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Learning to Reconstruct Continuous Surfaces

Point cloud Mesh



Key Challenges

• Shape representation

Discrete ↔ Continuous

• Network

Efficient & Effective

Time cost PerformancePoint cloud Mesh



Full-Voxel-based CNNs

• Related work: [Wu et al. 2016; Choy et al. 2016; Dai et al. 2017]

• Natural extension of 2D CNNs

• Low efficiency

3D ShapeNet

[Wu et al. 2015] 



Sparse-Voxel-based CNNs

• Related work: [Wang et al. 2017; Graham et al. 2018; Shao et al. 2018;] 

• High efficiency

• Hard to produce continuous surfaces

Adaptive O-CNN 

[Wang et al. 2018] 



Coordinate-based MLPs

• Related work: [Chen et al. 2019; Mescheder et al. 2019; Park et al. 2019]

• A compact and continuous shape representation

• Hard to design encoding networks with MLPs

Occupancy Networks

[Mescheder et al. 2019]



Hybrid Methods

• Related works: [Peng et al. 2020; Martel et al. 2021; Takikawa et al. 2021]

• Partially overcome limitations of MLP-based methods

• Low resolution feature volume (ConvONet [Peng et al. 2020])

• No encoder networks (ACORN & NGLOD [Martel et al. 2021; Takikawa et al. 2021])

ConvONet

[Peng et al. 2020]



Key Idea

• Represent both volumetric fields and point clouds with Octrees

• Learn features with graph networks on dual Octrees

Interpolation

Point Cloud Adaptive FeaturesDual Octree Graph



Dual Octree Graphs

Octree Multi-Resolution Dual Octree Graphs

Encoder

Decoder



Graph Convolution on Dual Octrees

Message passing: 

𝐹𝑖 =
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Graph Convolution on Dual Octrees

Message passing: 

𝐹𝑖 =
𝑗∈𝑁𝑖

𝑊 Δ𝑝𝑖𝑗 × 𝐹𝑗

Δpij has finite number of values:

𝐹𝑖 =
𝑗∈𝑁𝑖

𝑊𝐼 Δ𝑝𝑖𝑗
× 𝐹𝑗

where 𝐼 𝑝𝑖𝑗 ∈ {0, 1, 2, … , 7}

⟸



Graph Convolution on Dual Octrees

• 5 times faster than previous graph convolutions

Fj torch.scatter_add W 𝐹𝑖

𝐹𝑖 =
𝑗∈𝑁𝑖

𝑊𝐼 Δ𝑝𝑖𝑗
× 𝐹𝑗



Graph Downsampling and Upsampling

Downsampling

Upsampling



Neural Multi-level Partition of Unity (MPU)

𝐹( , 𝑥)𝑤𝑒𝑖𝑔ℎ𝑡(𝑥)∑ ×

𝑤𝑒𝑖𝑔ℎ𝑡(𝑥)∑

Query point



Network and Loss Functions

Input

Upsample(c)

Downsample(c)

Resblock(n, c)

PredictionModule

NeuralMPU

Octree Splitting Loss

Regression Loss



Shape Reconstruction from Point Clouds

• Dataset: 13 categories from ShapeNet 

Input (3k) GT PSR ConvONet DeepMLS Ours



Shape Reconstruction from Point Clouds

• 13 categories from ShapeNet 
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Shape Reconstruction from Point Clouds
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Effectiveness: Multiscale Features in Convolutions

O-CNN

Dual  

Octree GNNs

O-CNN   [Wang et at. 2017]  SIGGRAPH



Effectiveness: Multiscale Features in Convolutions
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Efficiency: Faster than Other Graph Convolutions
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Scene Reconstruction from Point Clouds



Scene Reconstruction from Point Clouds
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Surface Reconstruction from Point Clouds
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• 390 TIMES FASTER!



Generalization Ability

• The network trained on human bodies can be applied to general shapes



Summary

Reconstruct a complex scene in 478ms

• Learning to predict adaptive volumetric fields
• Dual octree graph networks

• Neural MPU

• Produce high-quality continuous surfaces

• General for more applications
• Superior performances for shape autoencoding

• Promising performance for shape analysis

• Future work
• Shape generation, like Diffusion Models

Code and data are available online


