributed

The entropy of values is large
Values are monotonic

The data type of a column is decimal

The column is not the only one in dataset

Bar All values in a column are unique
(KG4Vis,IEEE VIS 2021,




KG4Vis

Feature Extraction Knowledge Graph Embedding Embedding-based Visualization Recommendation
Construction Learning Inference

Data Columns

Discretized
Continuous
Features

Categorical
Features

Values in a column is not sorted

Visualization
Design The column is not the only one in dataset

Choices
Values in a column are numerical

Histogram|  Outlier exists in a column (35td)

Our knowledge graph (KG)-based visualization recommendation
approach is data-driven and explainable.



Feature Extraction

Data Columns

Statistical
Features

n
Data Column
-
Features Name
S

Data
Type

% )
Visualization| ~ AXis
—
- ~a | Visualization
Type

K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.
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KG Construction

Entities:
« Discretized continuous features
« Use each interval after discretization as an entity
« Categorical features
« Data columns
* Visual designs

Relations:
« Defined based on entity types




Embedding Learning

Triplet (denotes an edge in KG):
(head entity, relation,tail entity) or (h,r,t)
TransE assumption:
h+rat

TransE scoring function (measures the possibility of a triplet):

g(h,r,t) = —[[lh+r—t|[;

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NeurlPS, 2013.
Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR, 2019.

10



Inference

Rule structure:

a data feature — a visual design choice or f; — vy

Inference steps:

1. Compute rule score (possibility of the rule):

8 fi—vn — _||fi‘|‘rj + Trarget _Vn||

2. Aggregate all suitable rules' scores of a data column:

|
— g i n
Friew| ﬁez;;ew Sy

8 (dnew » Ftarget » Vn)

3. Recommend the design with the highest score

11



Results — Expert Interviews

» Most of the rules are of high quality, but
some features need to be further
Improved

(9

o

> The recommended visualizations are
correct

n
)
—
o)
)
v
)
o)
@©
—
v
>
<

Average scores of recommended visualizations

12



Results — Case Study

Outlier exists in a column (1.51QR)

The data type of a column is decimal

The column is not the only one in dataset

All values in a column are unique
Bar Values in a column is not sorted

Visualization Recommendation

13



Evaluation of Visualization Similarity

It is the key task of chart retrieval!

® chart @ image

Google Search Trend: has surpassed around 2020 14



Evaluation of Visualization Similarity

Visualization similarity == image similarity?

(b) Visual Information (CNN) (c) Structural and Visual Information

()



Structure-aware Visualization Retrieval

b I

V-CNN

N T T T

Query

S&V-Fusion Ill II II I I
. ik Ll I|||||I|| Il

H. Li, Y. Wang, A. Wu, H. Wei and H. Qu

16



Structure-aware Visualization Similarity

Extract features & i Encode Normalize &
— ' with GNN Concatenate

® ¥ | =

A S A «

» ’ 4 F 4 < " 4
>@<>@ O<>O @4»@4

Construct the graph

“

Ny

Embedding vector of

Graph o :
structural information

Encode

SVG-based visualization % with CNN
—>
Render . .

Embedding vector of Embedding vector
visual information for retrieval

Bitmap

Our approach extracts both from visualizations




Results — Case Study

S&V-Fusion

b

Query

S TR r N

S&V-Fusion "l Il “ I ‘ II
" I [ ||||. ||| ublil I““lln “ [ -l-ll

V-CNN

Top-5 retrieved similar visualizations




Results — User Study

1.0
V-HOG V-CNN S-GNN S&V-Fusion

Our approach (S&V-Fusion) outperforms others with statistical significance (p < 0.001).
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Experience and Tip Sharing



1. Massive Reading, Writing and Thinking

- Regular and massive reading

- Curiosity



1. Massive Reading, Writing and Thinking

u
Example 1: KG4V
xample 1: is
Input Heterogeneous Network Fea.tl.lr'e Feature Message passmg Predlctlon with residual
acquisition transformatlon connectlons

R-GCN Layer 0
Output Layer

Li, Haotian, Huan Wei, Yong Wang, , and Huamin Qu. “Peer-inspired student
performance prediction in interactive online question pools with graph neural network.” CIKM 20292.



1. Massive Reading, Writing and Thinking
My research path towards Al4Vis

T ML4VIS Survey

Nonuniform Timeslicing . TVCG 22
IEEE VIS 19 N

5

Animated Transition -
TVCG 18 CNN for Graph Readability

CGA 19
AmbiguityVis " | peepDrawing

~ Timeline Infographics
TVCG 16 IEEE VIS 19 ” |IEEE VIS 19

23



1. Massive Reading, Writing and Thinking

Some useful tools to keep yourself updated on the
latest VIS research:

- Google scholar recommendation

Google Scholar

® Articles Case law
Recommended articles

VisDmk: visual analysis of massive emotional danmaku in
online videos
S Cao, D Guo, L C S AK Singh, H Lv

- Subscribe the mail list of Arxiv, TVCG,

recommender systems

cs daily Subj-class mailing 80000 1

send mail ONLY to cs <no-reply@arXiv.org>
e C To:  cs daily itefabstract distribution

ing submissions direcly to submiter

Explainable data transformation recommendation for
automatic visualization

V Chen, Y Ma, T Xu, F Yan, L Ly, Z Qian, J Xia
Frontiers of Informa

Improving Depth Perception Using Edge Highlighting in
Transparent Stereoscopic Visualizations of Laser-Scanned
3D Point Clouds

rXiv:2211.1460
Date: Sat, 26 No

, S Tanaka

Towards Efficient Visual Simplification of Computational
Graphs in Deep Neural Networks
R Pan, Z Wang, Y Wei, H Gao, G Ou, CC Cz U, T Xu, W Cl

arXiv prep
e

- Go through the latest
conference procee din gs

Multilevel Visual Analysis of Aggregate Geo-Networks
"hen, X Xie, G Sun, M Xu, D W ]

catks Bhagtani, Yincheng Jn, Zhanpeng J

With th in inds of emotion comprehension and regulation in our
daily life, a custon sic-based emotion regulation system is introduced by
employing current EEG information and song features, which predicts

Guo, PT Bremer, st
Visualization and Computer Gra... - 8 days ago

aion i the sl mod ing music. The
‘work shows that: (1) a novel music-based e m with a




1. Massive Reading, Writing and Thinking

“The best way to have a good idea is to have a lot
of ideas and throw away the bad ones.”
- Linus Pauling



2. Do Research of High Impact

Research ) Intellectual value y Number of people

Contribution of your research you reach out

26


https://speakerdeck.com/kotarohara/identifying-research-questions

2. Do Research of High Impact

Quality of 1
the Solution

Quality of Your Research Question



https://speakerdeck.com/kotarohara/identifying-research-questions

3. Get Used to the Uncertainty of Research

Example 1: Structure-aware Visualization Retrieval

g@ snorkel GET STARTED TUTORIALS FEATURES BLOG RESOURCES DOCS

Programmatically Build
Training Data

The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core

ideas behind Snorkel—check it out here!

The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models,
algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the
radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation

and management, starting by empowering users to programmatically label, build, and manage training data.

To say that the Snorkel project succeeded and expanded beyond what we had ever expected would be an understatement. The basic goals of a
research repo like Snorkel are to provide a minimum viable framework for testing and validating hypotheses. Four years later, we've been
fortunate to do not just this, but to develop and deploy early versions of Snorkel in partnership with some of the world's leading organizations
like Google, Intel, Stanford Medicine, and many more; author over thirty-six peer-reviewed publications on our findings around Snorkel and
related innovations in weak supervision modeling, data augmentation, multi-task learning, and more; be included in courses at top-tier
universities; support production deployments in systems that you've likely used in the last few h ; and work with an amazing community of
researchers and practitioners from industry, medicine, government, academia, and beyond.

However, we realized increasingly-from conversations with users in weekly office hours, workshops, online discussions, and industry partne
that the Snorkel project was just the very first step. The ideas behind Snorkel change not just how you label training data, but so much of the
entire lifecycle and pipeline of building, deploying, and managing ML: how users inject their knowledge; how models are constructed, trained,
inspected, versioned, and monitored; how entire pipelines are developed iteratively; and how the full set of stakeholders in any ML deployment,
from subject matter experts to ML engineers, are incorporated into the process.

https://www.snhorkel.org/

SNORKEL

Bocunent

TITT L

CONTEXT HIERARCHY

Satonare [racerncionaneiin ]
dctonaries

Domain
Heuristics

DISCRIMINATIVE
GENERATIVE MODEL

LABELING FUNCTION INTERFACE
WEAK SUPERVISION SOURCES | ' = = m o o e o e e e e o e

Fig.3 An overview of the Snorkel system. (1) SME users write label-  unlabeled data and learns a generative model to combine the LFs” out-
ing functions (LFs) that express weak supervision sources like distant  puts into probabilistic labels. (3) Snorkel uses these labels to train a
supervision, patterns, and heuristics. (2) Snorkel applies the LFs over  discriminative classification model, such as a deep neural network

Unlabeled data: Already available
Weak supervision sources and discriminative model: Not fully available



3. Get Used to the Uncertainty of Researc

Example 1: Structure-aware Visualization Retrieval

r_____________________________________________
|

SNORKEL
We study a patient who became Document
quadriplegic after parenteral magnesium
administration for preeclampsia. - Sentence
Span
UNLABELED DATA Entity

——————— -

TRAINING DATA

Patterns & Pattern(“{{0}} ({111 I
. g . a ern causes
dictionaries

CONTEXT HIERARCHY
External
KBs €yctd
: I

! DISCRMNATIVE

Domain {}C : GENERATIVE MODEL
|
1

Heuristics MODEL

LABELING FUNCTION INTERFACE
WEAK SUPERVISION SOURCES e
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3. Get Used to the Uncertainty of Research

BARERL: IFREEAMRRESTERBMHALRRE; MR
B, EMARTBEREARE. FHAFREMQRE.

Papertz &

SRR R LA B R KR F R MR EFE 2 ROE (AIE) 20/ 4.
20014F, JEAH R MBS 2] T X — A2 HBADCWBBIER i 7E L EHRHE
FLARIPAG T E KA KA. 20164F, NatureffAIER (CREFE IR IEHRRELT)
B 9 S HEFNEK SRR GRS H A ” B R GR AR Z — o XA M —— i piy P B
R A HHRDR o

RERBAIERR A S, BABER, TLFRAEMRRRES T2 RBURL
B WRA, ZMHARAALEEMRE. Aoy NEREMRE.

SNERE TR EERY, FARER? BFARBINN, A IERMBIBTIT
MN—MRER, THEFERAN, EREE., BER—FRFFL, LDHEFRERN
P R WAERER . BEERTPREM. RARBSERR

CERFZWFIRY  (BUFRARNSR) 5t KB AR LB 5T R D 5 U % H 2 R R R
HEARL (UTRRE) 217 T X EMY R
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https://mp.weixin.qq.com/s/3yyX0biQ9VIyB4kM2TfuPA

4. The Secret of Paper Awards

(Research Quality) x (Luck)



5. Visualization Paper Writing
Writing VIS Research Paper is Easy

Structure
 Introduction EILL IN “FLLIN
« Background/Literature Review
* Proposed Method
« Experimental Results and Analysis

 Conclusions

FILL IN FILCTN

Paragraphs/Sentences... FILLIN | “FILCIN

* No need to have rich vocabulary!

Note: Part of the visualization paper writing slides are adapted from the sharing by Dr. Yi Mei (Victoria University of Wellington) at SSCI 2022.

32



5. Visualization Paper Writing
Writing VIS Research Paper is Hard

* Make readers your work

* Make readers your work

* Make readers your work

33



5. Visualization Paper Writing

Lessons | learned DASH

* Clearly existing work and your new work

« Consider your
* Tell a good (which can be different from the fact)

* Be (NO over-claim / under-claim)

34



5. Visualization Paper Writing

Introduction
» Key: and

» Focus on the "Why” questions
* Why do you study this problem?
* Why do you use this visualization or technique?

* Why do you propose this contribution (e.g., a new
visualization design)?

 Follow a clear logic flow

35



Structure-aware Visualization Retrieval

Haotian Li
The Hong Kong University of Science
and Technology
Hong Kong SAR, China
Singapore Management University
Singapore
haotian.li@connect.ust.hk

Huan Wei

The Hong Kong University of Science

and Technology
Hong Kong SAR, China
hweiad@connect.ust.hk

ABSTRACT

With the wide usage of data visualizations, a huge number of Scal-
able Vector Graphic (SVG)-based visualizations have been created
and shared online. Accordingly, there has been an increasing inter-
est in exploring how to retrieve perceptually similar visualizations
from a large corpus, since it can benefit various downstream appli-
cations such as visualization recommendation. Existing methods
mainly focus on the visual appearance of visualizations by regard-
ing them as bitmap images. However, the structural information
intrinsically existing in SVG-based visualizations is ignored. Such
structural information can delineate the spatial and hierarchical
relationship among visual elements, and characterize visualizations
thoroughly from a new perspective. This paper presents a structure-
aware method to advance the performance of visualization retrieval
by collectively considering both the visual and structural informa-
tion. We extensively evaluated our approach through quantitative
comparisons, a user study and case studies. The results demonstrate
the effectiveness of our approach and its advantages over existing
methods.

CCS CONCEPTS

« Human-centered computing — Visualization; « Information
systems — Information retrieval; « Computing methodologies
— Machine learning.

KEYWORDS

Data Visualization, Visualization Retrieval, Visualization Similarity,
Representation Learning, Visualization Embedding
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1 INTRODUCTIO

—— e o — -
dfa visualization provides users with a powerful approach to an™

alyze enormous data, communicate insights and achieve efficient
decision-making. Along with the popularity of visualizations, a
| huge number of visualizations based on Scalable Vector Graph-
| ics (SVGs) have been created and shared online. Compared with
bitmap-based visualizations, SVG-based visualizations have many
advantages such as the support of interactions [1] and quality-
| preserving resizing. Thus, SVGs have been adopted by various
| online platforms to store and present visualizations, for example,
Plotly and Observable?. With such a large volume of visualizations
online, how to retrieve similar visualizations has attracted growing
I research interest from both academia and industry [31, 32, 36] due
| to its significant importance for many downstream tasks. Specifi-
cally, the retrieval of similar visualizations is fundamental to down-
tream tasks such as creating visualization collections [32] and
recaqpending visyalizations (31 — — — — — — =
Ao achteveefectiveretrieval ofsimilarvisualizationsTthevorg,
/broblem is to characterize the similarity between two visualizations.
| Existing studies mainly focus on estimating the similarity between
visualizations according to the data or perceptual similarity. The
existing methods based on data similarity [31, 42, 43, 48] focus on
the characteristics of data such as data distribution or metadata,
ignoring the visual appearance of visualizations. Since the original
data is not always available with the visualizations, the applica-
tion of visualization retrieval methods based on data similarity is
quite limited. Perceptual similarity mainly refers to the similar-
ity of visualizations perceived by users, which can also reflect the
data similarity. Compared to the direct computation of data sim-
ilarity, the computation of perceptual similarity does not rely on
the original data. To compute the perceptual similarity, existing

\ approaches [29, 36, 61] first extract the visual feature vectors from ]

Why do you focus on
visualization retrieval?

What are the limitations
of existing studies?

36
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visualizations and further calculate the distance between feature
vectors to measure their similarity. These methods mainly extract
the visual features of visualizations at the level of pixels. For exam-
ple, Saleh et al. [36] measured the visualization similarity by using
the color distribution of different pixels (i.e., color histograms). Re-
cently, deep learning-based methods [29, 61] have been proposed
to extract visual features automatically by treating visualizations
as bitmap images (e.g., the images in ImageNet [10]). However, few
prior studies have considered the structural information of visu-
alizations that exists in SVGs by nature, when characterizing the
perceptual similarity of visualizations. _ __

Sfuctural i information of visualizations mamly describes te spa-
1al and hierarchical relationship between elements, such as tife
position, grouping and hierarchy of the basic visual elements (e.g., \

<rect> and <path>). Compared with the commonly-used visual in- |
formation (i.e., the visual features to describe the appearance of
visualizations) of visualizations, structural information enables a |
unique perspective to characterize the appearance of visualizations |
at the level of visual elements instead of pixels. It provides an ac- I
curate description of how different visual elements are organized
in visualizations. For example, as shown in Figure 1, a grouped bar |
chart with two groups of bars (Figure 1(a)) and a bar chart with only |
one group of bars (Figure 1(b)) seem to show the same trend and are
regarded as similar charts, if only the visual information is consid-
ered by using a computer-vision-based method (e.g., convolutional |
neural network (CNN) models). However, the grouped bar chart
actually shows how two sets of data are compared and it should
not be treated as a similar visualization as the bar chart with a sin-
gle group of bars. Instead, another grouped bar chart (Figure 1(c)) |
with both similar structure and appearance should be regarded sim-
ilar to the query bar chart (Figure 1(a)). From the example above,
it is obvious that structural information plays an important role
in characterizing the perceptual similarity between visualizations.J
However, it still remains unclear what kind of structure-based fe;
tYres can be extracted and how these structure-based featurej»can
be leveyaged To. FALilTTate SiniTar VisifalizAtoR Teffeyal ~
An this paper, we aim to fill the research gap by leveragmg box

ptructural and visual information to accurately evaluate the percep-
tual similarity between visualizations. We first conducted a prelim-
inary study to better understand users’ criteria on assessing the
perceptual similarity of visualizations and identified the three most

| important criteria, i.e., the type of a visualization, the number of

| sual elements and the overall trend of visualized data. Building upon
these results, we propose to transform SVG-based visualizations

lto graphs and bitmap images that reflect the structure and the ap-

| pearance of visualizations, respectively. Then we utilize contrastive

representation learning to comprehensively delineate structural

and visual information in a visualization with embedding vectors.

| Contrastive representation learning is a type of self-supervised
learning method and can minimize the distance between similar
samples and maximize the distances between diverse samples [21].

I With contrastive learning, we avoid manually labeling the similar-

] ity between different visualizations, enabling us to easily generalize
our approach to various visualizations. Finally, we gain an embed-

‘ding vector for each visualization that characterizes its structural

\nd visual information and is used for retrieving similar visual-
1z§hons Using the VizML corpus [19], we extenswely evalu_ate

Haotian Li, Yong Wang, Aoyu Wu, Huan Wei, and Huamin Qu

our approach through a crowdsourced user study, multiple case
studies and quantitative comparisons. The results demonstrate the
effectiveness of our approach.

The major contributions of this paper are summarized as follows:

e We present a novel structure-aware approach to characterize
the perceptual similarity between visualizations through em-
bedding vectors, which enables effective similar visualization
retrieval.

We conduct extensive evaluations including a crowdsourced
user study with 50 partlmpants multl e = <

methods. The results verify the effectiveness of our structure-
aware visualization retrieval approach.

We summarize the lessons we learned during exploring the
usage of structural information in visualization retrieval.

2 RELATED WORK

The related work of this study can be categorized into three parts:
retrieval of visualizations, visualization similarity estimation and
visualization storage formats.

2.1 Visualization Retrieval

Visualization retrieval has attracted researchers’ interests in recent
years along with the increasing number of visualizations. According
to the type of queries, there are two major classes of methods for
retrieving visualizations [45], retrieval by definition and retrieval
by example.

Retrieval by definition means that users can explicitly specify the
criteria of retrieving visualizations using either programming lan-
guage or natural language. For example, Hoque and Agrawala [18]
enable users to create a JSON-like specification to indicate their tar-
get characteristics of visualizations such as encoding types. Some
other prior studies [7, 27, 44, 45] also provide users with tools to
search for visualization using explicit queries. Compared to retrieval
by definition, retneval by example provides.a :
users to define the erofTETITeving visualizations. Users can use

RISting visualizations or sketches to search for other visualizations.
Several recent studies [29, 34, 36] take example visualizations as
inputs and return similar ones for data exploration or visualization
re-use. Zenvisage [42] and ShapeSearch [43] allow users to sketch
their desired data pattern in visualizations. Then they retrieve the
data which matches the pattern from the database and visualize
them to users. In this line of research, one of the core problems is
how to define the similarity between visualizations, which will be
further discussed in Section 2.2.

Our structure-aware approach falls in the category of retrieval
by example. Our approach takes SVG-based visualizations as the
input and then represents the visual and structural information of
them as embedding vectors for similar visualization retrieval.

2.2 Visualization Similarity

Computing the similarity of visualizations benefits various down-
stream tasks such as assisting in exploratory data analysis [62],
querying visualizations [29] and generating visualization collec-
tions [32]. Inspired by a previous study [29], prior methods on

Why is the structural
information so important?

What is the major
idea/contribution of the
proposed approach?
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5. Visualization Paper Writing
Related Work

* Key: and
* What is the taxonomy of existing research?

* What is the major difference between your work and existing
studies?

* NO important literature is missing
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visualizations and further calculate the distance between feature
vectors to measure their similarity. These methods mainly extract
the visual features of visualizations at the level of pixels. For exam-
ple, Saleh et al. [36] measured the visualization similarity by using
the color distribution of different pixels (i.e., color histograms). Re-
cently, deep learning-based methods [29, 61] have been proposed
to extract visual features automatically by treating visualizations
as bitmap images (e.g., the images in ImageNet [10]). However, few
prior studies have considered the structural information of visu-
alizations that exists in SVGs by nature, when characterizing the
perceptual similarity of visualizations.

Structural information of visualizations mainly describes the spa-
tial and hierarchical relationship between elements, such as the
position, grouping and hierarchy of the basic visual elements (e.g.,
<rect> and <path>). Compared with the commonly-used visual in-
formation (i.e., the visual features to describe the appearance of
visualizations) of visualizations, structural information enables a
unique perspective to characterize the appearance of visualizations
at the level of visual elements instead of pixels. It provides an ac-
curate description of how different visual elements are organized
in visualizations. For example, as shown in Figure 1, a grouped bar
chart with two groups of bars (Figure 1(a)) and a bar chart with only
one group of bars (Figure 1(b)) seem to show the same trend and are
regarded as similar charts, if only the visual information is consid-
ered by using a computer-vision-based method (e.g., convolutional
neural network (CNN) models). However, the grouped bar chart
actually shows how two sets of data are compared and it should
not be treated as a similar visualization as the bar chart with a sin-
gle group of bars. Instead, another grouped bar chart (Figure 1(c))
with both similar structure and appearance should be regarded sim-
ilar to the query bar chart (Figure 1(a)). From the example above,
it is obvious that structural information plays an important role
in characterizing the perceptual similarity between visualizations.
However, it still remains unclear what kind of structure-based fea-
tures can be extracted and how these structure-based features can
be leveraged to facilitate similar visualization retrieval.

In this paper, we aim to fill the research gap by leveraging both
structural and visual information to accurately evaluate the percep-
tual similarity between visualizations. We first conducted a prelim-
inary study to better understand users’ criteria on assessing the
perceptual similarity of visualizations and identified the three most
important criteria, i.e., the type of a visualization, the number of
sual elements and the overall trend of visualized data. Building upon
these results, we propose to transform SVG-based visualizations
to graphs and bitmap images that reflect the structure and the ap-
pearance of visualizations, respectively. Then we utilize contrastive
representation learning to comprehensively delineate structural
and visual information in a visualization with embedding vectors.
Contrastive representation learning is a type of self-supervised
learning method and can minimize the distance between similar
samples and maximize the distances between diverse samples [21].
With contrastive learning, we avoid manually labeling the similar-
ity between different visualizations, enabling us to easily generalize
our approach to various visualizations. Finally, we gain an embed-
ding vector for each visualization that characterizes its structural
and visual information and is used for retrieving similar visual-
izations. Using the VizML corpus [19], we extensively evaluate

Haotian Li, Yong Wang, Aoyu Wu, Huan Wei, and Huamin Qu

our approach through a crowdsourced user study, multiple case
studies and quantitative comparisons. The results demonstrate the
effectiveness of our approach.

The major contributions of this paper are summarized as follows:

e We present a novel structure-aware approach to characterize
the perceptual similarity between visualizations through em-
bedding vectors, which enables effective similar visualization
retrieval.

We conduct extensive evaluations including a crowdsourced
user study with 50 participants, multiple case studies and
quantitative comparisons with existing visualization retrieval
methods. The results verify the effectiveness of our structure-
aware visualization retrieval approach.

We summarize the lessons we learned during exploring the
usage of structural information in visualization retrieval.

2 RELATED WORK

The related work of this study can be categorized into three parts:
retrieval of visualizations, visualization similarity estimation and
visualization storage formats.

2.1__Visualization Retrigval —— -
VdSualization retrieval has attracted researchers’ interests in rece

/years along with the increasing number of visualizations. According
to the type of queries, there are two major classes of methods for
retrieving visualizations [45], retrieval by definition and retrieval
by example.

Retrieval by definition means that users can explicitly specify the
criteria of retrieving visualizations using either programming lan-
guage or natural language. For example, Hoque and Agrawala [18]
enable users to create a JSON-like specification to indicate their tar-
get characteristics of visualizations such as encoding types. Some
other prior studies [7, 27, 44, 45] also provide users with tools to
search for visualization using explicit queries. Compared to retrieval
by definition, retrieval by example provides an intuitive way for
users to define the criteria of retrieving visualizations. Users can use
existing visualizations or sketches to search for other visualizations.
Several recent studies [29, 34, 36] take example visualizations as
inputs and return similar ones for data exploration or visualization
re-use. Zenvisage [42] and ShapeSearch [43] allow users to sketch
their desired data pattern in visualizations. Then they retrieve the

ata which matches the pattern from the database and visualizg
tlhnkto users. | In ihis_line_of Eseﬂch,_one_ of ﬂe core _Brol)_leme is
how to define the similarity between visualizations, which will be

further discussedin SECiON 22 — — — = = — — — o

Our structure-aware approach falls in the category of retrieval
by example. Our approach takes SVG-based visualizations as the
input and then represents the visual and structural information of
them as embedding vectors for similar visualization retrieval.

an - - o S S S S S S S S S B e e
2.2 Visualization Similarity

Computing the similarity of visualizations benefits various down-
stream tasks such as assisting in exploratory data analysis [62],
querying visualizations [29] and generating visualization collec-
tions [32]. Inspired by a previous study [29], prior methods on

|
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cach participant was required to answer three simple visualizatgjon-
related questions, for example, “what is the chart type of mezmx
visualization?”. Only participants who correctly answered the thr
verification questions were allowed to join the study. No offer cri-
teria were used in the participant recruitment. In the second part of
the study, to encourage the participants o reflect on how they judge
the similarity of visualizations, cach participant was presenfed with
five query visualizations and their retrieved top-5 similar i
tions by using visual information only. The participants were asked
to give cach retrieved visualization a score ranging from 1 ("m least
similar) to 5 (the most similar). After finishing the scoring, in the
last part of the study, we asked participants to write dovn their
criteria of scoring the retrieved visualizations in a text vl

After the study, we summarized the responses from participants.
Since there may be ambiguity in understanding the cntc'
tioned by participants, we first classified the major criteria into
six major categories and two co-authors of this paper laifeled all
responses individually. If the annotations were inconsislent on
any response, we examined and discussed together to rgach an
agreement on these cases. I

a me

4.2 Results

‘The six major criteria and their frequency are shown in decreasing
order in Figure 3. In the results, we can notice that there afe three
important criteria (ie., visualization type, the trend of dhta and
the number of visual elements) with much higher frequengy than
other criteria. The results of our preliminary study also aligl with a
previous study [23] well. Specifically, the number of visual elements
and the trend of data are also considered when measufjng the
difference between two visualizations in the previous reseafch [23)
Thus, the type of visualization, the trend of data and the gumber
of visual elements are necessary to be considered e plicltl'
approach when characterizing similarity of visualizations.

in our

SThe protocol of the preliminary study and the user study has been approved by the
Institutional Review Board of our institution,
Chttpsi/w

fic.co

\
~

ay 5, 2022, New Orlear

Convert 0 a grapl
. I . & Remove nodes

—

® o

ndered visualization and SV

(b) Initial graph of visual elements

5 METHOD

In this section, the method of our structure-aware visualization
retrieval is introduced. An overview is shown in Figure 4. To ex
tract and represent the structural information in a visualization, we
first construct a graph of visual elements with features and then
apply a GNN encoder to generate the embedding vector of it (Sec-
tion 5.1). Then we also render the visualization to a bitmap and use
a CNN model to encode the visual information as an embedding
vector as well (Section 5.2). Here we applied contrastive represen-
tation learning to train both CNN and GNN encoders since it can
eliminate human efforts on data annotation. Finally, we normalize
and concatenate the embedding vectors of structural and visual
information for similar visualization retrieval (Section 5.3).

e [B

™ ™ I
) =)

Figure 4: Our approach extracts both structural and visual
information from visualizations first. Then the two types of
information are encoded to embedding vectors separately.
Finally, two embedding vectors are normalized and concate-
nated as the final representation of the visualization.
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Figure 5: This figure illustrates how we transform an SVG to a graph of visual elements. In the SVG, each bar can be either

resemted By <pwei> OFFectPEBue Fthe HmteWPhce e oniyeshowephr tinkeV G theerrevpendimEsubEreph A
node represents an element in the SVG. The colors of nodes in the graph indicate the corresponding bars in the visualization.

In (c), all leaf nodes are with self-loop edges, which are not all shown in this figure.

5.1 Representation Learning of Structural
Information
As introduced before, structural information in SVGs can reflect the
hierarchical and spatial relationship between visual elements e
plicitly. To utilize the structural information, we first extract visual
element-level features and construct a graph of visual elements.
Then, we apply a GNN-based graph contrastive learning method
to generate the embedding vector of the structural information.
Feature Extraction. In the first step, we aim to extract features
to describe the characteristics of elements in SVGs. These features
are designed to reflect the types, styles and shapes and positions of
elements. To make our approach simple and generalizable, we only

features to describe the trend. Thus, we use the predicted values
of LOESS on five evenly sampled vertices as features of the trend.
Since <text> can hardly be described by the features above, we
further add the length of the text as a feature. Furthermore, the
relationship between positions of elements within the same group
is also necessary to reflect the overall trend in the visualizations.
‘Thus, we sort the visual elements according to their positions on
the horizontal and vertical axes and introduce the differences in
positions as features of each element as well. Finally, for elements
without certain features (e.g., <g> does not have specified width
and height), we fill zeros as the placeholders. All features are also
scaled according to their ranges. For example, positions are scaled
o} idth of the entire SVG.
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