

Neurophysiological and Subjective Analysis of VR Emotion Induction Paradigm

Ming Li¹, Junjun Pan^{1,2,3,4}, Yang Gao^{1,2,3,*}, Yang Shen⁵, Fang Luo⁵, Ju Dai⁴, Aimin Hao^{1,2,3,4} and Hong Qin⁶

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University
Research Unit of Virtual Body and Virtual Surgery Technologies, Chinese Academy of Medical Sciences
4 Peng Cheng Laboratory, Shenzhen, China
5 School of psychology, Beijing Normal University
6 Department of Computer Science, Stony Brook University, Stony Brook, NY 11794 USA.

虚和现实技术与系统国家重点实验室

Models of Emotion

2-D representation of emotions Anger, Happiness, Fear, Surprise, Disgust, Sadness (Valence-Arousal, VA)

3-D representation of emotions VAD

Appraisal theory of emotion

Why EEG ?

Datasets such as: DEAP, MAHNOB-HCI, SEED, and AMIGOS. It is a passive emotion induction in the laboratory, and lacks sufficient ecological validity.

VR Emotion-Induction Paradigms

VR could remedies the gap between the laboratory and authentic environments

An overview of our framework for VR emotion induction and analysis. (a): The expected emotional state and emotion induction materials; (b): The experiment set-up; (c): The subjective and neurophysiological data process and analysis

EEG equipment and HMD used in our study

(a) The study overview in our experiment. (b) Experiment process for each trial.

VR-based emotion-inducing materials

ABOUT US - THE TEAM PUBLICATIONS CONTENT - NEWS

A Public Database of 360 Videos with Corresponding Ratings of Arousal and Valence

Below is a comprehensive list of all immersive VR clips from the paper "A Public Database of 360 Videos with Corresponding Ratings of Arousal, Valence, and Correlations between Head Movements and Self Report Measures"

Clicking on the title of the video will lead you to the video content.

* Videos are no longer available online

	Title	Valence	Arousal	Total time (s)	Description	
1	Abandoned building	4.39	2.77	120	Daytime shot of an alley in between two abandoned buildings, with ambient music	
2	A Mumbai Summer	5.87	4.6	199	Tour of the Mumbai, India, various shots of urban and suburban locations	
3	Abandoned City	3.33	3.33	50	Virtual environment of a post-apocalyptic abandoned city	
4	Jared Leto Tour Guides Alaska's Melting Glaciers	4.73	3.33	234	Educational clip about the effects of climate change on Alaska's glaciers	
&spfreload	=5 hernobyl VR 360	3.06	4.18	548	Educational clip on the effects of the Chernobyl nuclear disaster on	

Stanford Virtual Human Interaction LAB (Frontiers in Psychology 2017)

Universitat Politècnica de València (Scientific Reports 2018)

(a) LALV

(b) HALV

(c) LAHV

(d) HAHV

Sample screenshots of participants and VR videos with different emotions Four from Stanford immersive VR video public database Two from Youtube, HALV Two from Steam, HAHV

VR Stimulate videos used in our experiment:

Subjective Scale

Self-Assessment Manekin (SAM)

Igroup Presence Questionnaire (IPQ)

Arousal, Valence, Dominance (1-9 points)

INV, SP, REAL

EEG Processing (EEGLAB)

Body movements, VR displays, EOG, ECG, and EMG can easily interfere with EEG signals

- > 512Hz Raw data, resampled to 128Hz
- FIR Filter (4-47Hz)
- Independent Component Analysis (ICA): decompose EEG to 32 independent components (ICs).
- Finally, we remove an average of 9.37 components per subject.

EEG Feature Extraction

Most significant feature related to emotion usually exists in the

frequency domain.

- Power Spectral Density (PSD) and Hemispherical Asymmetry through Welch's method
- ➢ Hanning window of 256 samples with an overlap of 128 samples.
- > The fixed stage of five seconds before each video as the baseline for baseline correction.
- Finally, PSD values are averaged over θ (4 7 Hz), α (7 13 Hz), β
 - (14 29 Hz), and γ (30 47 Hz) bands

$$\begin{tabular}{|c|c|c|c|c|} \hline Gamma \\ (>25 Hz) \\ \hline MMMMMMMMMMMMMMMMMMMMM \\ \hline Beta \\ (12 - 25 Hz) \\ \hline Mage ($$

(a) The distribution of 8 VR videos in the valance-arousal-dominance space;(b) The distribution of 8 VR videos in the valance-arousal plane.

Analysis of Subjective SAM Ratings

Table 2. The inter-correlation between three scales of valence, arousal, and dominance (* = p < 0.05).

Scale	Valence	Arousal	Dominance
Valence Arousal Dominance	1	0.12 1	0.43* 0.19 1

The mean ratings of participants for valence, arousal and dominance under the 4 emotion induction conditions. The rating is averaged for each subject and each condition.

Analysis of Subjective IPQ Ratings

(a) The mean ratings of subjects for involvement (INV), sense of realness (REAL) and spatial presence (SP) under the 4 emotion induction conditions.

(b) The correlation between the global arousal score of 8 videos and the correlation between presence and arousal of videos.

Analysis of EEG Power under High-Arousal/Low-Arousal

The average power of theta (4-7Hz), alpha (8-13Hz), beta (14-29Hz), and gamma (30-47Hz) over all subjects for high-arousal and low-arousal.

Analysis of EEG Power under High-Valence/Low-Valence

The average power of theta (4-7Hz), alpha (8-13Hz), beta (14-29Hz), and gamma (30-47Hz) over all subjects for high-valence and low-valence.

Result & Discussion

Table 4. The channel list with significantly difference for high-arousal/valence compared with low-arousal/valence (* = p < 0.05, ** = p < 0.01).

Band	Channel	HA	LA	HV	LV
	FP2**	-0.17	0.34		
θ	F4**	-0.43	0.51		
	AF4**	-0.55	0.65		
	Pz*			0.60	0.38
	Cz**	0.07	0.87		
	FC1*	0.59	0.75		
	FC2*	0.55	0.71		
α	Oz*	0.54	0.64		
	O2**	0.25	0.60		
	O1*	0.81	0.67		
	FP1**			1.01	0.51
	FP2*			0.65	0.58
	T8*	0.47	0.82	0.50	0.69
	P8*	0.51	0.76		
	T7**			1.12	0.81
β	FC5**			0.82	0.58
	CP5*			0.79	0.58
	FC6*			0.45	0.30
	CP6*			0.40	0.49
	FC5**			0.78	0.21
	T8**			1.03	0.47
	CP6**			0.58	0.24
γ	FC6**			0.81	0.33
	T7**			0.94	0.28
	P7**			1.21	0.43
	CP5**			0.65	0.27

Table 1. 14 pairs of hemispheric asymmetry electrodes used in our experiment.

-								
-	Pair No.	1	2	3	4	5	6	7
	Left Right	Fp1 Fp2	AF3 AF4	F7 F8	F3 F4	FC5 FC6	FC1 FC2	Т7 Т8
3.	Pair No.	8	9	10	11	12	13	14
5	Left	<u>C3</u>	CP5	CP1	D7	D3	PO3	01
	Right	C4	CP6	CP2	P8	P4	PO4	01

Effects Analyse of Hemisphere Asymmetry

Hemisphere Asymmetry Effect under High-Arousal / Low-Arousal and High-Valence / Low-Valence.

- First, our dataset has a limited age distribution that exclusively collects EEG signals from college students.
- Second, subjects are not allowed to turn their heads excessively during the experiment, which may affect their experiences.
- ➢ Finally, due to the long time experiment could cause excessive fatigue to the subject, we only explored the validity of the VR emotion induction paradigm without comparison with the traditional 2D displays.

- We set a precedent by using VR videos to investigate the EEG features of diverse emotional states systematically, demonstrating the potential power of VR as stimulus material for emotion research from a neurophysiological perspective.
- We discover the crucial brain regions and frequency oscillations associated with emotional valence and arousal. It is, thereby, a critical step to extend emotion research towards real-world neuroscience.
- > We find there is hemispheric lateralization of α waves in occipital regions for high-arousal emotions, which bring new insights for emotional arousal in affective computing.

Thank You! Questions & Answers

minglee@buaa.edu.cn