CAD/CAE—体化的实践与体会

构建设计-仿真闭环

李明

计算机辅助设计与图形学国家重点实验室 计算机科学与技术学院 浙江大学

GAMES 20221103

一、传统CAD/CAE一体化方法及关键问题

- 二、基于拓展体素 (XVoxel) 的一体化方法
- 三、基于体素的高精度仿真方法
- 四、思考

CAD模型含不同材质部件

传统一体化方法及关键问题

- 一、模型修复和几何清理
- 二、可信分析几何生成
- 三、网格剖分及重编辑
- 四、设计优化

脏几何模型修复

脏几何原因:

- 底层NURBS求交
- BRep曲面、曲线均独立生成

<mark>解决方案</mark>: 重网格划、容忍脏几何的体网格划分

模型几何结构高度复杂,包含各种干扰细节信息

<mark>模型细节产生原因</mark>: ■ 拓扑结构复杂 extrude, cut, sweep, round ■ 过于现实: cusps, necks

解决方案:

- 虚拟拓扑
- 保精度距离场
- 精度影响分析

分析几何:细节移除、中面抽取、精度控制

1、导入模型

Ę

2、几何错误

3、Mesh模型

Hypermesh

分析几何:细节移除、中面抽取、精度控制

不同的细节移除,极大影响仿真效果

网格化和重网格化

六面体生成, 黄劲等

六面体局部重生成,高曙明等

思路: 基于XVoxel的CAD/CAE一体化

挑战:

- □ 脏几何、细节特征
- □ 网格划分难/重网格化难
- □ 设计意图丢失

基于体素的一体化方法:

- □ 离散体素无需网格剖分
- 体素上的高精双尺度仿真
- □ 体素上嵌入高层设计语义
- □ 虚拟操作保证鲁棒性

有效吸收: Cellular Model, Finite Cell Method (FCM), Numerical Coarsening等

1、基于XVoxel的一体化——模型表示^{Submitted, with 邹强等}

- 好处: 1、融入设计语义, 允许局部操作、计算与更新
 - 2、虚拟操作,保证几何计算稳定性

Virtual Operations: Voxel-feature Membership

1、基于XVoxel的一体化——仿真计算

1、基于XVoxel的一体化——仿真计算

 \square Irregular physical domain $\Omega_p = a$ regular domain Ω - a fictitious domain Ω_f

\square Boundary conditions are set for $\partial \Omega_p$

D Density settings

$$\alpha(\mathbf{x}) = \begin{cases} 1.0 \ \forall \, \mathbf{x} \in \Omega \\ 0.0 \ \forall \, \mathbf{x} \in \Omega_e \setminus \Omega \,. \end{cases}$$

1、基于XVoxel的一体化——仿真计算

- the integrand may be **discontinuous within cells cut by the boundary** $\partial \Omega$
- apply **composed integration scheme** for cells cut by $\partial \Omega$

Gaussian points

1、基于XVoxel的一体化——交互仿真

Fig. 14. Example #3. (a) Parameters (mm) of the pump model at the 10th step; (b) The CSG of the model at the 10th step; (c) Boundary condition, where γ_D is fixed and $\tau_z = 200N$ and $\tau_y = 100N$; (d) FEA mesh with 216,411 tetrahedron at the 10th step; (e) FCM (XVoxel) mesh with 25 × 43 × 37 voxels.

1、基于XVoxel的一体化——交互仿真

Step. 3

Step. 6

Step. 9

Step. 1

Step. 2

Step. 5

Step. 7

Step. 10

Step. 20

Step. 1

Step. 4

Step. 2

Step. 5

Step. 8

Step. 15

Step. 6

Step. 9

Step. 10

Step. 7

Step. 20

Step. 3

1、基于XVoxel的一体化——CAD设计优化

Fig. 20. Example #5. (a) The design features f_i , i = 1, ..., 11 and restricted area R_1 for f_j , j = 3, 4, 5, 7, 8, 9, R_2 for f_6 , R_3 for f_{10} and R_4 for f_{11} . The x-coordinate of f_i , i = 1, 2 and x-, y- coordinates of f_j , i = 3, 4, 5, 7, 8, 9 are fixed; (b) The CSG of the model; (c) Boundary conditions, where Γ_D is fixed and $\tau_x = 100N$ and $\tau_y = 100N$ are exerted on Γ_N as (sinusoidal) bearing loads; (d) FCM (XVoxel) mesh with $50 \times 17 \times 39$ voxles.

1、基于XVoxel的一体化——CAD设计优化

Fig. 21. Results for a bearing bracket model in optimization iterations of steps 1, 10, 30 and 100: (a) the models, (b) Von Mise stress (MPa) of FCM/XVoxel, (c) active voxels (in grey) of XVoxel.

1、基于XVoxel的一体化——时间统计

	Example Stap (Itar) Mesh Size			DOFs		Timings (per Step/Iter)			er)	Active Voxel Number				
	Example	Step (tter)	FEA	FCM(XVoxel)	FEA	FCM (XVoxel-FCM)	XVoxel-CBN	FEA	FCM	XVoxel-FCM	XVoxel-CBN	FCM	XVoxel	$r_{\rm u}$ (%)
		1	13,801		63,372			5.3	35.1	35.1	6.0	33	33	0.0061
		2	14,118	675	64,833	63,480	47,280	5.2	28.8	28.9	2.9	21	21	0.0169
	#1	3	13,807		63,600			5.2	23.2	23.7	1.8	21	21	0.0263
		4	13,844		63,714			6.2	17.3	17.7	1.3	15	15	0.0049
	5	5	13,908		64,029			5.2	11.6	11.8	0.8	9	9	0.0047
		1	22,789		109,632			8.5	44.9	44.9	13.8	1,182	1,182	0.0328
		2 22,579		108,777			7.3	44.2	6.3	1.1	1,182	121	0.0825	
	#2	3	22,326	4.004	108,006	108 135	255 024	7.2	42.6	9.4	1.8	1,182	183	0.0812
	$\pi \mathcal{L}$	4	22,465	4,004	109,350	100,155	255,024	7.3	44.3	9.8	2.1	1,185	189	0.1555
		5	22,611		109,569			7.3	43.7	5.6	1.4	1,191	128	0.3221
		6	22,326		108,336			8.5	40.2	8.5	1.4	1,141	227	0.0263
		1	222,816		1,019,364			22.1	140.1	143.1	80.9	6,040	6,040	0.0928
1 -3 oro	lers	2	217,244		1,001,976			19.7	151.5	33.9	5.2	6,048	397	1.0381
		3	218,659		1,006,104			21.6	152.0	35.0	6.0	6,156	491	1.1859
acceler	ation	4	215,383		996,989			23.1	166.2	35.3	5.4	6,356	412	1.3995
		5	215,185	39,775	996,513	998,325	2,365,080	20.8	161.3	28.0	1.1	6,369	97	1.4215
	#2	₂ 6 214	214,206		991,353			23.5	167.1	35.8	4.5	6,545	458	1.4720
	#3	7	216,983		1,002,681			21.0	168.0	31.0	3.3	6,561	216	1.4834
		8	215,132		997,344			20.9	174.4	34.8	3.9	6,681	325	2.5318
		9	214,288		993,975			18.0	181.3	30.3	2.0	6,789	190	2.3235
		10	216,411		1,004,442			21.3	210.0	29.5	2.2	6,633	102	2.4980
		15	214,690		992,787			23.7	201.5	48.2	9.0	5,837	677	2.7177
		20	213,749		992,295			23.5	223.4	42.6	5.5	6,485	459	3.0647
		1							1,490.8	130.3	55.2	2,256	2,256	
	#1	10		0.100		240.075	250 629		1,411.0	109.6	25.2	2,174	308	
	#4	30		9,100		240,975	230,038		1,401.8	101.3	24.8	2,166	274	
		100							1,467.5	102.4	25.3	2,172	255	
		1							146.0	148.0	60.4	4,592	4,592	
	#5	10		22 150		270 265	282.006		141.5	85.8	30.7	3,904	1,644	
	#3	30		55,150		219,205	282,000		156.0	92.7	33.2	3,952	1,611	
		100							166.6	97.2	32.6	3,962	1,486	

2、基于体素的高精度仿真——重构CBN形函数 with 扈靖乔

1: 网格化

传统FEM主要过程:

- 1、区域离散成网格
- 2、构造标准形函数
- 3、单元积分计算
- 4、大规模稀疏求解

3、单元积分计算

GPU重构

4: 大规模稀疏线性方程组求解 [K][c] = [f]

2、基于体素的高精度仿真——重构CBN形函数

2、基于体素的高精度仿真

Ē

思路: 构建一种高维映射形函数, 有效反应材料在宏观单元分布

2、基于体素的高精度仿真

2、基于体素的高精度仿真——形函数构造

形函数其实就是一个	个插值函数
-----------	-------

2、基于体素的高精度仿真——形函数构造

贝塞尔插值变换矩阵

2、基于体素的高精度仿真——形函数构造

贝塞尔插值变换矩阵

Ē

求解局部有限元问题 $\begin{bmatrix} \mathbf{k}_{b} & \mathbf{k}_{bi} \\ \mathbf{k}_{ib} & \mathbf{k}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{b} \\ \mathbf{q}_{i} \\ \mathbf{q}_{i} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{b} \\ 0 \end{bmatrix}$ $\mathbf{q}_{i} = \mathbf{M}^{\alpha} & \mathbf{q}_{b}, \text{ for } \mathbf{M}^{\alpha} = -\mathbf{k}_{i}^{-1} & \mathbf{k}_{ib} \\ (2i \times 1) & (2i \times 2b) & (2b \times 1) \end{bmatrix}$

边界-内部变换矩阵

 $\mathbf{q}_{(2i+2b) imes 1} = [\mathbf{q}_b, \mathbf{q}_i]^T = \widetilde{\mathbf{M}}^{lpha}_{(2i+2b) imes 2b} \mathbf{q}_b$

从边界点映射到内部点

2、基于体素的高精度仿真——形函数性质

Ē

 $\mathbf{q}_{(2i+2b)\times 1} = \tilde{\mathbf{M}}^{\alpha} \Psi_{(2b\times 6r)} \mathbf{Q}^{\alpha}_{(6r\times 1)}.$

$\mathbf{N}^{\alpha}(\mathbf{x})$	$= \mathbf{N}^{h}(\mathbf{x})$	$ ilde{\mathbf{M}}^lpha$	Ψ
$2 \times 6r$	$2 \times (2i+2b)$) $(2i+2b) \times 2b$	$(2b \times 6r)$

节点插值属性	$\mathbf{N}^{\alpha}(\mathbf{x}_j) \mathbf{Q}^{\alpha} = \mathbf{Q}_j^{\alpha}, $ 对于宏观节点 $\mathbf{x}_j \in \Omega^{\alpha}$
平移不变性	$\mathbf{N}^{\alpha}(\mathbf{x}) \mathbf{I}_{6r,1} = \mathbf{I}_{2,1}, \; \forall \mathbf{x} \in \Omega^{\alpha}$
旋转不变性	$\hat{\theta} \times \mathbf{x} = \mathbf{N}^{\alpha}(\mathbf{x}) \ (\hat{\theta} \times \mathbf{x}), \ \forall \hat{\theta}, \ \mathbf{x} \in \Omega^{\alpha},$

满足标准形函数的基本几何性质 避免失真行为

2、基于体素的高精度仿真——形函数性质

Ę

2、基于体素的高精度仿真——形函数性质

局部位移计算的复杂度

Ę

$\bar{\mathbf{f}}$ 的列数决定了要求解的线性方程组的数量

方法	列数 (2D/3D)	
均质化	3 / 6	
高阶边界条件	5 / 15	
子结构法	2b / 3b	通常数万
CBN	6r / q	通常数百
$q = 3 (54x^2 - 108)$	(x+56) 关于 $x=1-$	$+\frac{1}{6}\sqrt{6r-12}.$

全局位移计算的复杂度 全局刚度矩阵K

2、基于体素的高精度仿真

Li et al CMAME 2021

2

与经典均质化方法相比:	
コ 提升仿真精度100倍	
コ 仿真代价基本相同	

1.3

0

2.6

Χ

3.9

5.2

3.9

5.2

Size of MH	1×10	2 × 20	4×40	8×80							
Size of /vt	(r_e / r_u) 2 × 20		(cutting interfaces)	(cutting interfaces)							
Homogenization	0.70 / 0.69	0.61 / 0.59	0.31 / 0.27	0.72 / 0.66							
FE^2	$1.00 / 0.77$ 1	0.29 / 0.26	$0.01 / 4e^{-3}$	0.05 / 0.02							
CMCM	0.23 / 0.25	$0.01 / 8e^{-3}$	0.11 / 0.16	0.09 / 0.09							
Our-L	0.05 / 0.04	0.04 / 0.03	0.03 / 0.02	$5e^{-3} / 4e^{-3}$							
Our-B	0.02 / 0.01	$6e^{-3} / 5e^{-3}$	$1e^{-4} / 6e^{-5}$	$5e^{-6} / 2e^{-6}$							

 1 FE² fails to converge in this context.

2、基于体素的高精度仿真--

Ę

2D弯梁

——实验结果

不同粗网格划分下,各种方法精度的对比

表 4.4 不同方法在不同尺寸宏观网格下的有效性指数 (r_e / r_u)

	1×10	2×20	4×40	8×80		
	1×10 2×20 (跨越不同		(跨越不同材料)	(跨越不同材料)		
均质化	0.70 / 0.69	0.61 / 0.59	0.31 / 0.27	0.72 / 0.66		
FE^2	1.00 / 0.77	0.29 / 0.26	$0.01 / 4e^{-3}$	0.05 / 0.04		
CMCM	0.23 / 0.25	$0.01 / 8e^{-3}$	0.11 / 0.16	0.09 / 0.09		
CBN	0.02 / 0.01	$6e^{-3} / 5e^{-3}$	$1e^{-4} / 6e^{-5}$	$5e^{-6}$ / $2e^{-6}$		
均质化 FE ² CMCM CBN	0.70 / 0.69 1.00 / 0.77 0.23 / 0.25 0.02 / 0.01	0.61 / 0.59 0.29 / 0.26 $0.01 / 8e^{-3}$ $6e^{-3} / 5e^{-3}$	$\begin{array}{c} 0.31 / 0.27 \\ 0.01 / 4e^{-3} \\ 0.11 / 0.16 \\ 1e^{-4} / 6e^{-5} \end{array}$	0.72 / 0.66 0.05 / 0.04 0.09 / 0.09 5e ⁻⁶ / 2e ⁻⁶		

* FE² 在 1 × 10 时无法收敛

2、基于体素的高精度仿真——实验结果

不同载荷:拉伸、压缩、扭曲、弯曲(形函数仅需构造一次)

Ē

(a) Stretching, $r_e = 2.4e^{-4}$, $r_u = 8.9e^{-4}$

(b) Compressing, $r_e = 6.5e^{-4}$, $r_u = 8.9e^{-4}$

(c) Twisting, $r_e = 1.8e^{-4}$, $r_u = 3.1e^{-4}$

(d) Bending, $r_e = 1.4e^{-3}$, $r_u = 1.5e^{-3}$

每一个粗网格单元包含10×10×10个细网格单元

两种材料硬度相差10倍 精度误差1e⁻⁴ 计算时间提升100倍 硬度相差1000倍 精度误差仍保持在0.01

2、基于体素的高精度仿真——实验结果

14s for each coarse element $(20 \times 30 \times 42)$ **1.2 hours** online (8658 itr.) with a relative residual 9.5e-7

Mat-4

Mat-2 -

Mat-1 -

1/6 of the whole height

1、基于XVoxel的一体化——时间统计

	Evenuela	Ston (Iton)	Mesh Size			DOFs			Timings (per Step/Iter)			Active Voxel Number		··· (0/-)
	Example	Step (Iter)	FEA	FCM(XVoxel)	FEA	FCM (XVoxel-FCM)	XVoxel-CBN	FEA	FCM	XVoxel-FCM	XVoxel-CBN	FCM	XVoxel	$r_{\rm u}$ (%)
		1	13,801		63,372	63,480	47,280	5.3	35.1	35.1	6.0	33	33	0.0061
		2	14,118		64,833			5.2	28.8	28.9	2.9	21	21	0.0169
	#1	3	13,807	675	63,600			5.2	23.2	23.7	1.8	21	21	0.0263
		4	13,844		63,714			6.2	17.3	17.7	1.3	15	15	0.0049
		5	13,908		64,029			5.2	11.6	11.8	0.8	9	9	0.0047
		1	22,789		109,632			8.5	44.9	44.9	13.8	1,182	1,182	0.0328
		2	22,579		108,777			7.3	44.2	6.3	1.1	1,182	121	0.0825
	#2	3	22,326	4 004	108,006	108 135	255 024	7.2	42.6	9.4	1.8	1,182	183	0.0812
	112	4	22,465	4,004	109,350	100,155	255,024	7.3	44.3	9.8	2.1	1,185	189	0.1555
		5	22,611		109,569			7.3	43.7	5.6	1.4	1,191	128	0.3221
		6	22,326		108,336			8.5	40.2	8.5	1.4	1,141	227	0.0263
4 9		1	222,816		1,019,364			22.1	140.1	143.1	80.9	6,040	6,040	0.0928
1 -3 Ord	iers	2	217,244		1,001,976			19.7	151.5	33.9	5.2	6,048	397	1.0381
	ation	3	218,659		1,006,104	998,325	2,365,080	21.6	152.0	35.0	6.0	6,156	491	1.1859
acceler	ration	4	215,383	39.775	996,989			23.1	166.2	35.3	5.4	6,356	412	1.3995
		5	215,185		996,513			20.8	161.3	28.0	1.1	6,369	97	1.4215
	#3	6 2	214,206		991,353			23.5	167.1	35.8	4.5	6,545	458	1.4720
		7	216,983	07,110	1,002,681			21.0	168.0	31.0	3.3	6,561	216	1.4834
		8	215,132		997,344			20.9	174.4	34.8	3.9	6,681	325	2.5318
		9	214,288		993,975			18.0	181.3	30.3	2.0	6,789	190	2.3235
		10	216,411		1,004,442			21.3	210.0	29.5	2.2	6,633	102	2.4980
		15	214,690		992,787			23.7	201.5	48.2	9.0	5,837	677	2.7177
		20	213,749		992,295			23.5	223.4	42.6	5.5	6,485	459	3.0647
		1							1,490.8	130.3	55.2	2,256	2,256	
	#4	10		9,100		240.975	250.638		1,411.0	109.6	25.2	2,174	308	
		30		>,100		210,770	200,000		1,401.8	101.3	24.8	2,166	274	
		100							1,467.5	102.4	25.3	2,172	255	
		1							146.0	148.0	60.4	4,592	4,592	
	#5	10		33,150		279.265	282,006		141.5	85.8	30.7	3,904	1,644	
		30		55,150		217,200	202,000		156.0	92.7	33.2	3,952	1,611	
		100							166.6	97.2	32.6	3,962	1,486	

- CAD/CAE—体化:设计全流程自动化,大幅降低设计周期 CAD内核是基础,智能化是趋势,一体化是智能化的基础 一体化不改变建模方式,而是改进仿真方法
- 基于集成的方法:
 - 挑战:模型修复、可信简化、体网格化、参数优化
- **基于体素的方法**:有望避免复杂前处理,完全自动化
 - 挑战: 仿真精度、适配主流工业流程、适合新的应用领域