New Methods for Reconstruction and Rendering of 3D Real-world Scenes

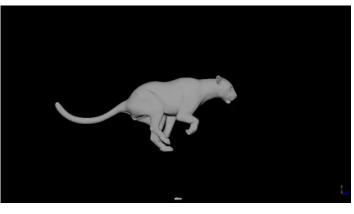
Lingjie Liu

Incoming Assistant Professor at the University of Pennsylvania Postdoc at Max Planck Institute for Informatics

Computer Graphics, Computer Vision & Al

I'm looking for PhD students, postdocs & visiting students More Info: https://lingjie0206.github.io/

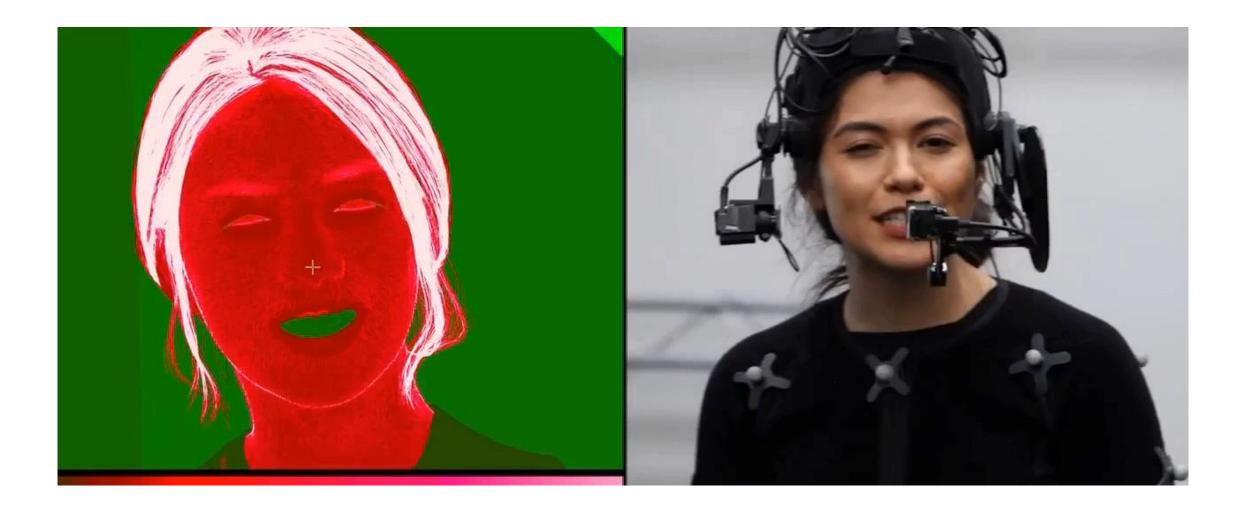
Reconstruction of 3D Real-world Scenes



Motion + Deformation

Photo-realistic Rendering

Photo-realistic Rendering



Why Are They Important?



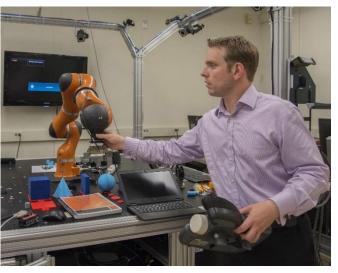
AR / VR

Gaming / Movie

Autonomous Driving

Robot Grasping

Healthcare



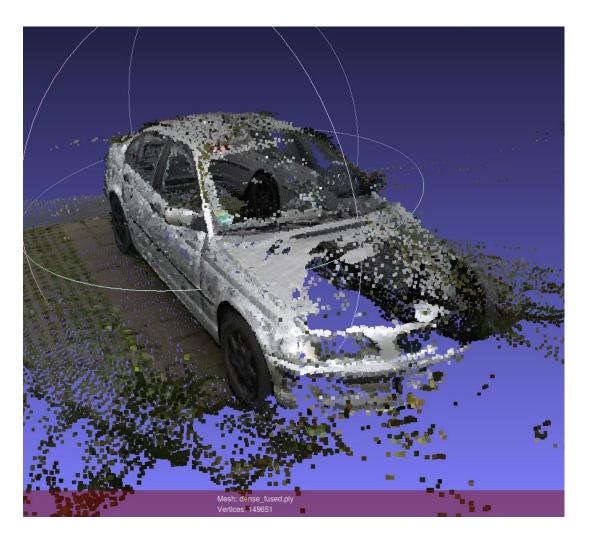
Human-robot Interaction

Why Challenging?

Classical Computer Graphics Pipeline

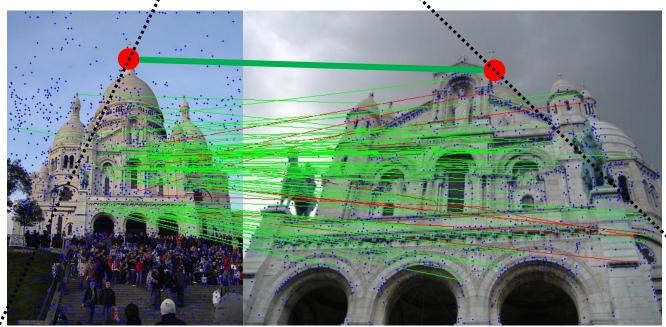
Computer Graphics Rendering

Image-based 3D Reconstruction



Colmap: (Input: 100 images)

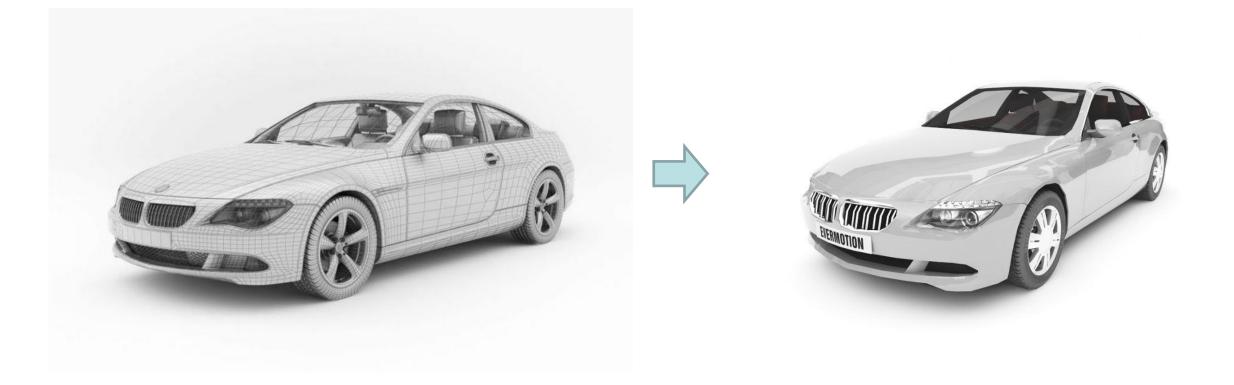
Challenges in Image-based Reconstruction



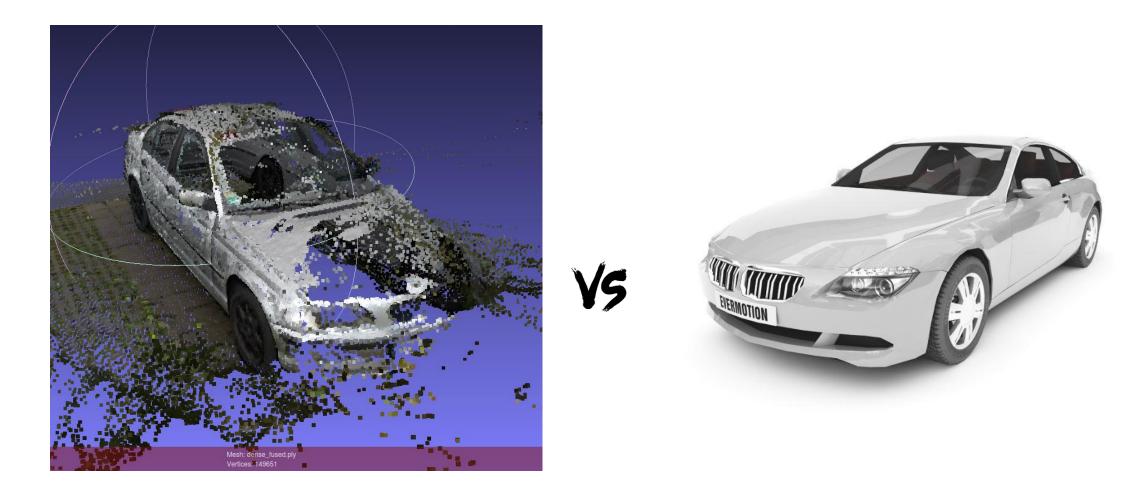
Hard to extract reliable correspondences!

Challenges in Image-based Reconstruction

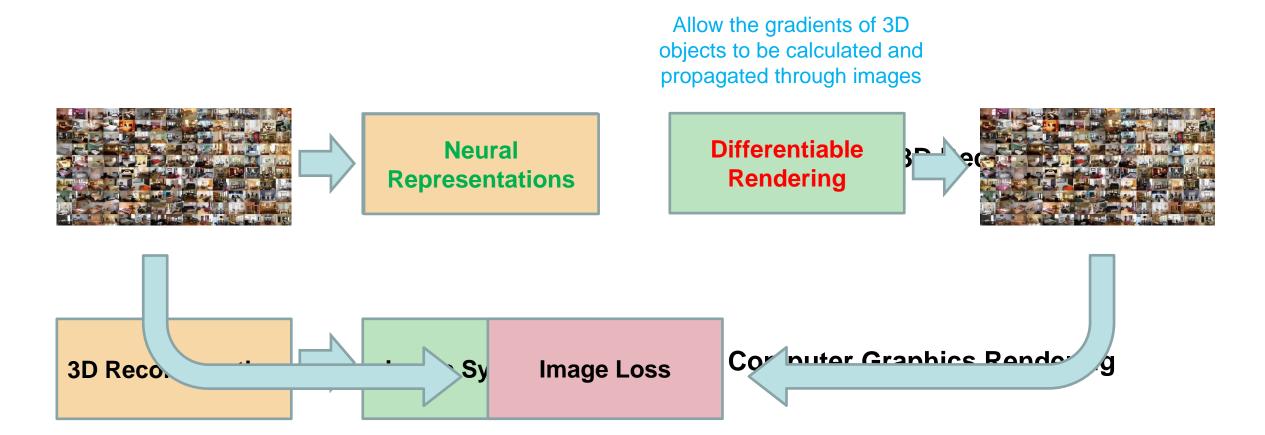
Computer Graphics Rendering



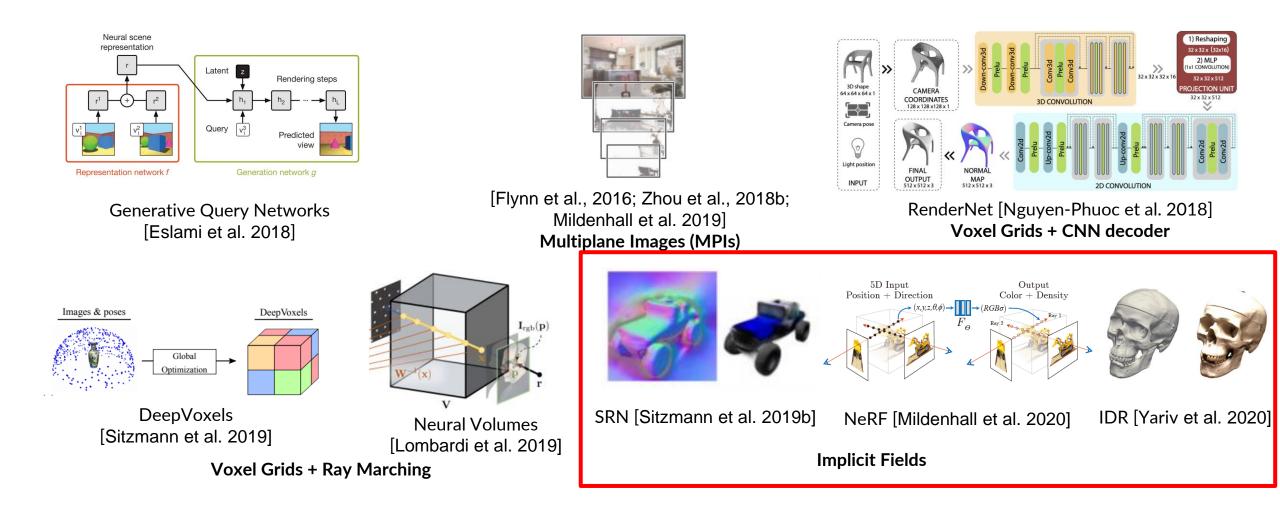
Challenges



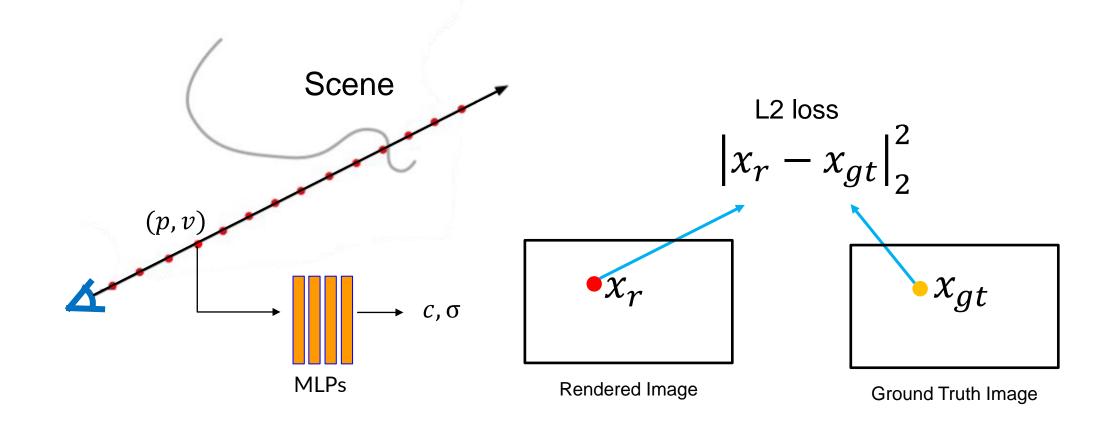
Self-supervised Learning of 3D Scenes



Neural 3D Scene Representations



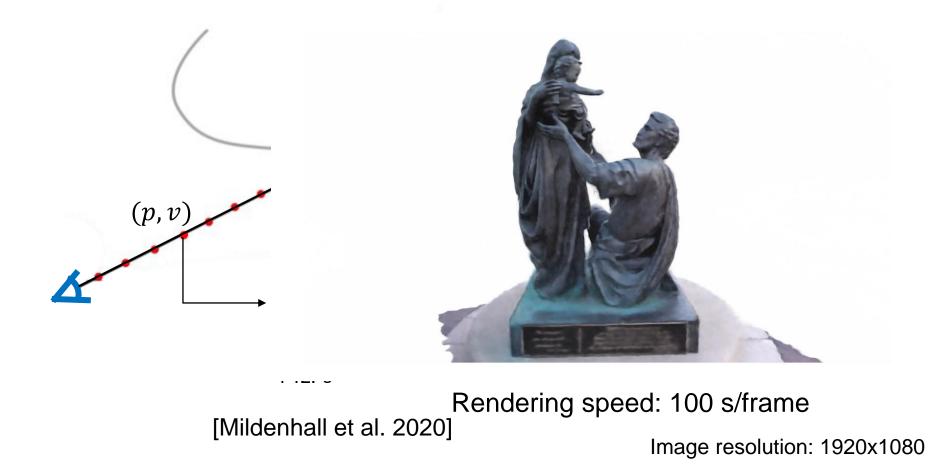
Neural Radiance Fields (NeRF)



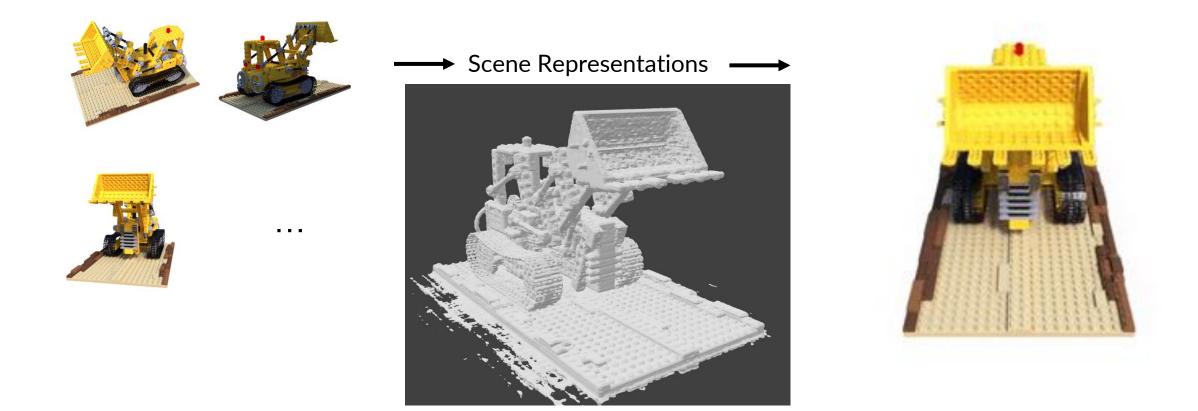
[Mildenhall et al. 2020]

Neural Radiance Fields (NeRF)

NeRF suffers from a slow rendering process.

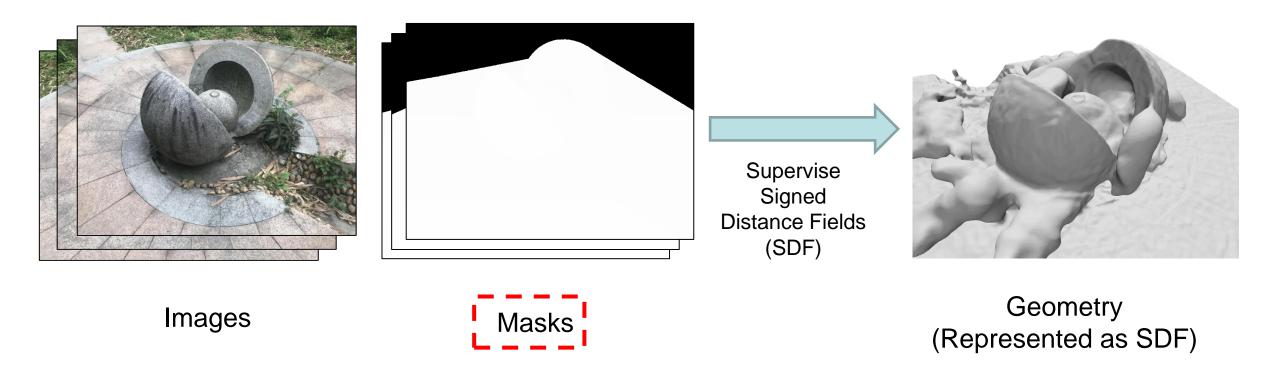


Surfaces Extracted from Learned Representation



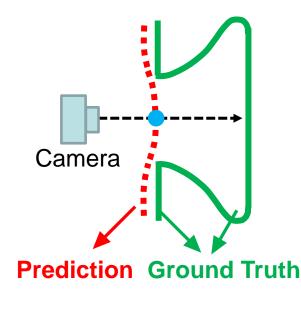
Volume density used as scene representation lacks surface constraints

Background – Surface Reconstruction Methods



IDR [Yariv et al. 2020]

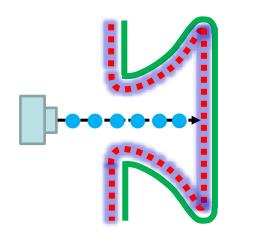
Background – Surface Reconstruction Methods

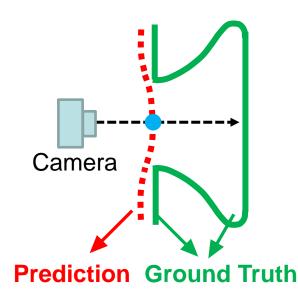


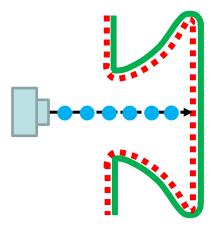
Surface Representation + Surface Rendering

Surface rendering is not suitable for learning scene representation

Surface Representation + Volume Rendering







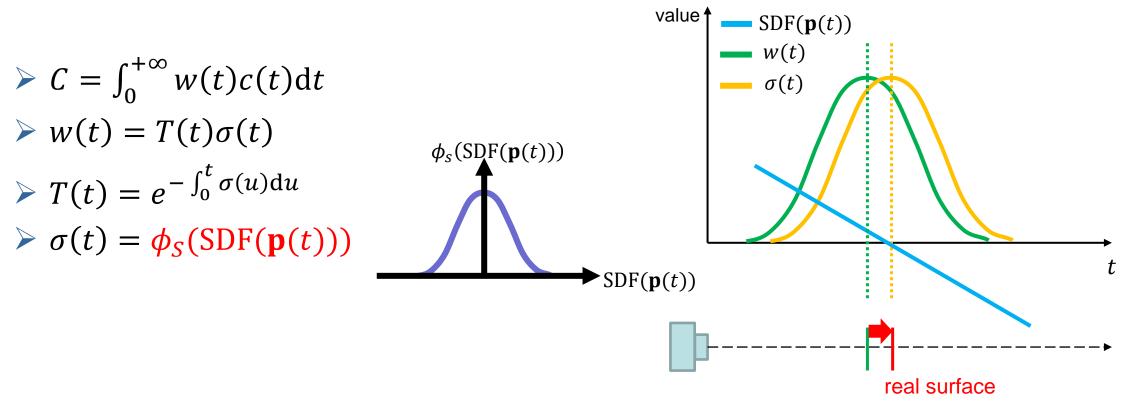
Volume Representation + Volume Rendering

Surface Representation + Surface Rendering Surface Representation + Volume Rendering

P. Wang, *L. Liu,* Y. Liu, C. Theobalt, T. Komura, W. Wang. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021 Spotlight

Challenge

Simply applying volume rendering to the density associated with SDF.



 Problem: Introduce bias, i.e., the maximal weight term w(t) is not attained on the surface intersection.

Our Solution

- Requirements on the weight function:
- Unbiased: w(t) attains a locally maximal value at a surface intersection point p(t*), i.e. with f(p(t*)) = 0

• Occlusion-aware: Given any two depth values t_0 and t_1 satisfying $f(\mathbf{p}(t_0)) = f(\mathbf{p}(t_1)), w(t_0) > 0, w(t_1) > 0$, and $t_0 < t_1$, there is $w(t_0) > w(t_1)$.

Our Solution

 We first introduce a straightforward way to construct an unbiased weight function

$$w(t) = \frac{\phi_s(f(\mathbf{p}(t)))}{\int_0^{+\infty} \phi_s(f(\mathbf{p}(u))) du}$$

where
$$\phi_s(x) = se^{-sx}/(1 + e^{-sx})^2$$
,
 $f(\mathbf{p}(t))$ is the SDF value of point $\mathbf{p}(t)$

However, this weight function is not occlusion-aware.

Our Solution

 We design a weight function that is both occlusion-aware and unbiased in the first order approximation of SDF by combining the following two equations.

Occlusion-aware but *NOT* unbiased

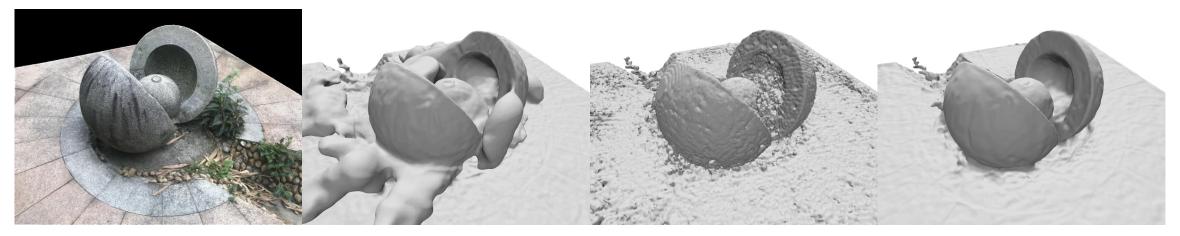
 $w(t) = T(t)\sigma(t)$ $T(t) = e^{-\int_0^t \sigma(u)du}$ $\sigma(t) = \phi(f(\mathbf{p}(t)))$

Unbiased but *NOT* occlusion-aware

$$w(t) = \frac{\phi_s(f(\mathbf{p}(t)))}{\int_0^{+\infty} \phi_s\left(f(\mathbf{p}(u))\right) du}$$

where $\phi_s(x) = se^{-sx}/(1 + e^{-sx})^2$, $f(\mathbf{p}(t))$ is the SDF value of point $\mathbf{p}(t)$

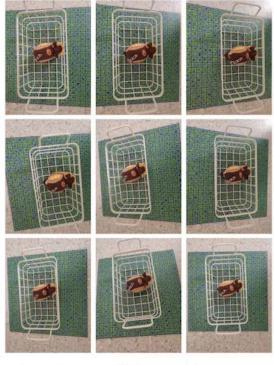
Comparison



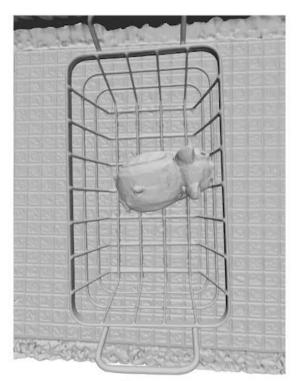
Reference Image

IDR [Yariv et al. 2020] NeRF [Mildenhall et al. 2020] NeuS (Ours)

Results of NeuS



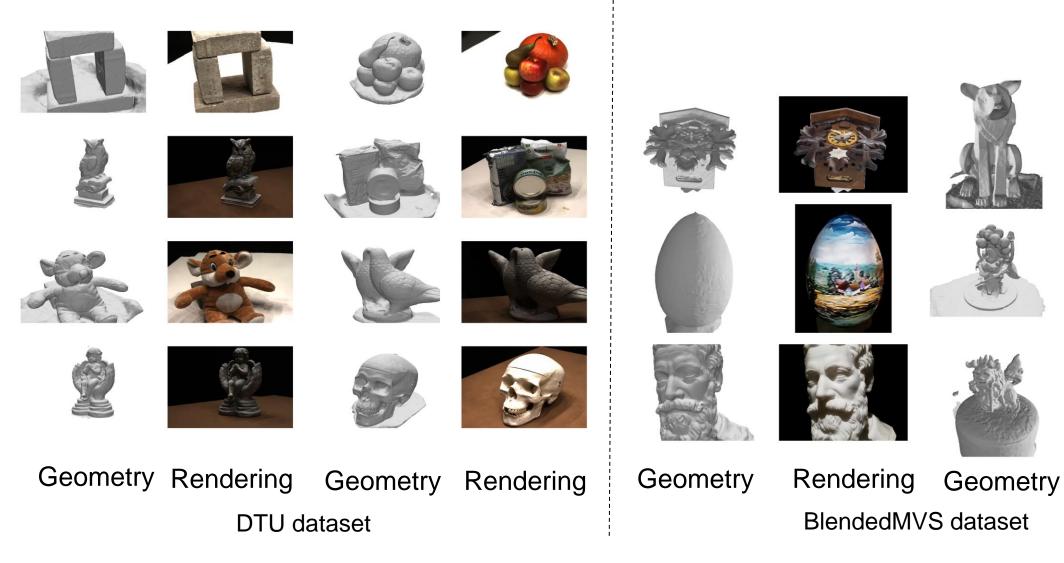
A subset of input images



Our surface geometry (w/o mask supervision)

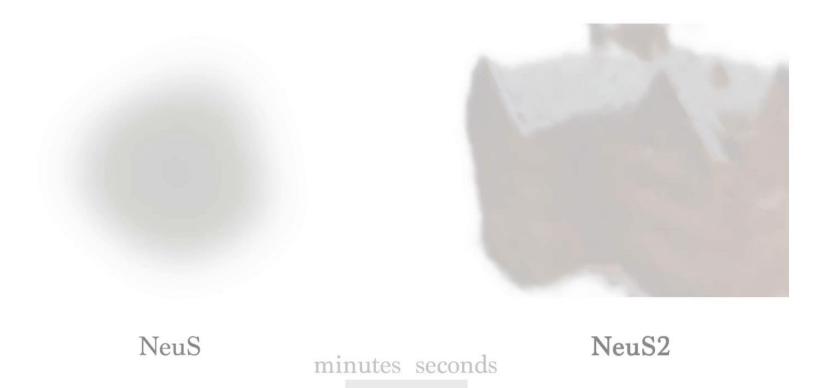
Our rendering (w/o mask supervision)

Results of NeuS

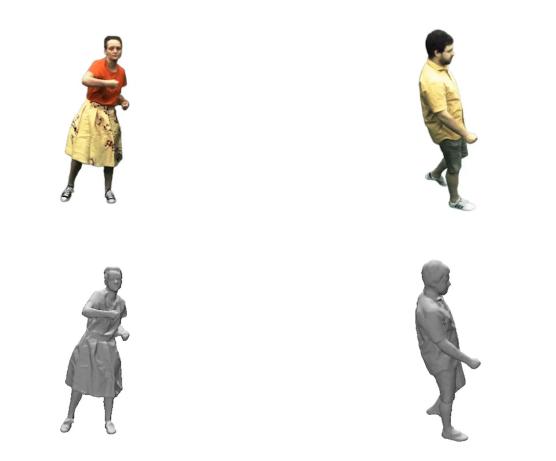


Rendering

Fast Training of NeuS

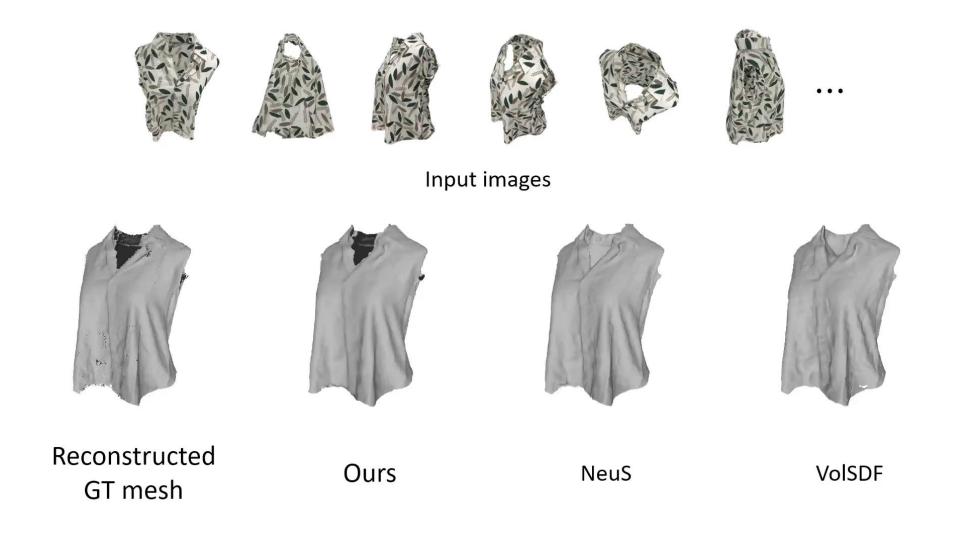


Fast Training of NeuS



Dynamic Scenes (20 seconds per frame)

Neural SDF -> UDF



Indoor Scene Reconstruction

Reference

NeuS

Indoor Scene Reconstruction

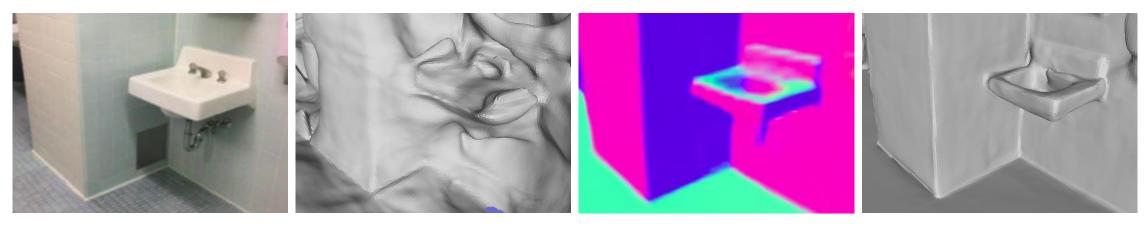
Reference

NeuRIS

J. Wang, P. Wang, X. Long, C. Theobalt, T. Komura, *L. Liu,* W. Wang. NeuRIS: Neural Reconstruction of Indoor Scenes Using Normal Priors, ECCV 2022

Method

- Normal priors
- Invariant to translation and scaling, avoiding the scale ambiguity issue of depth estimation
- Encode geometry information of common indoor scenes



Reference

NeuS

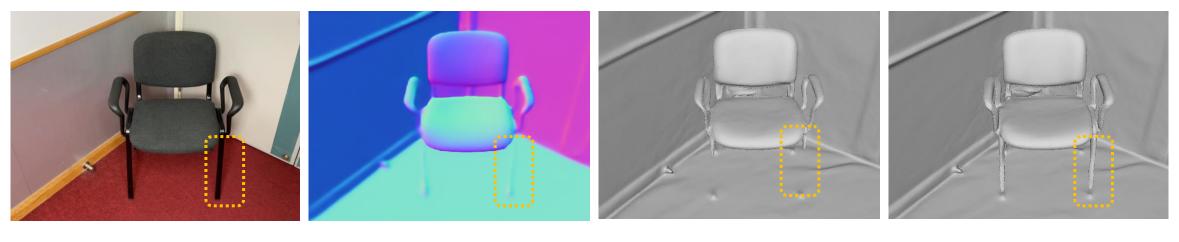
Estimated normal

NeuS with normal priors

Method

Online geometry check

 Normal estimation at object edges or thin structure areas is usually not accurate and may not produce correct geometry. Avoid using normal priors at those areas.



Reference

Estimated normal

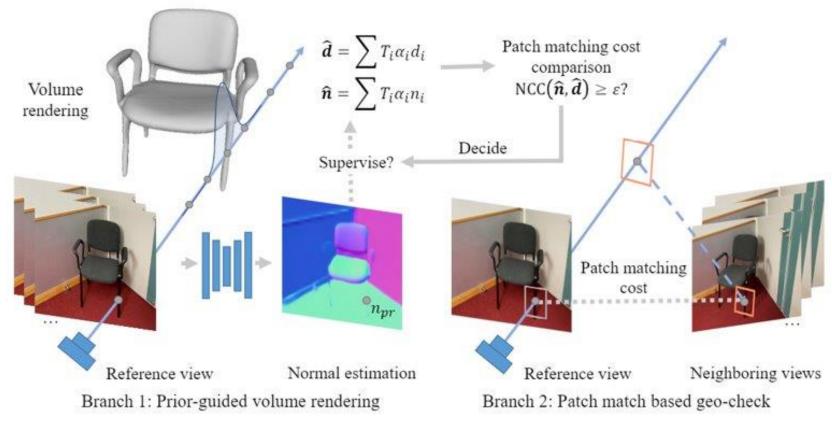
NeuS with normal priors

NeuRIS (ours)

Method

Neural volume rendering using normal priors adaptively

- (1) Use normal priors to guide the optimization process
- (2) Check multi-view consistency to decide whether to use normal priors on the fly

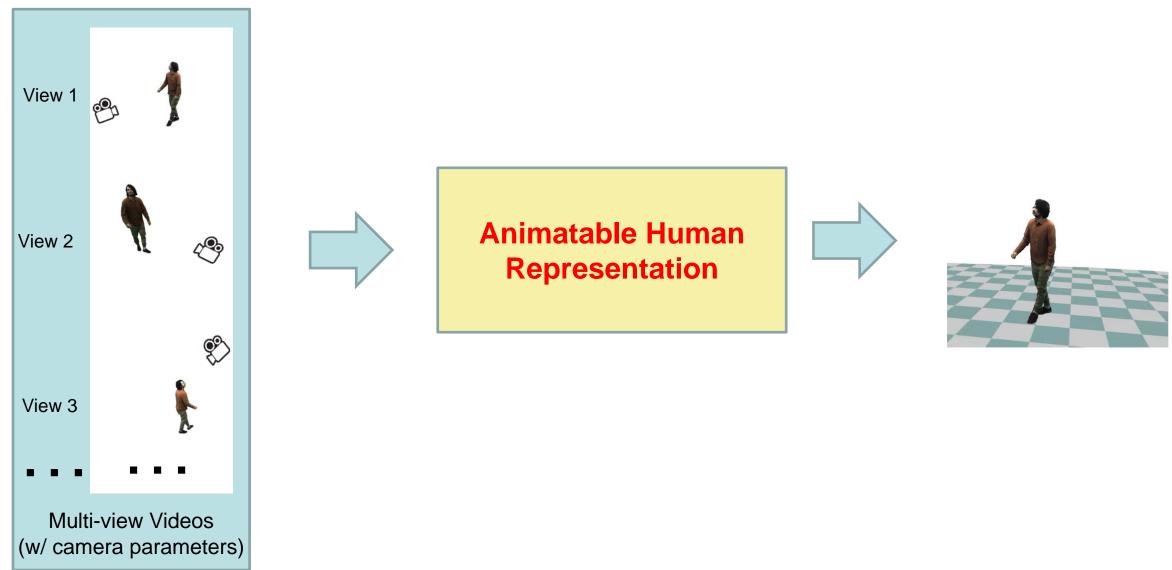


NeuRIS: Neural Reconstruction of Indoor Scenes Using Normal Priors (ECCV'22)

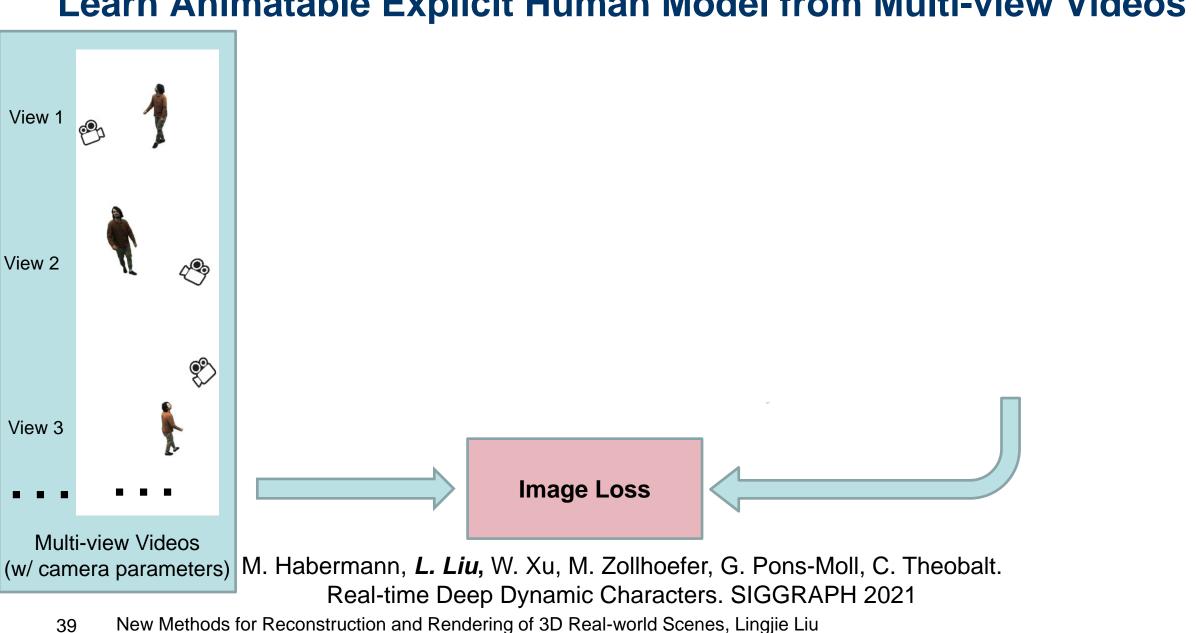
Reference

Estimated normal

Reconstucted mesh

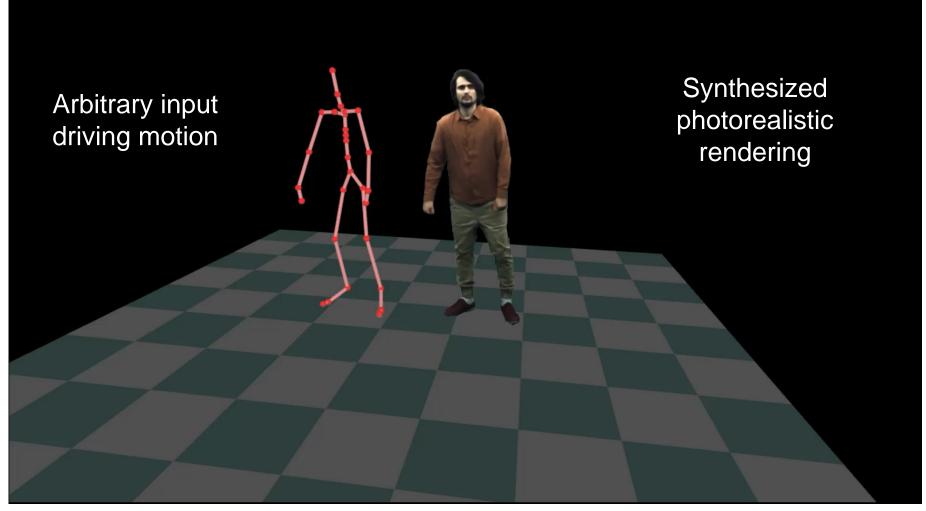


Learn an Animatable Human Model from Multi-view Videos



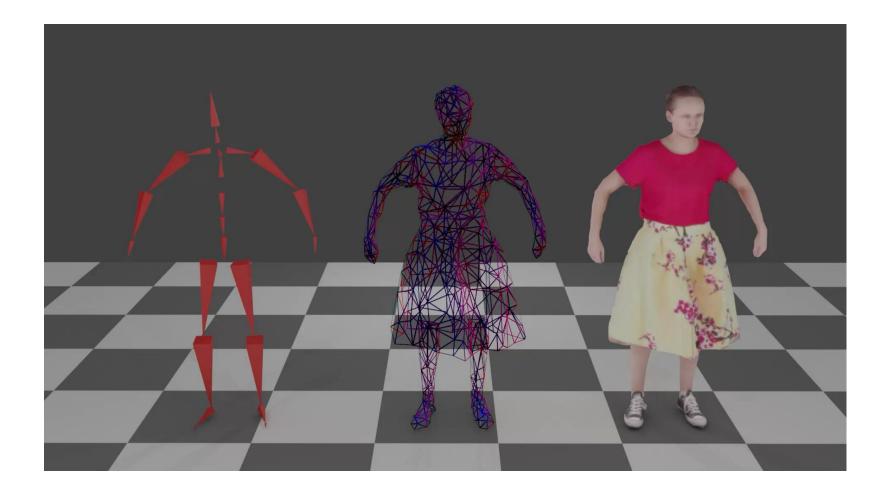
Learn Animatable Explicit Human Model from Multi-view Videos

Learn Animatable Explicit Human Model from Multi-view Videos

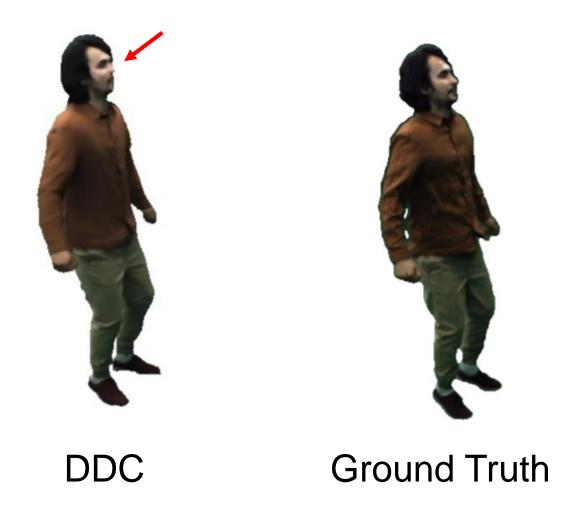


M. Habermann, *L. Liu*, W. Xu, M. Zollhoefer, G. Pons-Moll, C. Theobalt. Real-time Deep Dynamic Characters. SIGGRAPH 2021

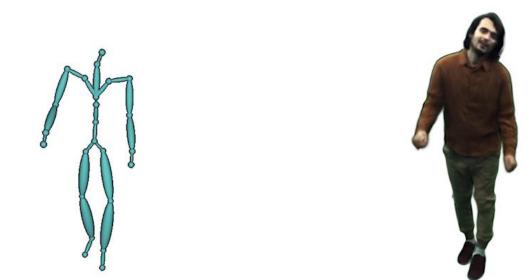
Require a Person-specific Scanned 3D Human Template



Meshes Have Limited Resolution



Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control

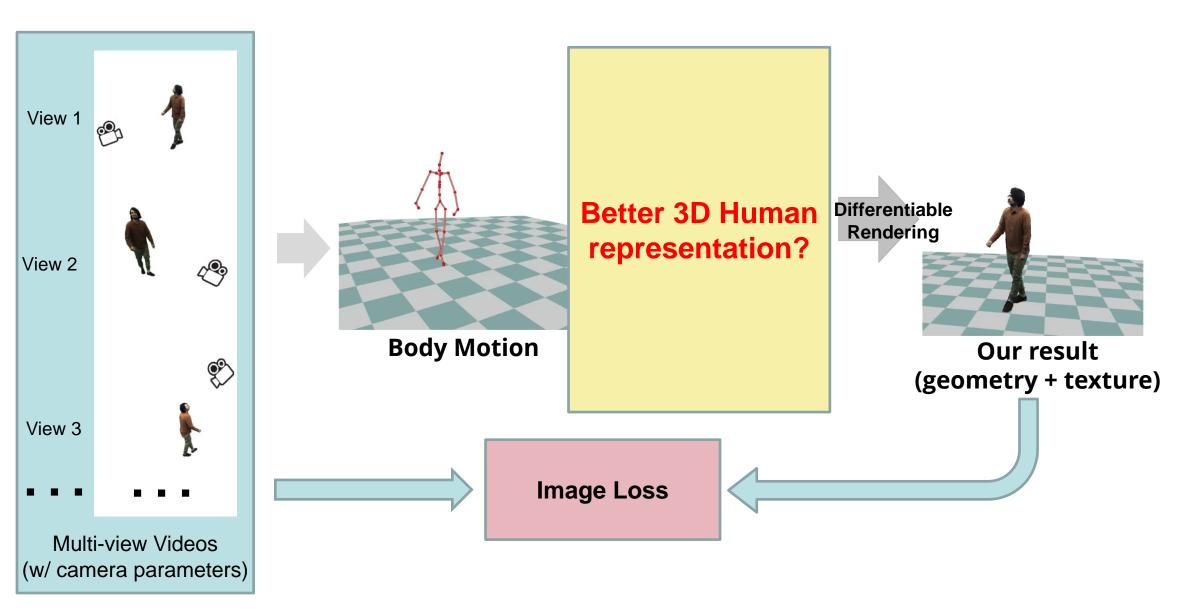


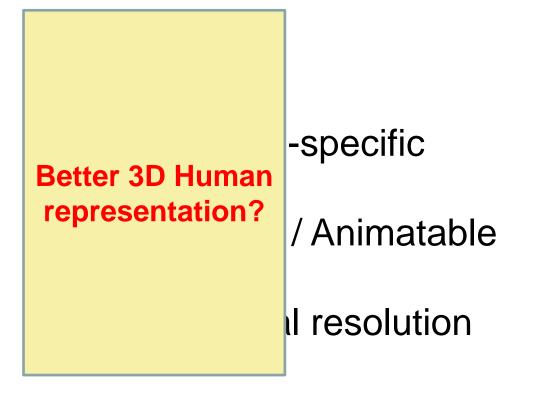
Arbitrary input driving poses

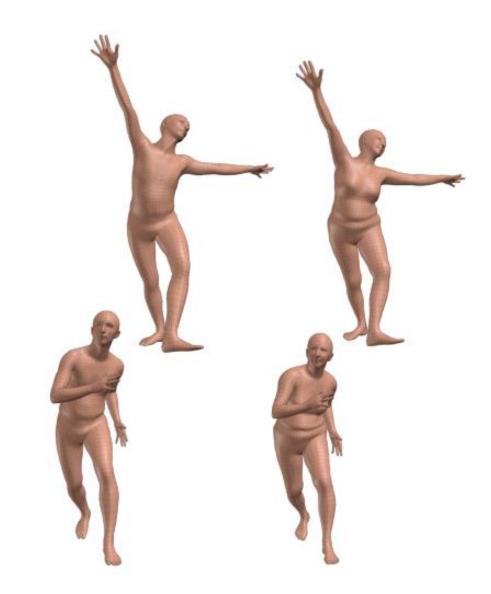
43

Synthesized results by Neural Actor

L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, C. Theobalt. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021 New Methods for Reconstruction and Rendering of 3D Real-world Scenes, Lingjie Liu





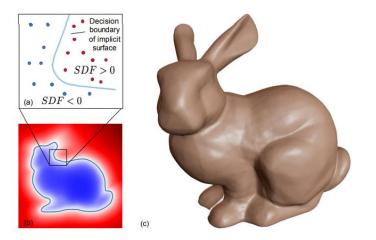


Not person-specific

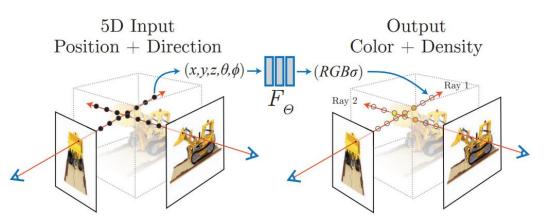
Articulated / Animatable

High spatial resolution No clothes

Skinned Multi-person Linear Model (SMPL)



[Park et al. 2019]



[[]Mildenhall et al. 2020]

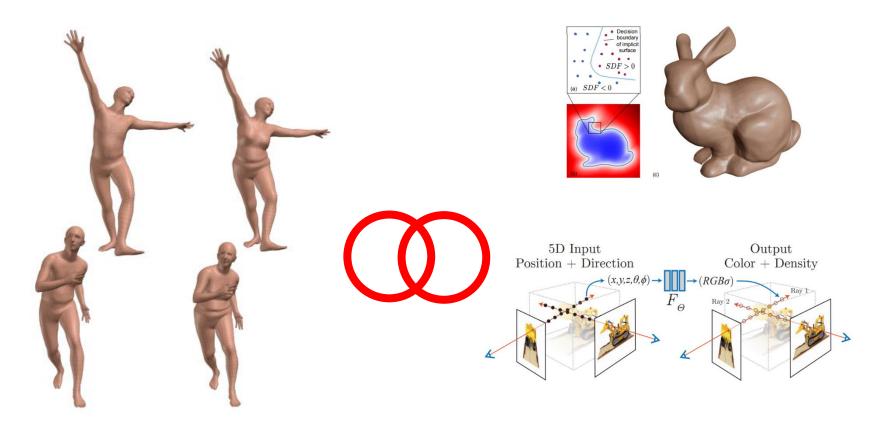
Neural Fields

47 New Methods for Reconstruction and Rendering of 3D Real-world Scenes, Lingjie Liu

Articulated / Animatable

Not person-specific

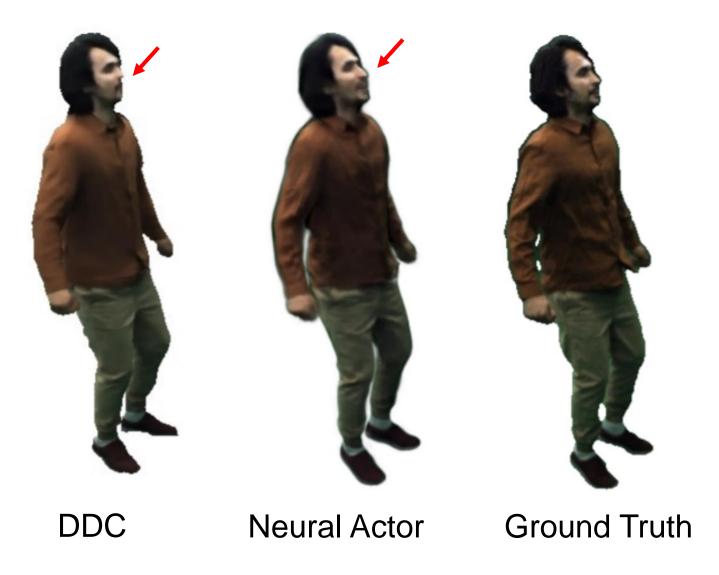
High spatial resolution



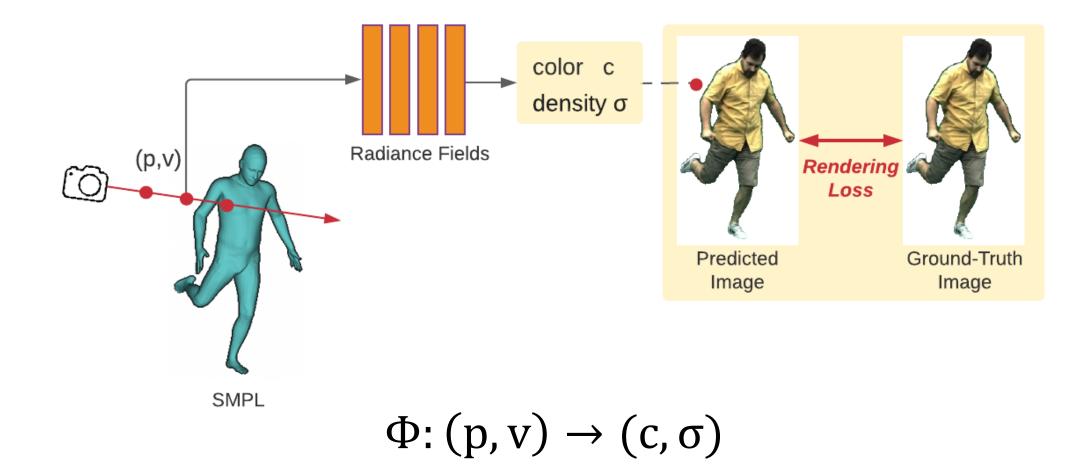
Skinned Multi-person Linear Model (SMPL)

Neural Fields

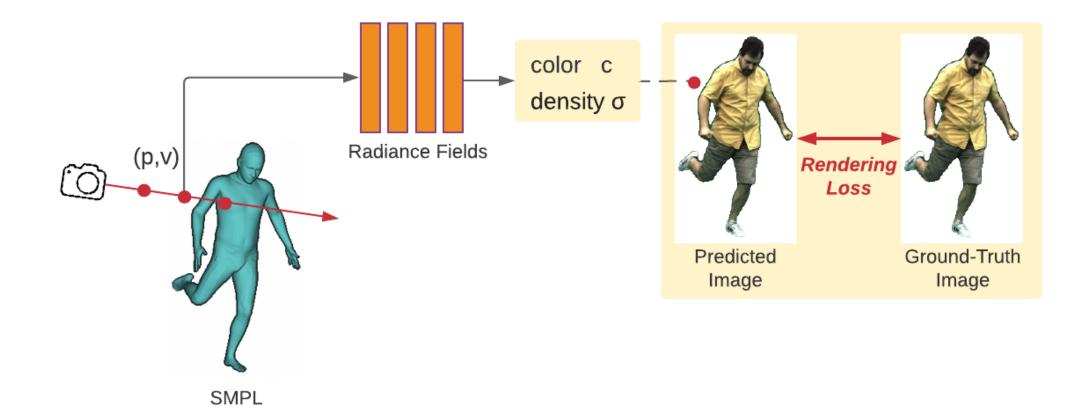
L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, C. Theobalt. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021



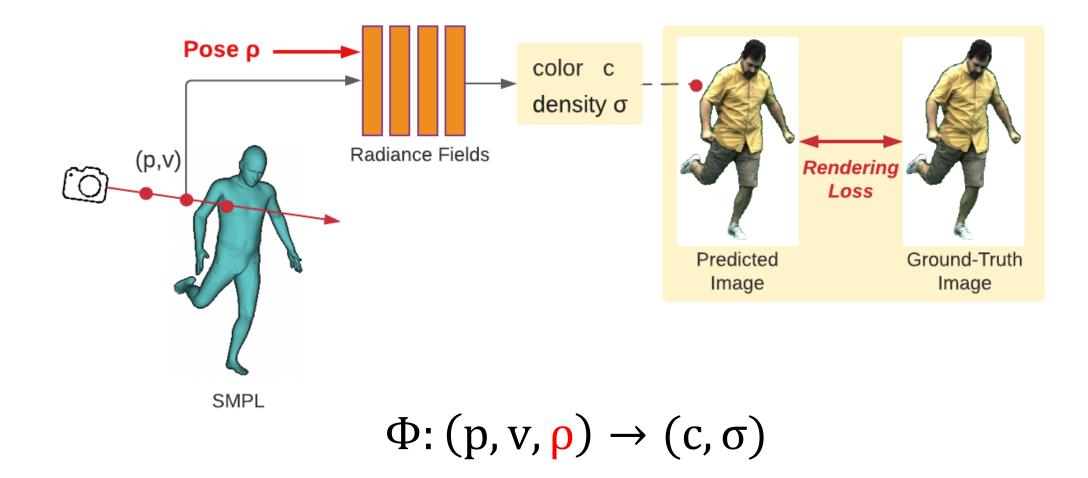
Model a Single Frame as NeRF



How to Model a Moving Sequence of Human?



How to Model a Moving Sequence of Human?



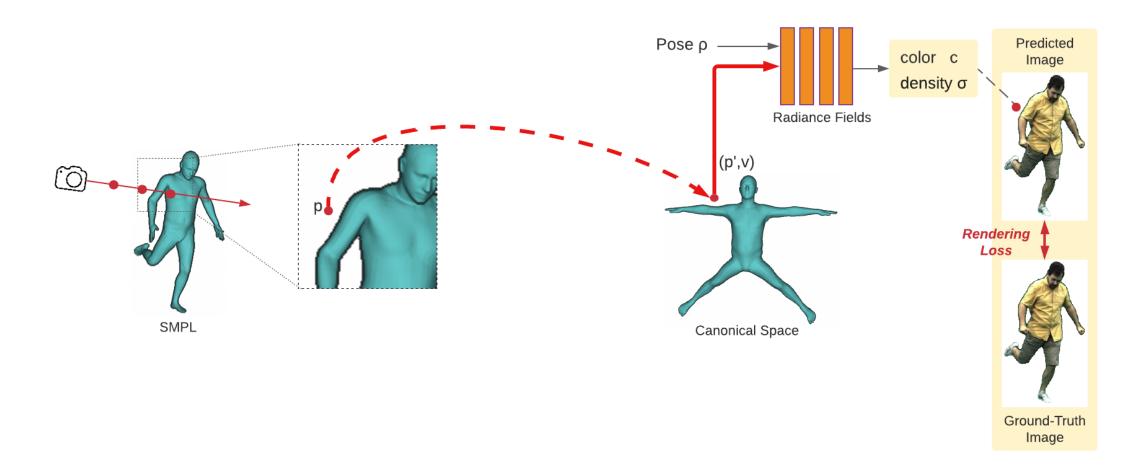
Pose as Conditioning

Pose as Conditioning

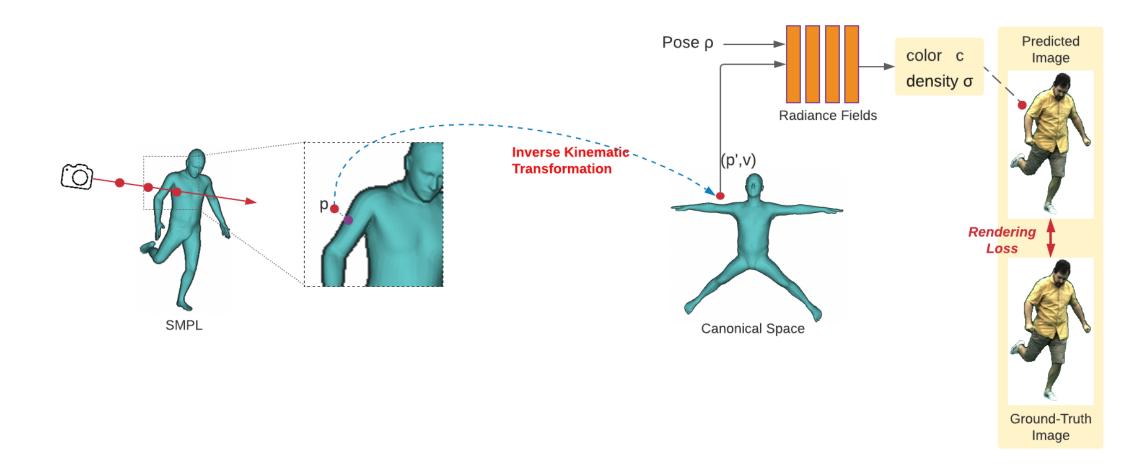
Ground Truth

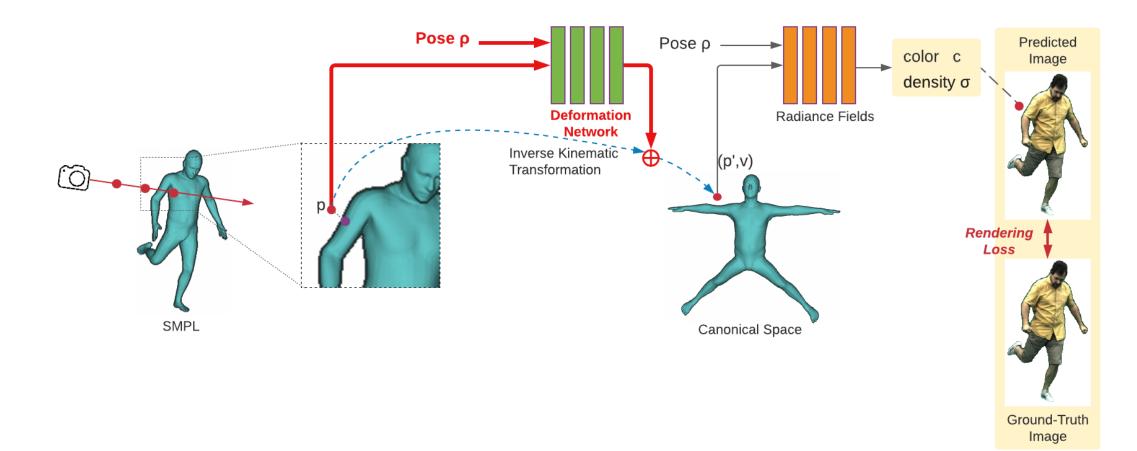
What is the efficient way to model a moving sequence?

Shape and appearance of the person in each frame would not change much!



L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, C. Theobalt. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021





Pose as Conditioning

Geometry-guided **Deformable Neural Fields** (One Proposed Component of Neural Actor) New Methods for Reconstruction and Rendering of 3D Real-world Scenes, Lingjie Liu

Ground Truth

58

What Causes Blurriness?

- The mapping from the skeletal pose to dynamic geometry and appearance is not a bijection.
 - Complex dynamics of the surface
 - Pose tracking errors
 - Cloth-body interaction

Pose — Geometry + Appearance

Many-to-many mapping

Model this mapping with a deterministic model with L2 loss?

With adversarial loss?

What Causes Blurriness?

- The mapping from the skeletal pose to dynamic geometry and appearance is not a bijection.
 - Complex dynamics of the surface
 - Pose tracking errors
 - Cloth-body interaction

Incorporate a latent variable:

Pose → Geometry/+ Appearance

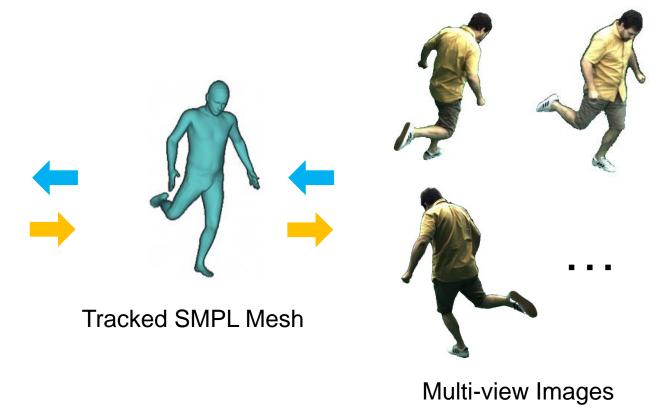
Maaytoomanyappaipging

How to Choose Latent Variable?

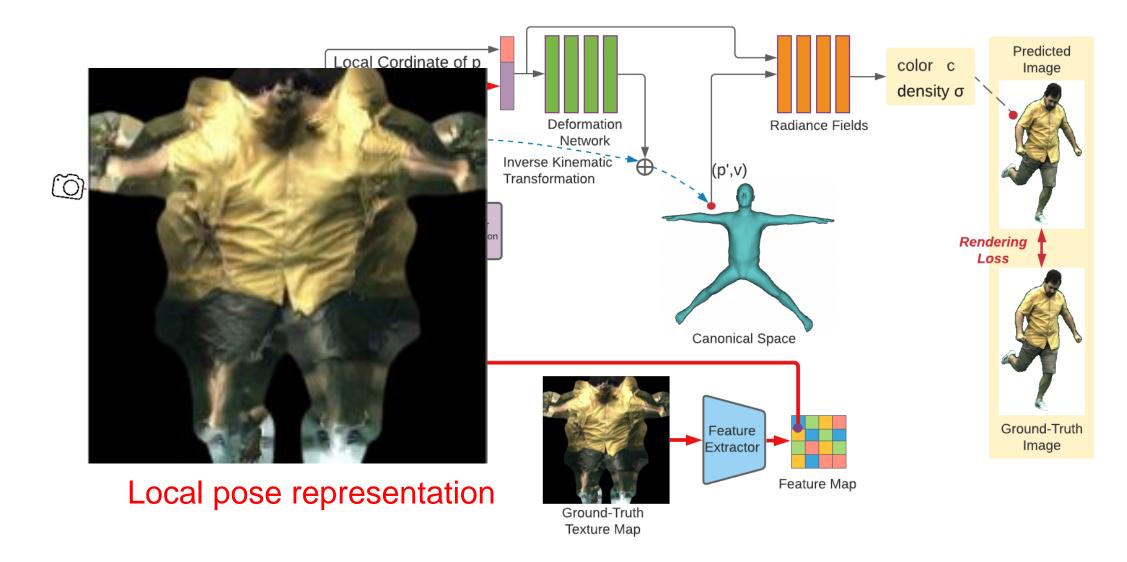
Texture Map

Latent Variable — Geometry + Appearance

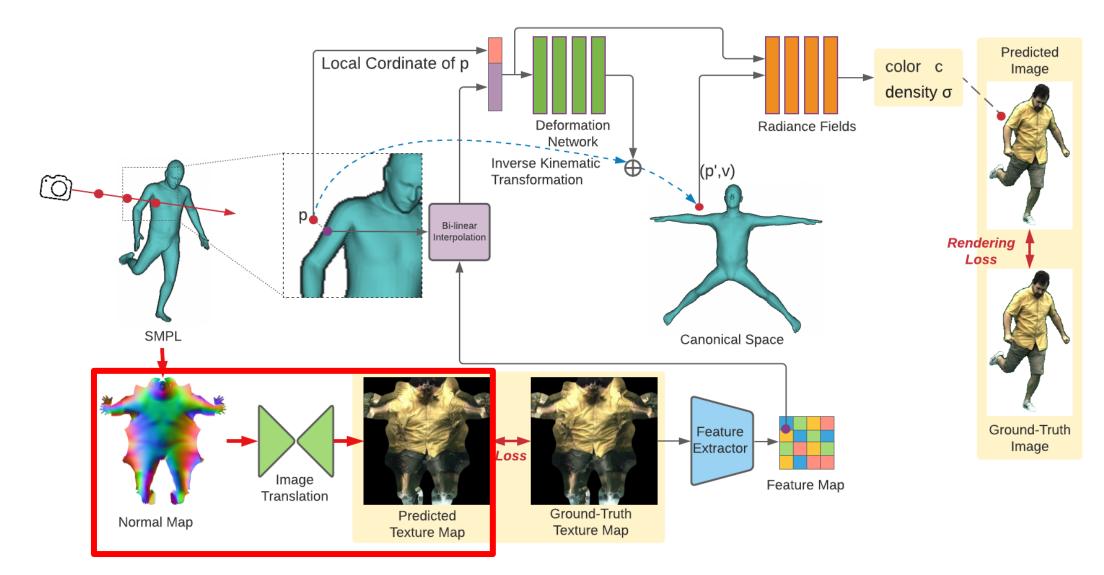
One-to-one mapping



Texture Map as Latent Variable



Texture Map as Latent Variable

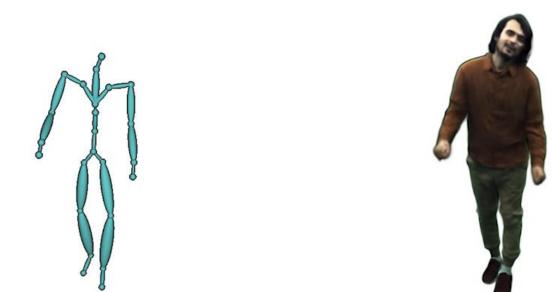


Texture Map as Latent Variable

64

Geometry-guided Neural Actor Deformable Neural Fields (Our Full Model) (One Proposed Component of Neural Actor) New Methods for Reconstruction and Rendering of 3D Real-world Scenes, Lingjie Liu

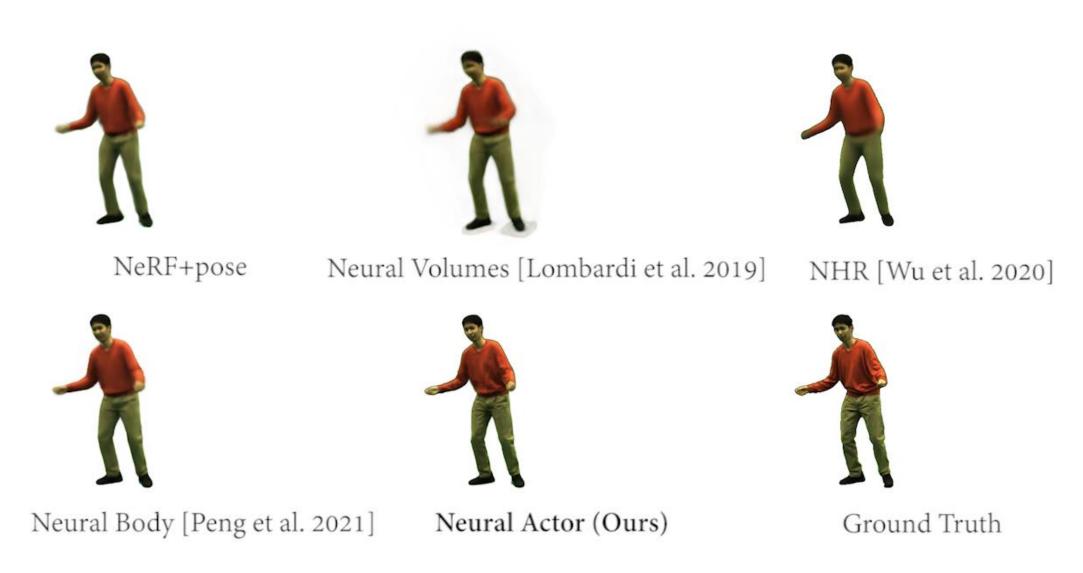
Ground Truth

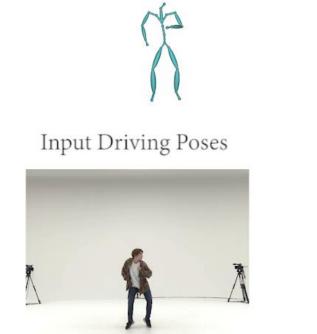


Arbitrary input driving poses

Synthesized results by Neural Actor

Comparisons





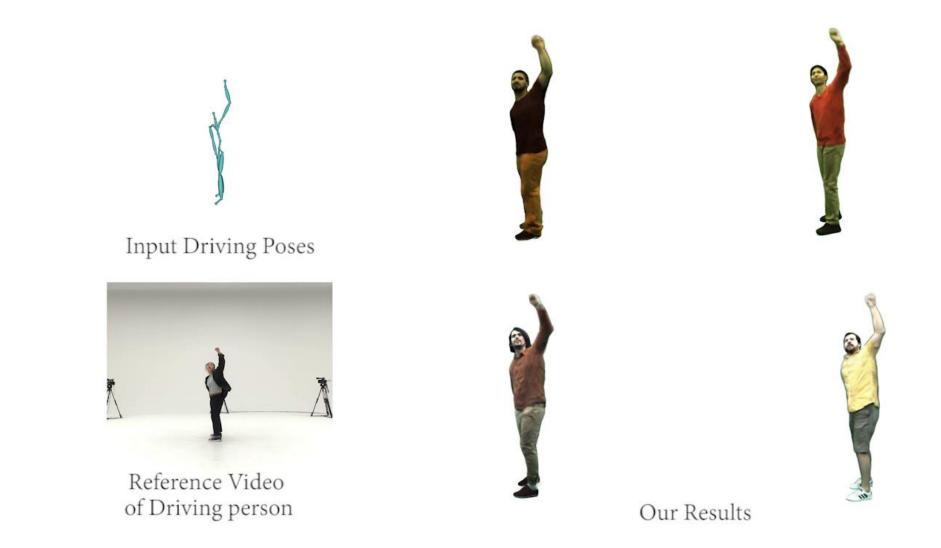
Reference Video of Driving Person

Our Result

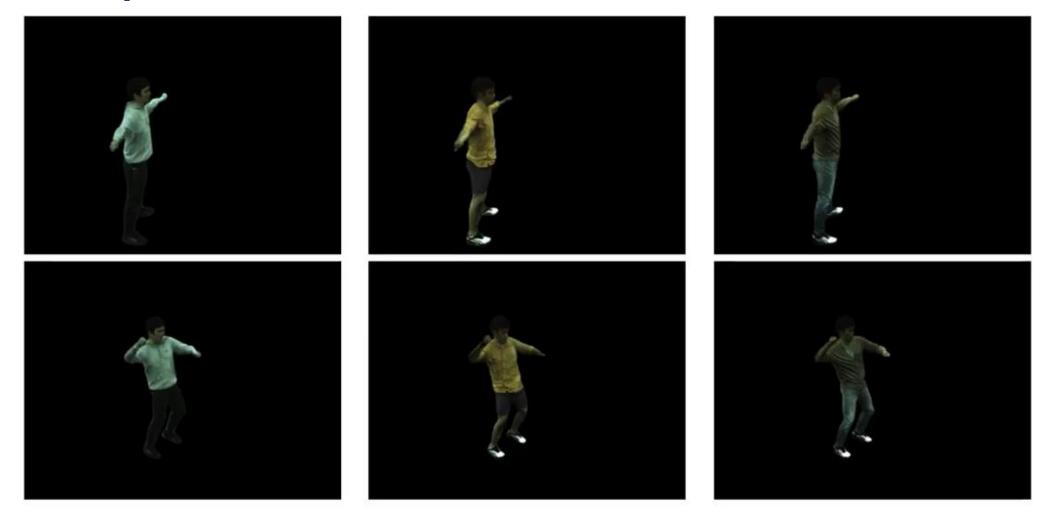
Input Driving Poses

Reference Video of Driving Person

Our Result



Person-specific Model -> Generalized Human Model



Y. Wang, Q. Gao, L. Liu, *L. Liu*, C. Theobalt, B. Chen. Neural Novel Actor: Learning a Generalized Animatable Neural Representation for Human Actors, Arxiv 2022

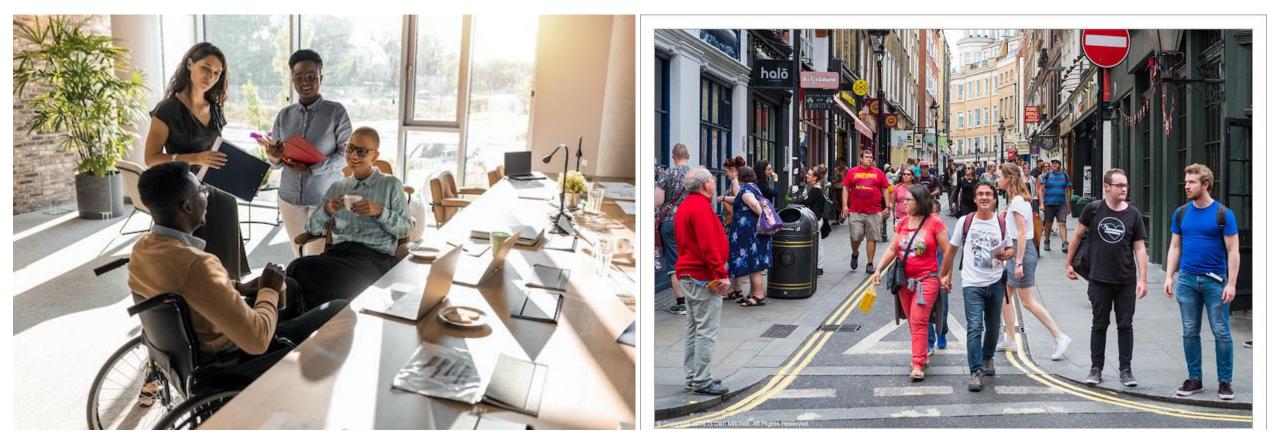
Person-specific Model -> Generalized Human Model

GΤ

Neural Human Perfomer NeurIPS 2021 Ours

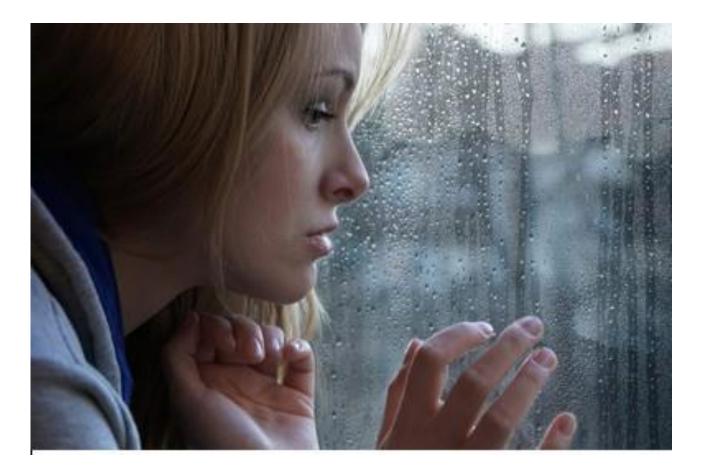
Y. Wang, Q. Gao, L. Liu, *L. Liu*, C. Theobalt, B. Chen. Neural Novel Actor: Learning a Generalized Animatable Neural Representation for Human Actors, Arxiv 2022

Modeling and rendering more complex scenes.



Efficiency, Accuracy

Sparse-view / Single-view reconstruction



Generalization -> To learn a prior

Generalization -> To learn a prior -> Learn from in-the-wild data

Thank you!