Application to IGA

多边曲面的理论与性质

朱春钢

大连理工大学 数学科学学院

CAD/CAE/CAM专题——CAD技术的新进展

2022年11月10日 GAMES

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

э

イロン イヨン イヨン イヨン

Outlines

- 1 Background
- 2 Toric surface patches
- **3 Generalized Bézier surfaces**
- 4 Application to IGA

Outlines

1 Background

- 2 Toric surface patches
- 3 Generalized Bézier surfaces
- 4 Application to IGA

・ロト ・日・・日・・日・ ・日・ うへぐ

Rational Bézier curves

Definition

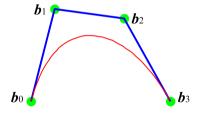
Given weights $\omega_i \ge 0(\omega_0, \omega_n > 0)$ and control points $\mathbf{p}_i \in \mathbb{R}^3$, the parametric curve

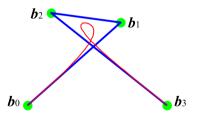
$$\mathbf{P}(t) = \frac{\sum_{i=0}^{n} \mathbf{p}_i \omega_i B_i^n(t)}{\sum_{i=0}^{n} \omega_i B_i^n(t)}, \ 0 \le t \le 1,$$
(1.1)

is called **rational Bézier curve** of degree n, where $B_i^n(t) = {n \choose i} t^i (1-t)^{n-i}$ are Bernstein basis functions.

э

Cubic Bézeir curves





▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Tensor product and simplicial Bernstein basis functions

Tensor product Bernstein basis functions of degree $m \times n$

$$B_{i,j}^{m,n}(u,v) = B_i^m(u)B_j^n(v), i = 0, 1, \cdots, m, j = 0, 1, \cdots, n.$$

Dalian University of Technology

Tensor product and simplicial Bernstein basis functions

Tensor product Bernstein basis functions of degree $m \times n$

$$B_{i,j}^{m,n}(u,v) = B_i^m(u)B_j^n(v), i = 0, 1, \cdots, m, j = 0, 1, \cdots, n.$$

Simplicial Bernstein basis functions of degree n

$$B_{\boldsymbol{\lambda}}^{n}(\boldsymbol{\tau}) = \frac{n!}{\lambda!} \boldsymbol{\tau}^{\boldsymbol{\lambda}} = \frac{n!}{\lambda_{1}!\lambda_{2}!, \lambda_{3}!} \tau_{1}^{\lambda_{1}} \tau_{2}^{\lambda_{2}} \tau_{3}^{\lambda_{3}},$$

$$\boldsymbol{\lambda} = (\lambda_{1}, \lambda_{2}, \lambda_{3}), \quad \boldsymbol{\tau} = (\tau_{1}, \tau_{2}, \tau_{3}), |\boldsymbol{\lambda}| = n, |\boldsymbol{\tau}| = 1.$$

Dalian University of Technology

Tensor product and simplicial Bernstein basis functions

Tensor product Bernstein basis functions of degree $m \times n$

$$B_{i,j}^{m,n}(u,v) = B_i^m(u)B_j^n(v), i = 0, 1, \cdots, m, j = 0, 1, \cdots, n.$$

Simplicial Bernstein basis functions of degree n

$$B^{n}_{\lambda}(\boldsymbol{\tau}) = \frac{n!}{\lambda!} \boldsymbol{\tau}^{\lambda} = \frac{n!}{\lambda_{1}!\lambda_{2}!,\lambda_{3}!} \tau_{1}^{\lambda_{1}} \tau_{2}^{\lambda_{2}} \tau_{3}^{\lambda_{3}},$$

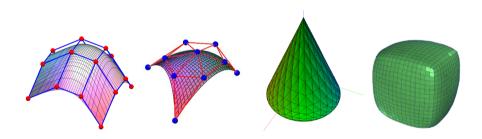
$$\boldsymbol{\lambda} = (\lambda_{1},\lambda_{2},\lambda_{3}), \quad \boldsymbol{\tau} = (\tau_{1},\tau_{2},\tau_{3}), |\boldsymbol{\lambda}| = n, |\boldsymbol{\tau}| = 1.$$

Rational Bézier surfaces and volumes can be constructed by tensor product and simplicial Bernstein basis functions.

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Application to IGA

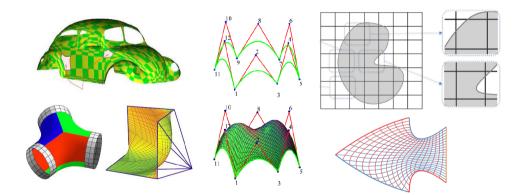
Rectangle Bézier surface, Bézier triangle, and Bézier volumes



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▼ のへぐ

Chun-Gang Zhu Multi-sided surfaces: theories and properties

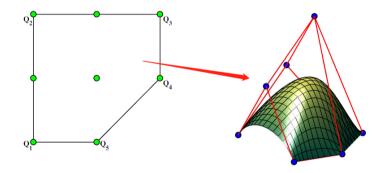
Multi-sided surfaces



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Multi-sided parametric surfaces



・ロト ・日・・日・・日・ ・日・ うへぐ

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Methods for multi-sided surface construction

- **1** N-sided surface patches: J. A. Gregory, 1986.
- **2** S-patches: C. Loop and T. DeRose, 1989.
- **3 Hexagonal patches**: J. Warren, 1992.
- 4 Toric surface patches: R. Krasauskas, 2002.
- 5 M-surfaces: K. Karčiauskas, 2003.
- **6** Unstructured T-splines: M. Scott, R. Simpson, J. Evans, S. Lipton, S. Bordas, T. Huges, 2013.
- 7 Generalized (Multi-sided) Bézier surfaces: T. Várady, P. Salvi, G. Karikó, 2016.
- **B** Multi-sided B-spline surfaces: M. Vaitkus, T. Várady, P. Salvi, Á. Sipos, 2021.
- **9** TCB-splines: J. Cao, Z. Chen, X. Wei, Y. J. Zhang, 2022.
- Subdivision-based methods, unstructured spline technologies, multi-patch methods, · · ·

Outlines

1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

Univariate Bernstein basis

Let $\mathcal{A} = \{0, 1, \cdots, n\}$ and

$$I_{\mathcal{A}} = conv(\mathcal{A}) = [0, n] = \{ x \in \mathbb{R} \mid L_1(x) = x \ge 0, L_2(x) = n - x \ge 0 \}.$$

Dalian University of Technology

・ロト ・回ト ・ヨト ・ヨ

Univariate Bernstein basis

Let $\mathcal{A} = \{0, 1, \cdots, n\}$ and

$$I_{\mathcal{A}} = conv(\mathcal{A}) = [0, n] = \{ x \in \mathbb{R} \mid L_1(x) = x \ge 0, L_2(x) = n - x \ge 0 \}.$$

For every $i \in \mathcal{A}$ and $c_i > 0$, define

$$\beta_i(x) := c_i L_1(x)^{L_1(i)} L_2(x)^{L_2(i)} = c_i x^i (n-x)^{(n-i)},$$

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

・ロト ・回 ト ・ ヨト ・ ヨ

Univariate Bernstein basis

Let $\mathcal{A} = \{0, 1, \cdots, n\}$ and

$$I_{\mathcal{A}} = conv(\mathcal{A}) = [0, n] = \{ x \in \mathbb{R} \mid L_1(x) = x \ge 0, L_2(x) = n - x \ge 0 \}.$$

For every $i \in \mathcal{A}$ and $c_i > 0$, define

$$\beta_i(x) := c_i L_1(x)^{L_1(i)} L_2(x)^{L_2(i)} = c_i x^i (n-x)^{(n-i)},$$

If we set x = nt, $c_i = {n \choose i} n^{-n}$, then they are the classical univariate Bernstein basis functions of degree n.

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

Toric Bernstein basis

Let $\mathcal{A} \subset \mathbb{Z}^d$ be a finite set, $\sharp(\mathcal{A}) = n$, and

$$I_{\mathcal{A}} = conv(\mathcal{A}) = \{ \mathbf{x} \in \mathbb{R}^d \mid 0 \le L_i(\mathbf{x}), i = 1, \dots, N \}.$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Toric Bernstein basis

Let $\mathcal{A} \subset \mathbb{Z}^d$ be a finite set, $\sharp(\mathcal{A}) = n$, and

$$I_{\mathcal{A}} = conv(\mathcal{A}) = \{ \mathbf{x} \in \mathbb{R}^d \mid 0 \le L_i(\mathbf{x}), i = 1, \dots, N \}.$$

For every $\mathbf{a} \in \mathcal{A}$, define the toric Bernstein basis function

$$\beta_{\mathbf{a}}(\mathbf{x}) := c_{\mathbf{a}} L_1(\mathbf{x})^{L_1(\mathbf{a})} L_2(\mathbf{x})^{L_2(\mathbf{a})} \cdots L_N(\mathbf{x})^{L_N(\mathbf{a})},$$

where $c_{\mathbf{a}} > 0$.

• • • • • • • • • • • •

Definition (Krasauskas, 2002)

Given $\mathcal{A} \subset \mathbb{Z}^d$, weights $\omega = \{\omega_{\mathbf{a}} \geq 0 | \mathbf{a} \in \mathcal{A}\}$ and control points $\mathcal{P} = \{\mathbf{P}_{\mathbf{a}} | \mathbf{a} \in \mathcal{A}\} \in \mathbb{R}^m$,

Definition (Krasauskas, 2002)

Given $\mathcal{A} \subset \mathbb{Z}^d$, weights $\omega = \{\omega_{\mathbf{a}} \geq 0 | \mathbf{a} \in \mathcal{A}\}$ and control points $\mathcal{P} = \{\mathbf{P}_{\mathbf{a}} | \mathbf{a} \in \mathcal{A}\} \in \mathbb{R}^m$, the parametric surface patch

$$\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathbf{x}) = \frac{\sum_{\mathbf{a}\in\mathcal{A}} \mathsf{P}_{\mathbf{a}} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(\mathbf{x})}{\sum_{\mathbf{a}\in\mathcal{A}} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(\mathbf{x})}, \qquad \mathbf{x}\in I_{\mathcal{A}}.$$

is called a **toric surface patch** (or toric Bézier patch, toric patch) defined in \mathbb{R}^m .

Definition (Krasauskas, 2002)

Given $\mathcal{A} \subset \mathbb{Z}^d$, weights $\omega = \{\omega_{\mathbf{a}} \geq 0 | \mathbf{a} \in \mathcal{A}\}$ and control points $\mathcal{P} = \{\mathbf{P}_{\mathbf{a}} | \mathbf{a} \in \mathcal{A}\} \in \mathbb{R}^m$, the parametric surface patch

$$\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathbf{x}) = \frac{\sum_{\mathbf{a}\in\mathcal{A}} \mathsf{P}_{\mathbf{a}}\omega_{\mathbf{a}}\beta_{\mathbf{a}}(\mathbf{x})}{\sum_{\mathbf{a}\in\mathcal{A}} \omega_{\mathbf{a}}\beta_{\mathbf{a}}(\mathbf{x})}, \qquad \mathbf{x}\in I_{\mathcal{A}}.$$

is called a **toric surface patch** (or toric Bézier patch, toric patch) defined in \mathbb{R}^m .

Why toric?

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

Definition (Krasauskas, 2002)

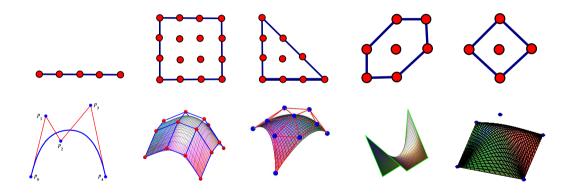
Given $\mathcal{A} \subset \mathbb{Z}^d$, weights $\omega = \{\omega_{\mathbf{a}} \geq 0 | \mathbf{a} \in \mathcal{A}\}$ and control points $\mathcal{P} = \{\mathbf{P}_{\mathbf{a}} | \mathbf{a} \in \mathcal{A}\} \in \mathbb{R}^m$, the parametric surface patch

$$\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathbf{x}) = \frac{\sum_{\mathbf{a}\in\mathcal{A}} \mathsf{P}_{\mathbf{a}}\omega_{\mathbf{a}}\beta_{\mathbf{a}}(\mathbf{x})}{\sum_{\mathbf{a}\in\mathcal{A}} \omega_{\mathbf{a}}\beta_{\mathbf{a}}(\mathbf{x})}, \qquad \mathbf{x}\in I_{\mathcal{A}}.$$

is called a **toric surface patch** (or toric Bézier patch, toric patch) defined in \mathbb{R}^m .

Why toric? It is the projection of toric variety. The mathematical theory is from toric ideals of Combinatorics and toric varieties of Algebraic Geometry.

Special cases

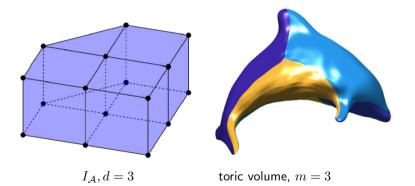


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Application to IGA

Example: Lattice heptahedron and 3D toric volume



Dalian University of Technology

・ロト ・回 ト ・ ヨト ・ ヨ

Outlines

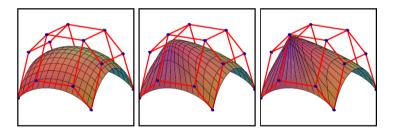
1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

A famous geometric meaning of weights is that the large weight pulls the surface patch towards the corresponding control point.

A famous geometric meaning of weights is that the large weight pulls the surface patch towards the corresponding control point.



・ロ・・西・・ヨ・・ヨ・ ヨー ろへの

For given weights w, set $w_{\lambda}(t) = \{t^{\lambda(\mathbf{a})}w_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ for t > 0. Let

$$\mathcal{B}_{\mathcal{A},\omega_{\lambda}(t),\mathcal{P}}(u,v;t) = \frac{\sum_{\mathbf{a}\in\mathcal{A}} \mathbf{P}_{\mathbf{a}} t^{\lambda(\mathbf{a})} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(u,v)}{\sum_{\mathbf{a}\in\mathcal{A}} t^{\lambda(\mathbf{a})} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(u,v)}, \quad (u,v) \in I_{\mathcal{A}}.$$

and the patch $\mathcal{B}_{\mathcal{A},w_{\lambda}(t),\mathcal{P}}$ parameterized by $\mathcal{B}_{\mathcal{A},w_{\lambda}(t),\mathcal{P}}(u,v;t)$.

For given weights w, set $w_{\lambda}(t) = \{t^{\lambda(\mathbf{a})}w_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{A}\}$ for t > 0. Let

$$\mathcal{B}_{\mathcal{A},\omega_{\lambda}(t),\mathcal{P}}(u,v;t) = \frac{\sum_{\mathbf{a}\in\mathcal{A}} \mathbf{P}_{\mathbf{a}} t^{\lambda(\mathbf{a})} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(u,v)}{\sum_{\mathbf{a}\in\mathcal{A}} t^{\lambda(\mathbf{a})} \omega_{\mathbf{a}} \beta_{\mathbf{a}}(u,v)}, \quad (u,v) \in I_{\mathcal{A}}$$

and the patch $\mathcal{B}_{\mathcal{A},w_{\lambda}(t),\mathcal{P}}$ parameterized by $\mathcal{B}_{\mathcal{A},w_{\lambda}(t),\mathcal{P}}(u,v;t)$.

Theorem (Toric degeneration. García-Puente, Sottile and Zhu, 2011)

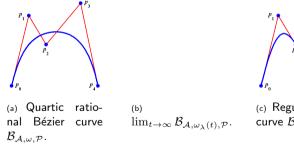
For a toric surface $\mathcal{B}_{\mathcal{A},w_{\lambda},\mathcal{P}}$,

$$\lim_{t\to\infty}\mathcal{B}_{\mathcal{A},\omega_{\lambda}(t),\mathcal{P}}=\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathcal{S}_{\lambda}),$$

where $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathcal{S}_{\lambda})$ is called the regular control surface of $\mathcal{B}_{\mathcal{A},w_{\lambda},\mathcal{P}}$ induced by regular decomposition \mathcal{S}_{λ} .

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Example: quartic rational Bézier curve

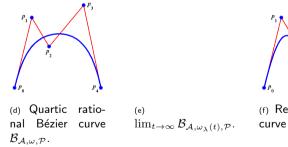


(c) Regular control curve $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathcal{S}_{\lambda})$.

・ロ・ ・ 日・ ・ モ・・

Example: quartic rational Bézier curve

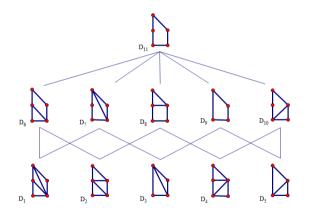
$$\mathcal{A} = \{0, 1, 2, 3, 4\}, \ \lambda(\mathcal{A}) = \{1, 2, 3, 1, 2\}$$
$$\mathcal{S}_{\lambda} = \{\{0, 1, 2\}, \{2, 4\}\}$$



(f) Regular control curve $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(\mathcal{S}_{\lambda})$.

・ロ・ ・ 日・ ・ モ・・

Example: trapezoidal toric patch



|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへぐ

Chun-Gang Zhu Multi-sided surfaces: theories and properties

Example: trapezoidal toric patch

▲口→ ▲圖→ ▲国→ ▲国→ ▲国 ● 今へで

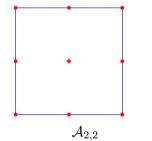
Dalian University of Technology

Example: trapezoidal toric patch

▲口→ ▲圖→ ▲国→ ▲国→ ▲国 ● 今へで

Dalian University of Technology

Example: bi-quadric Bézier patch



Chun-Gang Zhu Multi-sided surfaces: theories and properties

Example:bi-quadric Bézier patch

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Dalian University of Technology

Generalized Bézier surface

Application to curve and surface deformation

- * ロ * * 個 * * 目 * * 目 * うへで

Dalian University of Technology

Outlines

1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

Injectivity of 2D toric surfaces

Theorem (Sottile & Zhu, 2011)

Suppose $\mathcal{A} \subset \mathbb{Z}^2$ and $\mathcal{P} \subset \mathbb{R}^2$. The map $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}} : I_{\mathcal{A}} \mapsto \mathbb{R}^2$ is injective for all $\omega \in \mathbb{R}^{\mathcal{A}}_{>}$ if and only if \mathcal{A} and \mathcal{P} are compatible.

Injectivity of 2D toric surfaces

Theorem (Sottile & Zhu, 2011)

Suppose $\mathcal{A} \subset \mathbb{Z}^2$ and $\mathcal{P} \subset \mathbb{R}^2$. The map $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}} : I_{\mathcal{A}} \mapsto \mathbb{R}^2$ is injective for all $\omega \in \mathbb{R}^{\mathcal{A}}_{>}$ if and only if \mathcal{A} and \mathcal{P} are compatible.

Theorem (Pick's Theorem, G. Pick, 1899)

Given a simple polygon whose vertex coordinates are all integral points, its area S, the number of internal lattice points k, and the number of lattice points m on the boundary of the polygon satisfy: $S = k + \frac{m}{2} - 1$.

Definition (Farey Sequence, J. Farey, 1816)

The Farey sequence F_k for any positive integer k is the set of irreducible rational numbers $\frac{a}{b}$ with $0 \le a \le b \le k$ and gcd(a, b) = 1 arranged in increasing order.

Chun-Gang Zhu

Multi-sided surfaces: theories and properties

Dalian University of Technology

Improved checking algorithm

Theorem (Yu, Ji & Zhu, 2020)

Suppose $\mathcal{A} = \mathcal{A}_{k,l} = \{(i, j) \in \mathbb{Z}^2 | 0 \leq i \leq k, 0 \leq j \leq l\}$, where k, l are positive integers and $n = k \times l$ points. Then complexity of improved algorithm is $O(k^3 l)$ for $\forall k, l \in \mathbb{Z}$, or $O(n^2)$ for k = cl or k = l, where c > 0 is a positive constant independent of n.

Improved checking algorithm

Theorem (Yu, Ji & Zhu, 2020)

Suppose $\mathcal{A} = \mathcal{A}_{k,l} = \{(i, j) \in \mathbb{Z}^2 | 0 \leq i \leq k, 0 \leq j \leq l\}$, where k, l are positive integers and $n = k \times l$ points. Then complexity of improved algorithm is $O(k^3 l)$ for $\forall k, l \in \mathbb{Z}$, or $O(n^2)$ for k = cl or k = l, where c > 0 is a positive constant independent of n.

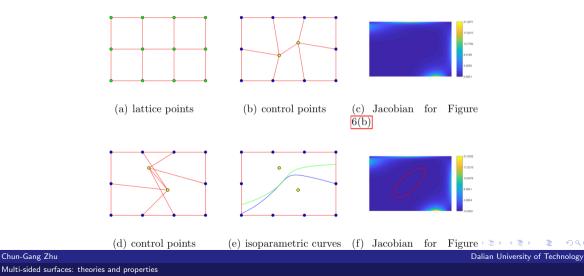
Theorem (Yu, Ji & Zhu, 2020)

For general lattice set $\mathcal{A} \subset \mathbb{Z}^2$ with $\#(\mathcal{A}) = n$, the complexity of improved algorithm is $O(n^2)$.

3

Chun-Gang Zhu

Example: tensor-product Bézier surface



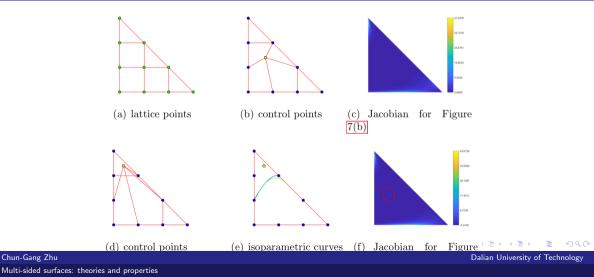
Example: tensor-product Bézier surface

n	10^{2}	20^{2}	30^{2}	40^{2}
Improved algorithm	0.0288	0.2306	0.8244	1.9381
Algorithm in [Sottile & Zhu, 2011]	2.5731	167.31	2044.69	*

Table: Computation times for $\mathcal{A}_{k,k}$

Chun-Gang Zhu

Example: triangular Bézier surface



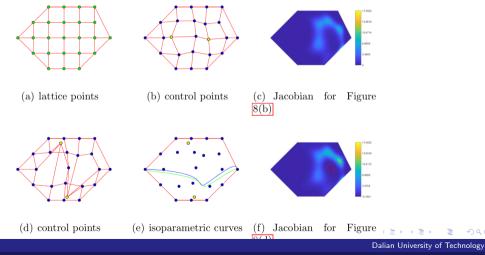
Example: triangular Bézier surface

n	$\binom{10+2}{2}$	$\binom{20+2}{2}$	$\binom{30+2}{2}$	$\binom{40+2}{2}$
Improved algorithm	0.0094	0.0759	0.2775	5.915
Algorithm in [Sottile & Zhu, 2011]	0.4144	24.1250	273.67	*

Table: Computation times for \mathcal{A}_k

Chun-Gang Zhu Multi-sided surfaces: theories and properties きょうかん 聞い ふぼう ふぼう ふりく

Example: hexagonal surface



Multi-sided surfaces: theories and properties

Chun-Gang Zhu

Injectivity of 3D toric volumes

Theorem (Yu, Ji, Li & Zhu, 2021)

Suppose $\mathcal{A} \subset \mathbb{Z}^3$ and $\mathcal{P} \subset \mathbb{R}^3$. The map $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}} : I_{\mathcal{A}} \to \mathbb{R}^3$ is injective for arbitrary positive weights $\omega = \{\omega_{\mathbf{a}} > 0 | \mathbf{a} \in \mathcal{A}\}$ if and only if the lattice points set \mathcal{A} and control points set \mathcal{P} are compatible.

Injectivity of 3D toric volumes

Theorem (Yu, Ji, Li & Zhu, 2021)

Suppose $\mathcal{A} \subset \mathbb{Z}^3$ and $\mathcal{P} \subset \mathbb{R}^3$. The map $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}} : I_{\mathcal{A}} \to \mathbb{R}^3$ is injective for arbitrary positive weights $\omega = \{\omega_{\mathbf{a}} > 0 | \mathbf{a} \in \mathcal{A}\}$ if and only if the lattice points set \mathcal{A} and control points set \mathcal{P} are compatible.

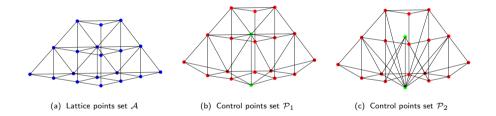
Theorem (Reznick, 2006)

The clean tetrahedron T is also empty if and only if $T \sim T_{0,0,1}$ or $T \sim T_{1,t,k}$, where gcd(t,k) = 1 and $1 \le t \le k-1$.

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

3

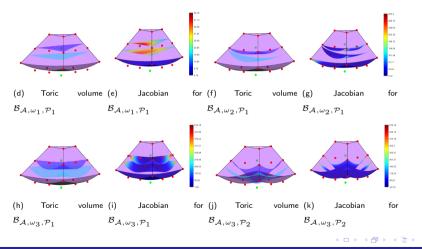
Examples: lattice pentahedron



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

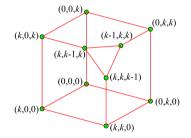
Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

Examples: toric pentahedron



Dalian University of Technology

Example: polyhedron derived from cutting a corner from the cube $I_{\mathcal{A}_{k,k,k}}$



ロト ・ 日 ・ モ ・ モ ・ モ ・ クへの

Dalian University of Technology

Comparison of the amounts of lattice tetrahedrons checked in above polyhedron

k	2	3	4	5
Original algorithm	14950	595665	9381251	86567815
Improved algorithm	7875	277323	4130122	34212398
Percentage	0.53	0.47	0.44	0.40

Outlines

1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

() > < () > < () >

Toric surface patches of depth d

Definition

Given a lattice set $\mathcal{A} \subset \mathbb{Z}^2$, a positive integer d, weights $\omega = \{\omega_{\gamma} \ge 0\}_{\gamma \in \mathcal{A}^d}$ and control points $\mathcal{P} = \{\mathbf{P}_{\gamma}\}_{\gamma \in \mathcal{A}^d} \in \mathbb{R}^3$, the **toric surface patch of depth** d is defined as

$$\mathcal{B}_{\mathcal{A}^{d},\omega,\mathcal{P}}(u,v) = \frac{\sum_{\boldsymbol{\gamma}\in\mathcal{A}^{d}}\omega_{\boldsymbol{\gamma}}\mathbf{P}_{\boldsymbol{\gamma}}B^{d}_{\boldsymbol{\gamma}}(u,v)}{\sum_{\boldsymbol{\gamma}\in\mathcal{A}^{d}}\omega_{\boldsymbol{\gamma}}B^{d}_{\boldsymbol{\gamma}}(u,v)} \qquad (u,v)\in NP(\mathcal{A}).$$
(2.1)

where $NP(\mathcal{A})$ is the Newton polygon of \mathcal{A} , \mathcal{A}^d is the d summands Minkowski sum of \mathcal{A} , basis functions $\{B^d_{\gamma}(u,v)\}_{\gamma \in \mathcal{A}^d}$ are generated by the d discrete convolution of toric Bernstein basis functions $\{\beta_{\mathbf{a}}(u,v)\}_{a \in \mathcal{A}}$.

de Casteljau algorithm

Theorem (Li, Ji & Zhu, 2021)

For $(u^*, v^*) \in NP(I)$, the point $\mathcal{B}_{\mathcal{A}^d, \omega, \mathcal{P}}(u^*, v^*)$ on the surface $\mathcal{B}_{\mathcal{A}^d, \omega, \mathcal{P}}(u, v)$ can be computed recursively by

$$\begin{cases} \omega_{\boldsymbol{\gamma}^0}(u^*,v^*) \equiv \omega_{\boldsymbol{\gamma}^0} = \omega_{\boldsymbol{\gamma}}, & \boldsymbol{\gamma} \in \mathcal{A}^d, \\ \omega_{\boldsymbol{\gamma}}^l(u^*,v^*) = \sum_{\boldsymbol{a} \in \mathcal{A}} \beta_{\boldsymbol{a}}(u^*,v^*) \omega_{\boldsymbol{\gamma}+\boldsymbol{a}}^{l-1}(u^*,v^*), & \boldsymbol{\gamma} \in \mathcal{A}^{d-l}. \end{cases}$$

$$\begin{cases} \mathbf{P}^{0}_{\gamma}(u^{*},v^{*}) \equiv \mathbf{P}^{0}_{\gamma} = \mathbf{P}_{\gamma}, & \gamma \in \mathcal{A}^{d}, \\ \mathbf{P}^{l}_{\gamma}(u^{*},v^{*}) = \frac{\sum_{\boldsymbol{a} \in \mathcal{A}} \beta_{\boldsymbol{a}}(u^{*},v^{*}) \omega_{\gamma+\boldsymbol{a}}^{l-1}(u^{*},v^{*}) \mathbf{P}^{l-1}_{\gamma+\boldsymbol{a}}(u^{*},v^{*})}{\omega_{\gamma}^{l}(u^{*},v^{*})}, & \gamma \in \mathcal{A}^{d-l}. \end{cases}$$

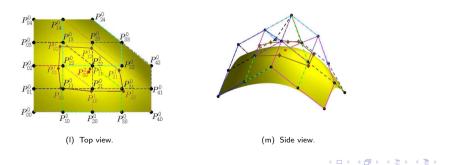
where $l = 1, \cdots, d$.

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

ヘロン ヘロン ヘルン・

Example: pentagonal patch

$$d = 2, u^* = 1, v^* = 1$$



Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

Example: pentagonal patch

・ロト ・日・・日・・日・ うへぐ

Dalian University of Technology

Outlines

1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

() > < () > < () >

Degree elevation

Theorem (Li, Ji & Zhu, 2021)

For any positive integer q, toric surface $\mathcal{B}_{\mathcal{A}^d,\omega,\mathcal{P}}(u,v)$ of depth d can be represented in $\mathcal{B}_{\mathcal{A}^{d+q},\widetilde{\omega},\widetilde{\mathcal{P}}}(u,v)$ of depth d+q, where $\widetilde{\omega} = \{\omega_{\gamma}^{d+q}\}_{\gamma \in \mathcal{A}^{d+q}}, \widetilde{\mathcal{P}} = \{\mathbf{P}_{\gamma}^{d+q}\}_{\gamma \in \mathcal{A}^{d+q}}$

$$\mathbf{P}_{\gamma}^{d+q} = \left(\sum_{\eta \in \mathcal{A}^{q}} \frac{c_{\eta}^{q} c_{\gamma-\eta}^{d}}{c_{\gamma}^{d+q}} \omega_{\gamma-\eta}^{d} \mathbf{P}_{\gamma-\eta}^{d}\right) / \omega_{\gamma}^{d+q},$$
(2.4)
$$\omega_{\gamma}^{d+q} = \sum_{\eta \in \mathcal{A}^{q}} \frac{c_{\eta}^{q} c_{\gamma-\eta}^{d}}{c_{\gamma}^{d+q}} \omega_{\gamma-\eta}^{d}.$$
(2.5)

・ロト・西ト・西ト・西・ うらの

Dalian University of Technology

Example: pentagonal and hexagonal toric surfaces

- * ロ * * @ * * 目 * * 目 * の < や

Dalian University of Technology

Outlines

1 Background

2 Toric surface patches

- Definition
- Geometric meaning of weights
- Injectivity
- De Casteljau algorithm
- Degree elevation
- Subdivision
- 3 Generalized Bézier surfaces
- 4 Application to IGA

Subdivision (decomposition)

Theorem (Ji, Li, Yu & Zhu, 2022)

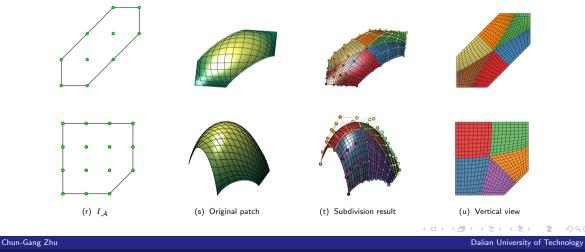
The *N*-sided toric surface patch $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}(u,v)$ can be subdivided into *N* rational tensor product Bézier surface patches $\widetilde{\mathcal{S}}_k(s_k,t_k), k = 1, 2, \cdots, N$, i.e.,

$$\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}} = \bigcup_{k=1}^{N} \widetilde{\mathcal{S}}_{k}, \tag{2.6}$$

where $\mathcal{B}_{\mathcal{A},\omega,\mathcal{P}}$ is the image set of toric mapping, and $\widetilde{\mathcal{S}}_k$ is the image set of the resulting rational tensor product Bézier mapping.

Application to IGA

Example: pentagonal and hexagonal toric surfaces



Multi-sided surfaces: theories and properties

Outlines

- 1 Background
- 2 Toric surface patches
- **3 Generalized Bézier surfaces**
 - Definition
 - Degree elevation
 - Knot insertion

4 Application to IGA

・ロ・ ・ 日・ ・ モ・・

Generalized Bézier surface

Definition (Várady, Salvi, Karikó, 2016)

Given an *n*-sided convex polygonal domain \mathcal{P} , denote the Wachspress barycentric coordinates of \mathcal{P} by $\lambda_i, i = 1, \dots, n$. Let θ_i be the angles of \mathcal{P} . Given the control points $\mathbf{C}_{j,k}^{d,i}, j = 0, \dots, d, k = 0, \dots, l-1$, where d is the degree of surface, $l = \lceil \frac{d}{2} \rceil$ is the number of control point layers. The generalized Bézier (GB) surface is the image of the mapping $\mathbf{S}^d : \mathcal{P} \to \mathbb{R}^3$, $\forall (u, v) \in \mathcal{P}$,

$$\mathbf{S}^{d}(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{d} \sum_{k=0}^{l-1} \mu_{j,k}^{i} \mathbf{C}_{j,k}^{d,i} B_{j,k}^{d,d}(s_{i}(u,v), h_{i}(u,v)) + \mathbf{C}_{0}^{d} B_{0}^{d}(u,v),$$
(3.1)

where
$$s_i = \frac{\sin(\theta_i)g_{i-1}^{\perp}}{\sin(\theta_i)g_{i-1}^{\perp} + \sin(\theta_{i-1})g_{i+1}^{\perp}}, \ h_i = 1 - \lambda_{i-1} - \lambda_i$$
 are the local parameters,

Generalized Bézier surface

Definition (cont.)

$$B_{j,k}^{d,d}(s_i,h_i) = B_j^d(s_i)B_k^d(h_i) = \binom{d}{j}(1-s_i)^{d-j}s_i^j\binom{d}{k}(1-h_i)^{d-k}h_i^k$$

are Bernstein basis functions of (s_i, h_i) , $\mathbf{C}_0^d = \frac{1}{n} \sum_{i=1}^n \mathbf{C}_{l,l-1}^{d,i}$ is the central point and its corresponding blending function

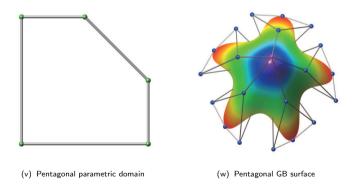
$$B_0^d(u,v) = 1 - \sum_{i=1}^n \sum_{j=0}^d \sum_{k=0}^{l-1} \mu_{j,k}^i B_{j,k}^{d,d}(s_i(u,v), h_i(u,v)),$$
(3.2)

and $\mu^i_{j,k}$ are weights.

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

ヘロン ヘロン ヘビン ヘビン

Example: pentagonal GB surface (d = 4, n = 5)

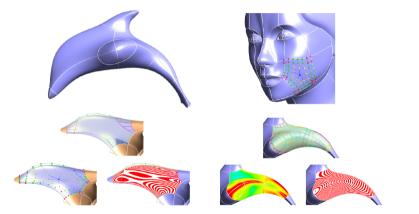


▲ロト ▲団ト ▲目ト ▲目ト 目 のへで

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

Application to IGA

Example: complex models (Várady et al. 2016)



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Dalian University of Technology

Outlines

- 1 Background
- 2 Toric surface patches

3 Generalized Bézier surfaces

- Definition
- Degree elevation
- Knot insertion

4 Application to IGA

Improved Degree elevation

Theorem (Wang, Ji, Zhu, 2022)

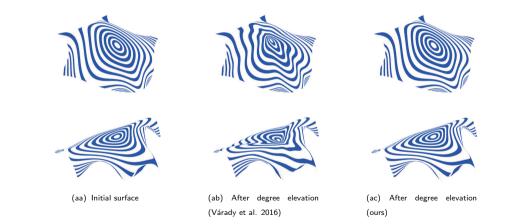
The GB surface of degree d $\mathbf{S}^{d}(u, v) = \sum_{i=1}^{n} \sum_{j=0}^{d} \sum_{k=0}^{l-1} \tilde{\mathbf{C}}_{j,k}^{d,i} B_{j,k}^{d,d}(s_{i}(u, v), h_{i}(u, v)) + \mathbf{C}_{0}^{d} B_{0}^{d}(u, v)$ can be represented as a GB surface of degree d + 1 as

$$\mathbf{S}^{d+1}(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{d+1} \sum_{k=0}^{l} \tilde{\mathbf{C}}_{j,k}^{d+1,i} B_{j,k}^{d+1,d+1}(s_i(u,v), h_i(u,v)) + \mathbf{C}_0^d B_0^d(u,v), \quad (3.3)$$

where
$$\tilde{\mathbf{C}}_{j,k}^{d,i} = \mu_{j,k}^{i} \mathbf{C}_{j,k}^{d,i}$$
, and the control points $\tilde{\mathbf{C}}_{j,k}^{d+1,i}$ satisfy
 $\tilde{\mathbf{C}}_{j,k}^{d+1,i} = \eta_{j} v_{k} \tilde{\mathbf{C}}_{j-1,k-1}^{d,i} + (1-\eta_{j}) v_{k} \tilde{\mathbf{C}}_{j,k-1}^{d,i} + \eta_{j} (1-v_{k}) \tilde{\mathbf{C}}_{j-1,k}^{d,i} + (1-\eta_{j}) (1-v_{k}) \tilde{\mathbf{C}}_{j,k}^{d,i}.$
(3.4)

Application to IGA

Example: degree elevation for hexagonal and heptagonal GB surfaces



Dalian University of Technology

Outlines

- 1 Background
- 2 Toric surface patches

3 Generalized Bézier surfaces

- Definition
- Degree elevation
- Knot insertion
- 4 Application to IGA

Knot insertion

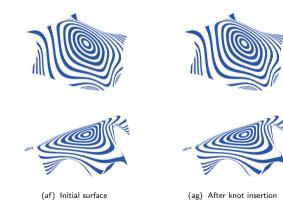
Theorem (Wang, Ji, Zhu, 2022)

Assume that
$$\{\underbrace{0,\cdots,0}_{(d+1)-times}, \underbrace{1,\cdots,1}_{(d+1)-times}\} \subset \overline{\mathbf{U}}$$
 and $\{\underbrace{0,\cdots,0}_{(d+1)-times}, \underbrace{1,\cdots,1}_{(d+1)-times}\} \subset \overline{\mathbf{V}}$, then the GB surface $\mathbf{S}^d(u,v) = \sum_{i=1}^n \sum_{j=0}^d \sum_{k=0}^{l-1} \widetilde{\mathbf{C}}_{j,k}^{d,i} N_{j,k}^{d,d}(s_i(u,v), h_i(u,v)) + \mathbf{C}_0^d B_0^d(u,v)$ can be represented as

$$\bar{\mathbf{S}}^{d}(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{m_{u}+d} \sum_{k=0}^{m_{v}+l-1} \bar{\mathbf{C}}_{j,k}^{d,i} \bar{N}_{j,k}^{d,d}(s_{i}(u,v), h_{i}(u,v)) + \mathbf{C}_{0}^{d} B_{0}^{d}(u,v),$$
(3.5)

where $\bar{N}_{j,k}^{d,d}$ are B-spline basis functions of spline space $S_{\bar{\mathbf{U}},\bar{\mathbf{V}}}^{d,d}$, and the collection of control points $\mathbf{P}^{d,i} = [\widetilde{\mathbf{C}}_{j,k}^{d,i}]_{(d+1)\times l}$ and $\bar{\mathbf{P}}^{d,i} = [\bar{\mathbf{C}}_{j,k}^{d,i}]_{(m_u+d+1)\times(m_v+l)}$.

Example: knot insertion for hexagonal and heptagonal GB surfaces



- * ロ * * @ * * 注 * * 注 * うへで

Dalian University of Technology

Outlines

- 1 Background
- 2 Toric surface patches
- 3 Generalized Bézier surfaces
- 4 Application to IGA
 - Domain parameterization in IGA
 - Toric parameterization
 - GB parameterization

Constructing analysis-suitable parameterization of computational domain is a crucial step in IGA

Dalian University of Technology

- Constructing analysis-suitable parameterization of computational domain is a crucial step in IGA
- Prerequisite: injectivity

- Constructing analysis-suitable parameterization of computational domain is a crucial step in IGA
- Prerequisite: injectivity
- Refinement methods: h-refinement, p-refinement, k-refinement

- Constructing analysis-suitable parameterization of computational domain is a crucial step in IGA
- Prerequisite: injectivity
- Refinement methods: h-refinement, p-refinement, k-refinement
- Parameterization methods: Bézier/B-splines/NURBS, T-splines, unstructured splines, multi-patch methods, TCB splines, ···

- Constructing analysis-suitable parameterization of computational domain is a crucial step in IGA
- Prerequisite: injectivity
- Refinement methods: h-refinement, p-refinement, k-refinement
- Parameterization methods: Bézier/B-splines/NURBS, T-splines, unstructured splines, multi-patch methods, TCB splines, ···
- Proposed multi-sided parameterization methods: injective preserving toric parameterization and GB parametrization with h-, p-, k-refinements

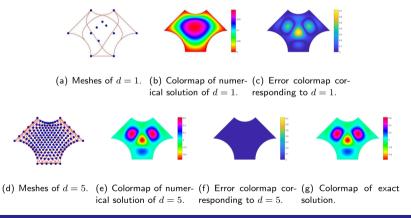
Outlines

- 1 Background
- 2 Toric surface patches
- 3 Generalized Bézier surfaces

4 Application to IGA

- Domain parameterization in IGA
- Toric parameterization
- GB parameterization

Injective preserving toric parameterization with p-refinement for Possion's equation



Chun-Gang Zhu Multi-sided surfaces: theories and <u>properties</u> Dalian University of Technology

Comparison

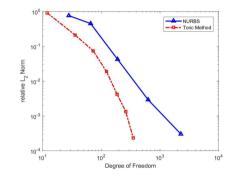


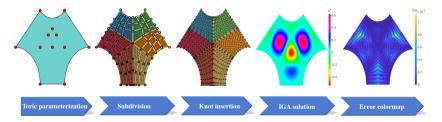
Figure: Relative L_2 error norm history during p-refinement.

Dalian University of Technology

э

・ロト ・回ト ・ヨト ・ヨ

h-Refinement strategy of toric parameterization

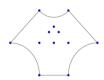


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - めんの

Dalian University of Technology

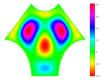
Toric parameterization with p-, h-refinements for Possion's equation

(a) Colormap of exact solution



(c) Toric parameterization and control points

(b) Hexagonal parametric domain and lattice points

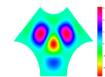


(d) Colormap of toric DEM solution (D-OF=36)

(c) Error colormap on the coarsest mesh (D-

OF=73)

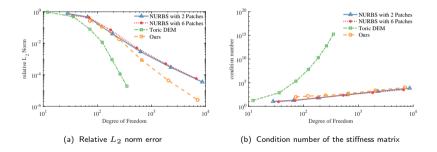
(b) Colormap of the solution on the coarsest mesh (DOF=73)



(d) Colormap of the solution on the refined mesh (DOF=661)

(e) Error colormap on the refined mesh (D-OF=661)

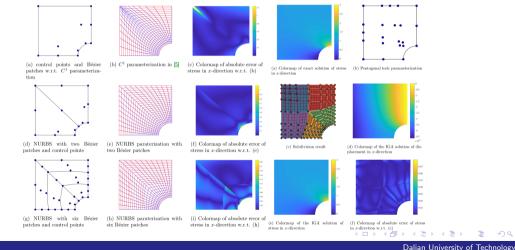
Comparison



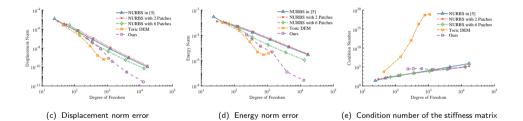
Dalian University of Technology

・ロト ・回ト ・ヨト ・ヨ

NURBS and toric parameterizations for linear elasticity problem



Comparison



・ロ・・師・・前・・前・ 「」 ろんの

Dalian University of Technology

Outlines

- 1 Background
- 2 Toric surface patches
- 3 Generalized Bézier surfaces

4 Application to IGA

- Domain parameterization in IGA
- Toric parameterization
- GB parameterization

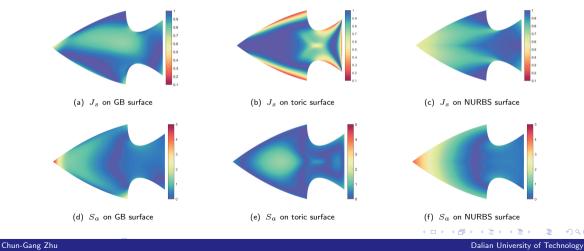
GB, toric and NURBS parameterizations for Poisson's equation



Multi-sided surfaces: theories and properties

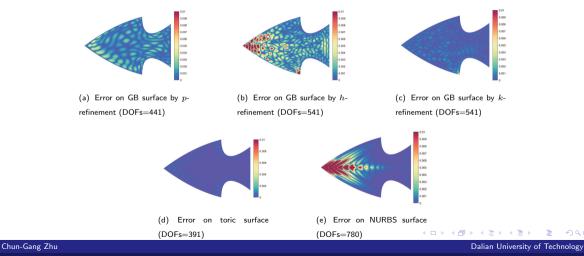
Chun-Gang Zhu

GB, toric and NURBS parameterizations for Poisson's equation



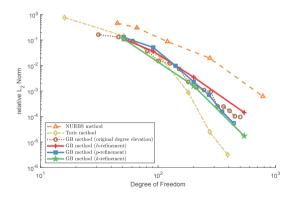
Multi-sided surfaces: theories and properties

GB, toric and NURBS parameterizations for Poisson's equation



Multi-sided surfaces: theories and properties

Comparison



- * ロ * * @ * * 目 * * 目 * の < ?

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology

谢谢!

Joint with Luis García-Puente (SHSU, USA) Frank Sottile(TAMU, USA) X.F. Zhu, L.Y Sun, Y. Zhang, X.Y. Zhao, H. Wang, J. Li, Y.Y. Yu, Y. Ji, M.Y. Wang, P. Zhou, ... (DUT)

Email: cgzhu@dlut.edu.cn

Chun-Gang Zhu Multi-sided surfaces: theories and properties Dalian University of Technology