Multimodal Machine Learning in the Era of Gigantic Pretrained Models

Boyang "Albert" Li Nanyang Associate Professor Nanyang Technological University

Why Multimodal Learning

Humans Excel at Understanding Multimodal Information

Visual Captioning

A horse carrying a large load of hay and two people sitting on it.

train on the tracks. trees are green. front of the train is yellow. grass is green. green trees in the background, photo taken during the day. red train car.

- <u>Popular Topics</u>: Advanced attentions, RL/GAN-based model training, Style diversity, Language richness, Evaluation
- <u>Popular Tasks</u>: Image/video captioning, Dense captioning, Storytelling

Text-to-image Synthesis

This bird is red with white belly and has a very short beak

sconce bed lamp pillow

Popular Tasks:

- Text-to-image
- Layout-to-image
- Scene-graph-toimage
- Text-based image editing
- Story visualization

Visual QA/Grounding/Reasoning

- <u>Popular Topics</u>: Multimodal fusion, Advanced attentions, Use of relations, Neural modules, Language bias reduction
- **<u>Popular Tasks</u>**: VQA, GQA, VisDial, Ref-COCO, CLEVR, VCR, NLVR2

Self-supervised Learning

Era of Large Pretrained Language Models (LPLMs)

Model Name	Year	# Parameters
то	2021	11B
LaMDA	2021	137B
InstructGPT	2022	175B
GPT-NeoX	2022	20B
OPT	2022	175B
PaLM	2022	540B

LPLM: Training

• Given a context of words immediately before, predict the next word.

Wikipedia is a multilingual free online encyclopedia written and maintained by a community of _____

Correct answer: volunteers

$$\boldsymbol{\theta}^* = \max_{\boldsymbol{\theta}} Pr(w_t | w_{t-1}, w_{t-2}, \dots, w_1, \boldsymbol{\theta})$$

LPLMs: In-context Learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

LPLMs: Rationales & Prompt Engineering

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output
A: The answer is 27.

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.

LPLMs: Rationales & Prompt Engineering

LPLMs demonstrate strong abilities to perform reasoning with natural language as the intermediate representation.

"In-context learning" may be a misnomer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa. Large Language Models are Zero-Shot Reasoners. 2022.

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Is it possible to reason about visual content using language?

Yes. Kinda of.

Visual Question Answering

- Object Detection and Attribute Identification
- Action Recognition
- Spatial Understanding
- Commonsense Reasoning

What animal is in the window? Bird

What is hanging above the toilet? Teddy Bear

Is the animal sleeping? No

Why are the men jumping? to catch frisbee

Examples from VQAv2 (Goyal et al. 2017)

Plug-and-Play VQA

Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven C.H. Hoi. Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training. EMNLP Findings. 2022.

- Conventional wisdom suggests that in order to connect pretrained models, we should perform some end-to-end training. Otherwise, performance will probably be low.
- We connect several pretrained models to perform VQA using language and saliency maps as the intermediate representation.
- NO training is required.
- We outperform Deepmind's Flamingo on zero-shot VQAv2 with fewer parameters

System Architecture

Q: what utensil is this? A: fork

Generic captions:

- 1. a spoon and fork are sitting on a white plate on a wooden table
- 2. a round cake with cream on it on a plate

Prediction: a spoon

Question-guided captions:

- 1. a fork, silverware, fork and a spoon are shown
- 2. utensil on the plate which seems to have a fork and the fork Prediction: fork

Q: is there any art hanging on the walls? A: yes

Generic captions:

- 1. two beds in a suite with luggage in a bag on top of them
- 2. two large beds sitting in a room with suitcases Prediction: no

GRANE

Question-guided captions:

- 1. three pictures in a frame above two beds
- 2. a hotel room with 2 double beds and pictures on the wall Prediction: yes

Generic captions:

Q: what is the popular name for the type of photo this

- 1. a smiling teen girl taking a picture in a mirror
- 2. a person standing in a small bathroom taking a photo Prediction: self-portrait

Question-guided captions:

- 1. a woman is taking a selfie and taking a selfie
- 2. a woman is taking a picture in a mirror and taking a picture Prediction: selfie

Q: what is the name of the theater? A: grand

Generic captions:

- 1. a very tall tower with a little clock on it
- 2. there is an old clock tower at this town

Prediction: the palace

Question-guided captions:

- 1. a white grand theatre, on a bright dav
- 2. the grand store, grand in grand, is seen

Prediction: grand

Mathad	Language			Vision			VQAv2		OK-VQA	GQA
Method	Model	#Params	VL-aware	Model	#Params	VL-aware	Val	Test-dev	Test	Test-dev
Pretrained models conjoined by end-to-end VL training.										
VL-T5 _{no-vqa}	T5	224M	\checkmark	Faster R-CNN	64M	×	13.5	-	5.8	6.3
FewVLM _{base}	T5	224M	\checkmark	Faster R-CNN	64M	×	43.4	-	11.6	27.0
FewVLM _{large}	T5	740M	\checkmark	Faster R-CNN	64M	×	47.7	-	16.5	29.3
VLKD _{ViT-B/16}	BART	407M	\checkmark	ViT-B/16	87M	\checkmark	38.6	39.7	10.5	-
VLKD _{ViT-L/14}	BART	408M	\checkmark	ViT-L/14	305M	\checkmark	42.6	44.5	13.3	-
Flamingo _{3B}	Chinchilla-like	2.6B	\checkmark	NFNet-F6	629M	\checkmark	-	49.2	41.2	-
Flamingo _{9B}	Chinchilla-like	8.7B	\checkmark	NFNet-F6	629M	\checkmark	-	51.8	<u>44.7</u>	-
Flamingo _{80B}	Chinchilla	80B	\checkmark	NFNet-F6	629M	\checkmark	-	56.3	50.6	-
Frozen	GPT-like	7B	×	NF-ResNet-50	40M	\checkmark	29.5	-	5.9	-
Pretrained models conjoined by natural language and zero training.										
PICa	GPT-3	175B	×	VinVL-Caption	259M	\checkmark	-	-	17.7	-
PNP-VQA _{base}	UnifiedQAv2	223M	×	BLIP-Caption	446M	\checkmark	54.3	55.2	23.0	34.6
PNP-VQA _{large}	UnifiedQAv2	738M	×	BLIP-Caption	446M	\checkmark	57.5	58.8	27.1	38.4
PNP-VQA _{3B}	UnifiedQAv2	2.9B	×	BLIP-Caption	446M	\checkmark	<u>62.1</u>	<u>63.5</u>	34.1	42.3
PNP-VQA _{11B}	UnifiedQAv2	11.3B	×	BLIP-Caption	446M	\checkmark	63.3	64.8	35.9	<u>41.9</u>

Table 2: Comparison with state-of-the-art models on zero-shot VQA. Flamingo (Alayrac et al., 2022) inserts additional parameters into the language model and perform training using billion-scale vision-language data. The best accuracy is bolded and the second best is underlined.

Modular System Design?

- Practically, switching modules without affecting the rest.
- Speculatively, on the path toward Artificial General Intelligence?
- Maybe modularity only makes sense when the modules scale up.

LPLMs: Learning Soft Prompts

Typically about 100 words, each having about 1024 dimensions.

LPLMs: Learning Soft Prompts

- However, prompt tuning requires a large number of training examples (Su et al., 2021).
- Its performance under few-shot learning is not as good as full-model finetuning.

How can we improve the sample efficiency of prompt tuning?

Xu Guo, Boyang Li, and Han Yu. Improving the Sample Efficiency of Prompt Tuning with Domain Adaptation. EMNLP Findings 2022.

Improving the Sample Efficiency of Prompt Tuning with Domain Adaptation

Transfer Learning for Prompts (Gu et al., 2022)

We propose **bOosting Prompt TunIng with doMain Adaptation (OPTIMA)**

OPTIMA

- Adversarial Training
 - 1. We find a small perturbation δ to the input that causes the network to change prediction.
 - 2. With that perturbation fixed, we train the network to predict the correct label.
 - This leads to a decision boundary passing through regions with low data density

OPTIMA

- Adversarial Domain Similarity
 - We only care about perturbation vectors in the regions where the two domains are similar.

Figure 1: Smooth vs. zigzag decision boundaries. Left: When the distribution of the target-domain data (orange) are similar to the source domain (blue), the smooth decision boundary (solid line) generalizes better than the zigzag boundary. Right: When the distributions are different, it is not clear if the smooth decision boundary is the better choice.

Few-shot Results

Darama	PLM	Source	QQP		MRF	MNLI	
Wieulou Falains			Acc.	F1	Acc.	F1	Acc.
0		X	45.5	54.9	33.8	11.8	41.7
102K		×	48.4 ± 4.9	52.5 ± 5.5	53.1 ± 11.4	55.9 ± 23.4	33.4 ± 1.6
770M	T5-Large	X	55.1 ± 6.7	52.0 ± 6.0	59.5 ± 7.8	67.9 ± 12.6	35.6 ± 2.4
770M		X	55.1 ± 5.1	57.8 ± 3.1	58.9 ± 11.0	65.3 ± 11.8	35.6 ± 3.6
410K	T5-XXL	1	52.1 ± 11.1	56.2 ± 21.1	52.1 ± 11.1	56.2 ± 21.1	34.4 ± 1.4
			$MRPC \rightarrow QQP$		$QQP \rightarrow I$	$SNLI \rightarrow MNLI$	
			Acc.	F1	Acc.	F1	Acc.
102K		1	64.5 ± 2.7	64.5 ± 0.8	68.7 ± 2.5	77.1 ± 2.9	74.3 ± 0.9
102K	T5 Lance	1	65.0 ± 2.4	64.5 ± 1.5	68.5 ± 2.2	77.6 ± 2.2	75.0 ± 1.0
102K	15-Large	1	66.2 ± 2.0	64.9 ± 0.7	69.6 ± 1.9	79.0 ± 2.1	74.9 ± 1.1
102K		1	63.4 ± 2.5	62.5 ± 2.7	68.0 ± 3.5	76.2 ± 5.1	73.1 ± 1.4
102K		1	69.1 * ± 1.7	65.8 * ± 1.9	71.2 * ± 1.7	79.9 * ± 1.7	$78.4* \pm 0.6$
	Params 0 102K 770M 770M 410K 102K 102K 102K 102K 102K 102K	Params PLM 0 102K 102K T5-Large 770M T5-XXL 102K T5-Large 102K T5-Large	ParamsPLMSource0 \times 102K \times 770MT5-Large \times 770M \times 410KT5-XXL \checkmark 102K \checkmark	Params PLM Source QC 0 X 45.5 102K X 48.4 ± 4.9 770M T5-Large X 48.4 ± 4.9 770M X 55.1 ± 6.7 770M X 55.1 ± 5.1 410K T5-XXL \checkmark 52.1 ± 11.1 MRPC - Acc. 102K X 64.5 ± 2.7 102K \checkmark 65.0 ± 2.4 102K Y 64.2 ± 2.0 102K \checkmark 66.2 ± 2.0 102K \checkmark 63.4 ± 2.5 102K \checkmark 69.1* ± 1.7	Params PLM Source Acc. F1 0 X 45.5 54.9 102K X 48.4 ± 4.9 52.5 ± 5.5 770M T5-Large X 55.1 ± 6.7 52.0 ± 6.0 770M X 55.1 ± 5.1 57.8 ± 3.1 56.2 ± 21.1 410K T5-XXL \checkmark 52.1 ± 11.1 56.2 ± 21.1 102K X 64.5 ± 2.7 64.5 ± 0.8 102K \checkmark 65.0 ± 2.4 64.5 ± 1.5 102K \checkmark 66.2 ± 2.0 64.9 ± 0.7 102K \checkmark 63.4 ± 2.5 62.5 ± 2.7 102K \checkmark 69.1* ± 1.7 65.8* ± 1.9	Params PLM Source QQP MRF 0 X 45.5 54.9 33.8 102K X 48.4 ± 4.9 52.5 ± 5.5 53.1 ± 11.4 770M T5-Large X 55.1 ± 6.7 52.0 ± 6.0 59.5 ± 7.8 770M X 55.1 ± 5.1 57.8 ± 3.1 58.9 ± 11.0 52.1 ± 11.1 410K T5-XXL ✓ 52.1 ± 11.1 56.2 ± 21.1 52.1 ± 11.1 410K T5-XXL ✓ 64.5 ± 2.7 64.5 ± 0.8 68.7 ± 2.5 102K ✓ 65.0 ± 2.4 64.5 ± 1.5 68.5 ± 2.2 69.6 ± 1.9 102K ✓ 66.2 ± 2.0 64.9 ± 0.7 69.6 ± 1.9 102K 102K ✓ 63.4 ± 2.5 62.5 ± 2.7 68.0 ± 3.5 102K ± 1.7 102K ✓ 69.1* ± 1.7 65.8* ± 1.9 71.2* ± 1.7	Params PLM Source QQP MRPC 0 X 45.5 54.9 33.8 11.8 102K X 48.4 ± 4.9 52.5 ± 5.5 53.1 ± 11.4 55.9 ± 23.4 770M T5-Large X 55.1 ± 6.7 52.0 ± 6.0 59.5 ± 7.8 67.9 ± 12.6 770M X 55.1 ± 5.1 57.8 ± 3.1 58.9 ± 11.0 65.3 ± 11.8 410K T5-XXL ✓ 52.1 ± 11.1 56.2 ± 21.1 52.1 ± 11.1 56.2 ± 21.1 102K T5-XXL ✓ 64.5 ± 2.7 64.5 ± 0.8 68.7 ± 2.5 77.1 ± 2.9 102K T5-Large ✓ 65.0 ± 2.4 64.5 ± 1.5 68.5 ± 2.2 77.6 ± 2.2 102K T5-Large ✓ 66.2 ± 2.0 64.9 ± 0.7 69.6 ± 1.9 79.0 ± 2.1 102K ✓ 63.4 ± 2.5 62.5 ± 2.7 68.0 ± 3.5 76.2 ± 5.1 102K ✓ 69.1* ± 1.7 65.8* ± 1.9 71.2* ± 1.7 79.9* ± 1.7

Few-shot Results

Method	Params	PLM	Source	SNLI Acc.	SICK Acc.		CB Acc.	
Frozen	0		×	35.9	37.1		55.4	
PT	102K		×	34.6 ± 2.4	61.5 ± 7.8		38.3 ± 13.6	
\mathbf{FT}	770M	T5-Large	×	41.6 ± 3.8	67.6 ± 6.3		51.2 ± 7.8	
PFT	770M		×	38.6 ± 5.1	71.3 ± 6.4		57.3 ± 9.2	
PPT	410K	T5-XXL	\checkmark	34.7 ± 2.8	54.6 ± 14.0		43.0 ± 14.6	
				$MNLI \rightarrow SNLI$	$SNLI \rightarrow SICK$	$MNLI \rightarrow SICK$	$SNLI \rightarrow CB$	$\text{MNLI} \rightarrow \text{CB}$
				Acc.	Acc.	Acc.	Acc.	Acc.
SPOT	102K		1	78.8 ± 1.1	69.9 ± 5.3	72.9 ± 5.9	61.7 ± 5.0	65.3 ± 3.4
FreeLB	102K	T5 Large	\checkmark	81.5 ± 0.7	69.5 ± 6.8	73.1 ± 4.8	61.6 ± 4.2	66.1 ± 3.3
VAT	102K	15-Large	\checkmark	80.9 ± 0.9	68.6 ± 6.4	72.7 ± 6.3	59.0 ± 5.5	68.7 ± 4.8
DANN	102K		\checkmark	71.1 ± 3.2	69.0 ± 6.7	73.4 ± 3.7	55.7 ± 5.5	66.9 ± 4.6
OPTIMA	102K		✓	$82.1* \pm 0.8$	$\textbf{73.3} \pm 6.8$	$\textbf{74.8} \pm 4.4$	64.8 * ± 1.1	71.2 * \pm 3.1

Source-domain & Zero-shot Results

Mathad	MRPC	MRPC	\rightarrow QQP	QQP	$QQP \rightarrow$	$MNLI \rightarrow CB$	
Wiethou	Acc.	Acc.	F1	Acc.	Acc.	F1	Acc.
SPOT	82.5 ± 1.5	60.9 ± 4.6	63.6 ± 2.0	80.9 ± 2.2	65.7 ± 3.4	73.2 ± 5.7	63.2 ± 5.7
FreeLB	85.5 ± 0.3	63.1 ± 3.7	63.9 ± 1.0	82.2 ± 2.7	69.4 ± 1.1	78.7 ± 1.3	67.8 ± 3.9
VAT	\mid 84.7 \pm 0.8 \mid	64.8 ± 4.6	64.1 ± 1.7	$\mid 81.9 \pm 0.7 \mid$	68.9 ± 1.5	78.5 ± 1.5	67.8 ± 5.8
DANN	81.5 ± 2.1	63.9 ± 1.8	57.6 ± 3.3	81.4 ± 0.7	63.6 ± 4.8	71.5 ± 9.7	59.8 ± 4.4
OPTIMA	85.7 ± 0.7	68.9 ± 0.8	$\textbf{66.3}\pm0.6$	82.7 ± 1.3	71.2 ± 0.4	$\textbf{80.0}\pm0.6$	68.3 ± 2.6
Method	MNLI	$MNLI \rightarrow SNLI$	$MNLI \rightarrow SICK$	SNLI	$SNLI \rightarrow MNLI$	$SNLI \rightarrow SICK$	$SNLI \rightarrow CB$
	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.
SPOT	83.4 ± 0.8	79.2 ± 1.0	51.8 ± 0.7	88.9 ± 0.1	75.6 ± 0.4	52.7 ± 1.9	47.6 ± 3.7
FreeLB	84.8 ± 0.8	81.8 ± 0.7	52.2 ± 0.2	89.9 ± 0.1	77.5 ± 0.5	52.9 ± 1.9	47.5 ± 4.7
VAT	83.7 ± 0.3	81.0 ± 0.2	51.4 ± 1.4	88.7 \pm 0.1	77.1 ± 1.3	51.8 ± 2.1	45.8 ± 0.8
DANN	80.4 ± 2.7	72.4 ± 5.9	$\textbf{61.9}\pm2.7$	85.3 ± 3.2	70.3 ± 3.6	51.5 ± 1.2	42.3 ± 2.2
OPTIMA	84.6 ± 0.3	$\textbf{82.1}\pm0.8$	55.2 ± 1.0	89.2 ± 0.1	79.1 \pm 0.1	$\textbf{53.8}\pm0.5$	$\textbf{49.4} \pm 4.2$

New Dataset: Synopses of Movie Narratives

- "Watch a movie in 5 minutes" videos
- 869 hours, 683,611 sentences
- Texts are not literal descriptions
 - Mental state descriptions
 - Reporting bias
 - 16-40% text are well matched with videos using near-SOTA (2020) models
- Calls for
 - Understanding: events, causal relations, theory of mind, long-term identity tracking, etc.
 - Commonsense reasoning

Yidan Sun, Qin Chao, Boyang Li. Synopses of Movie Narratives: a Video-Language Dataset for Story Understanding.

Conclusions

- Large Pretrained Language Models are transforming AI
- We design systems that
 - Exploit new capabilities (language-based reasoning)
 - Solve new challenges (few-shot prompt tuning)
- We propose a new dataset that poses greater challenges to these models

Contact: Boyang "Albert" Li, boyangli@ntu.edu.sg