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Live Demo

Inertial Measurement Unit Placement
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Our system captures real-time human pose and translation from 6 inertial sensors
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Live Demo
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The 3D characters are taken from Unity Asset Store.

Our system captures physically correct human motion from 6 inertial sensors



Live Demo

’ Real-time Force Estimation
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Our system captures joint torques and ground reaction forces from 6 inertial sensors
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Our Researches

O TransPose: Real-time 3D Human Translation and Pose Estimation
with Six Inertial Sensors (SIGGRAPH 2021)

m Multi-stage body pose estimation (IMU -> Joints -> Pose)

m Fusion-based global translation estimation (physics rules + neural networks)

O PIP: Physics-aware Real-time Human Motion Tracking from Sparse
Inertial Sensors (CVPR 2022 Best Paper Finalist)

m Physics-based motion optimization
m Learning-based RNN hidden state initialization

m Dual PD controller: global motion control
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INTRODUCTION
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Background

O Applications of motion capture
m Movie production
m Augmented/Virtual reality
® Human-computer interaction
® Gaming
m Sports
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Background

O Commercial solutions

Optical motion capture Inertial motion capture
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Xsens (https://www.xsens.com/)

Vicon (https://ww.vin.com/)



https://www.vicon.com/
https://www.xsens.com/

Background

O Previous works

Marker-free video-based

Neural PhysCap
[Shimada et al. 2021]

Monocular Real-time Full Body

Capture [Zhou et al. 2021]

Xnect DeepCap
[Mehta et al. 2020] [Habermann et al. 2020]

Sparse inertial sensor-based

Sparse Inertial Poser
[Marcard et al, 2017]

Deep Inertial Poser
[Huang et al, 2018]
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Challenges

Learning pose prior
« IMU signals are sparse and noisy
Estimating global movements
* No direct distance measurement
» Acceleration signals are noisy

Ensuring physical plausibility

16



Challenges

O Challenges in sparse inertial mocap

Pose ambiguity Physical correctness

(False stand-up caused by the sparsity of IMUs) (Jitter caused by noisy IMU signals)

Ssssssss——

Previous works cannot disambiguate poses Previous works cannot ensure physical
with similar sensor readings well correctness of the motion
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Method: TransPose

O Overview of TransPose [2021]

inertial measurements leaf joint positions all joint positions
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Method: TransPose

Input: orientations R and accelerations a of 6 IMUs




Method: TransPose

1. left forcarm 4. right lower leg
2. right forearm 5. head
3. left lower leg 6. pelvis (root)

Input: orientations R and accelerations a of 6 IMUs
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Method: TransPose

O Overview of TransPose [2021]

Output: pose parameters 6 and translations v of the subject

mesh with
motion
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Method: TransPose

inertial measurements leaf joint positions all joint positions
Pose-ST1 Pose-S2 M Pose-S3

0o 0°

= 9 - joint rotations% 9
leaf joint X Tofitposition 8.. 8. x(2) |  inverse

o o/ 8 5 o
position — commletion — 9@ ———>| kinematics |—> 9
estimation ° 1\ solver

template

multi-stage pose estimation

Pose estimation subtask: pose parameters



Method: TransPose

O Overview of TransPose [2021]

I
foot-ground contact ,-_______

- ruser-specific)
probabllgy 9 1 leg length ;

foot-ground contact

Trans-B1 _x( 1) 9 cshmiation 9 %‘95?—3 N global velocity :
C— .

. )
Trans-B2 x(2)—y| root velocity 7]

regressor

'...........

Translation estimation subtask: global translations



Method: TransPose

inertial measurements leaf joint positions all joint positions
Pose-ST1 Pose-S2 M Pose-S3

" ““3"" - joint rotations N 9
leaf joint X Tofitposition 8.. 8. x(2) |  inverse

o o/ 8 5 o
position — ot — 9@ ———>| kinematics |—> 9
estimation ° 1\ solver

template

multi-stage pose estimation

Introducing intermediate joint position estimation task to better model pose prior



Method: TransPose

O TransPose: multi-stage pose estimation

inertial measurements leaf joint positions

L g Pose-S1 ®
o C [ leafjoint "
o -3 —>| position |— . —
estimation
J & o

Pose Stage 1: IMUs — leaf joint positions




Method: TransPose

O TransPose: multi-stage pose estimation

all joint posmons

Pose-S2

1)
X ( joint posmon
9 9

Pose Stage 2: IMUs + leaf joint positions — full joint positions




Method: TransPose

O TransPose: multi-stage pose estimation

Pose-S3

X joint rotations
x(2) mnverse
@ ————>| kinematics m
solver

Pose Stage 3: IMUs + full joint positions — joint rotations




Method: TransPose

O TransPose: fusion-based translation estimation

I
foot-ground contact ,-_______

- ruser-specific)
probabllgy 9 1 leg length ;

foot-ground contact

Trans-B1 _x( 1) 9 cshmiation 9 %‘95?—3 N o global velocity
e .
- fusion — \Y%

. )
Trans-B2 x(2)—y| root velocity 7]

regressor

e
0
]
0
]
0
0
]
0
]
J
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Leveraging physics rules and a complementary neural network to estimate translation



Method: TransPose

O TransPose: fusion-based translation estimation

foot-ground contact

probablhty 9
foot- ground contact
Trans-B1 x(l)—) - é{i

Translation Branch 1: IMUs + leaf joint positions — physics-rule-based translations




Method: TransPose

O TransPose: fusion-based translation estimation

0
o (2) root velocity
Trans-82 x(2)=> 4 > | Ve| —t—— |Ve

fusion-bas

Translation Branch 2: IMUs + full joint positions — network-regressed translations




Method: TransPose

O TransPose: fusion-based translation estimation

Translation Fusion: physics rule + network — final translation




Method: TransPose

Supporting Foot Visualization |

supporting foot probability 0 |

We record the sensor measurements and run our pipeline offline to render the supporting foot predictions.
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Method: TransPose

O Summary of TransPose [2021]

inertial measurements leaf joint positions all joint positions
Pose-S1 L Pose-S2 o Pose-S3 o )
= oy : joint rotations %, 9 P
leaf joint mverse
pgsitiqn > . ———>| kinematics |—) 9 mesh with
estimation solver motion

template mesh ﬁ,

X0 @) 0
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foot-ground contact ,___.___ o=
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Method: TransPose

35



Method: PIP

O Physical correctness in motion capture

- Joint positions « Joint positions

Kinematics vs  Dynamics

How does the ﬁubé'?cz‘ move? What causes the movement?
* Joint accelerations « Joint accelerations

« Joint torques

Body mass distribution

Body shapes

Contact forces
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Method: PIP

O Physics model for human body

J

4 1 i )\) @ v

J
Just like a ...

T

We use a torque-controlled floating-base character model
based on PhysCap [Shimada et al. 2020]
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Method: PIP

O Our system

Inertial Sensor A Output

, . 6
Measurements Pleaf > Ra —%— JointRotation --des Motion
Controller

7 Joint Position Motion § _ Dynamic g |
VA —? Controller +—=2) Tracking ——) States —>
Optimizer Updater
Dual PD / )
Controller r ] T, A
> CF

Neural Kinematics Estimator Physics-aware Motion Optimizer

| )

Recurrent Neural Network Fully-connected Neural Network @ Concatenation -~~~ > Learning-based RNN State Initialization 1\ Ground Reaction Force

Our system consists of a neural kinematics estimator and a physics-based motion optimizer
o° °0
O O

Model motion
prior

Model physics
rules
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Method: PIP

Inertial Sensor
Measurements

Neural Kinematics Estimator

Different from TransPose [Yi et al. 2021], we use unidirectional LSTM
« to retain full historical information during online prediction

« for better runtime performance and lower latency
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Method: PIP

To disambiguate motions with similar sensor measurements, only using RNN is not enough ...

We need a new RNN hidden state initialization scheme



Method: PIP

O Typical RNN training

Input inertia data 0 I 0 0 I 0
\ \

stand -> sit \sit -> stand stand -> sit

We use stand/sit as an example

(ambiguity comes from similar IMU measurements)



Method: PIP

O Typical RNN training

Ground-truth pose

Input inertia data

pprr

Typically, we cut the input sequences into small pieces

and train RNNs in a mini-batch manner
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Method: PIP

O Typical RNN training

Ground-truth pose

Input inertia data

Oops! The network is trained with the same inputs but different outputs



44

Method: PIP

O Typical RNN training

Ground-truth pose

.
}

Input inertia data

On the other pieces, the first few frames are also inconsistently trained!
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Method: PIP

O Learning-based RNN initialization

Ground-truth pose

Input inertia data

The problem is, the RNN hidden states are always constantly initialized (e.g., zero),

while the beginning pose of each sequence can be different (e.g., standing/sitting/lying)
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Method: PIP

O Learning-based RNN initialization

pan == == -

Ground-truth pose

Input inertia data

et

f

(8] q: o
© N sl © © W 3
o) = — -~ S |8 o) - - N = o
N d Bl N B P
O N O Nl y | Ol & E2 O
L L T = L o o N L

= @) —

hidden/cell
FC N state vector RN N

During training, we regress the RNN hidden state from the beginning pose

The RNN is trained as usual (compatible with black-box RNN implementation)
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Method: PIP

During prediction, the subject will always begin with T-pose as we need a T-pose calibration

These two networks are only used at the beginning of the capture



Method: PIP

Evaluation: Learning-based Initialization

Our learning-based RNN initialization technique helps to resolve the pose ambiguity.

Video Reference w/o Learning-based
(not input) Initialization
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Method: PIP

~ Live Demo

' Our system stably captures long-term/still motions with very little drifts.
Y
L

Speed
100x

We propose a novel RNN initialization scheme which helps with pose disambiguation
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Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

Joint Rotation Odes

Controller

Joint Position Motion i Dynamic g |
Controller —-—) Tracking = States = )

Optimizer Updater
Dual PD
Controller T, A

Physics-aware Motion Optimizer

Target: estimate a set of forces & torques to control the physics model

to imitate the kinematically predicted motion



51

Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

Joint Rotation
Controller

Joint Position ' 3,
Controller £3

Dual PD
Controller

To imitate the reference motion, what accelerations does the character need?
Odes = Kpg (Orer —8) —kg,6 < Control the local rotation of each joint
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Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

Joint Rotation
Controller

Joint Position ' 3,
Controller £3

Dual PD
Controller

To imitate the reference motion, what accelerations does the character need?

Odes = Kpg (Orer —8) —kg,6 < Control the local rotation of each joint

fages = Kp. (fref — 1) —kq I < Control the global rotation of each joint
ref =1+ T(V)At, T=]q



Method: PIP

sics Optimizer : motion status — pose & translation & forces

Motion
Tracking
Optimizer

q,\, T

st. T+JA=Mg+h (equation of motion)
AeF (friction cone)
ri(q) € C (no sliding).




Method: PIP

sics Optimizer : motion status — pose & translation & forces

Motion
Tracking
Optimizer

EpD + Ereg Quadratic Programming
a7 .

s.t. T+ JZ)\ = Mg+ h (equation of motion) g acceleration
AEF (friction cone) A: ground reaction forces

7i(q) € C (no sliding). T: joint torques




Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

Epp = koo + kr &y,

Eo = ||Gs. — Oaes||*, E = || TG + Jq — Fqes ||,

argmin |Epp|+ Ereg
q,\, T

s.t. T+ JZ)\ = Mg+ h (equation of motion)

A €EF
TJ(Q)EC

(friction cone)
(no sliding).

Motion G
Tracking

Optimizer

PD term &pp (§):
The linear & angular accelerations
should be similar to the ones given

by the dual PD controller
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Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

greg = kaEX + kresCres + Er &, Motion
Tracking

Optimizer

N
g)\ — chHAcHQagres — ||T:6||2357‘ — ||7-6:||23

c=1

argmin  Epp +|Eres Regularization term €,.4(7, 1).

QAT
s.t. T+ JZ)\ = Mg+ h (equation of motion)
AEF (friction cone) - Joint torques should be small

ri(q) €C (no sliding). + No actuation at the root joint

« External forces must act on contacts



Method: PIP

sics Optimizer : motion status — pose & translation & forces

Motion
Tracking
Optimizer

argmin  Epp + Ereg Equation of motion:

AT The relationship between forces and

T+JX=M¢g+h (equation of motion) . .
TeLiOI COLe accelerations —— in other words,

(no sliding). F = ma
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Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

Fo= (A €RINL > 0] < pdL NG < N}, s daiy

Optimizer

F={A1- AN ]eR™|A. € Fo,e=1,2,-- ,n.},

argmin  Epp + Ereg Friction cone:

q;\,T
st. T+ J'X=Mg+h (equation of motion) .
\c F (friction cone) law —— in other words, f < uN and

Linearization of the Coulomb friction

ri(g) € C (no sliding). N>0
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Method: PIP

O Physics Optimizer : motion status — pose & translation & forces

C; =A{r; e R >0, || < 0,75 < o}, s | et
C={[P1-7n,] €ER™|r; €C;,i=1,2,--- ,n;},

Optimizer

argmin  Epp + Ereg No sliding:

q;A\,T
s.t. T+ JZ)\ = Mg+ h (equation of motion)
\c F (friction cone) penetrate the ground at the contact

’I."j ((]) cC (1’10 Slldlng) points

The body should not slide or




Method: PIP

sics Optimizer : motion status — pose & translation & forces

Dynamic g
States
Updater

Update the pose & translation from the estimated acceleration
qt*tD = q® 4+ q® AL
gD = q® 4 §OAL




Method: PIP

Evaluation: Dual PD Controller

Our dual proportional-derivative controller helps to improve physical plausibility.

Video Re}erence | w/o Dual PD Controller Ours
(not input)
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RESULTS
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Better accuracy and physical correctness than all online methods

Comparable results with the best offline method

63

Comparisons
Method bIP-IMU
SIP Error | Ang Error | Pos Error | Mesh Error | Rel Jitter | Abs Jitter | ZMP Dist | Latency
Offline DIP [20] 16.36 14.41 6.98 8.56 2.34 - - -
TransPose [ 73] 13.97 7.62 4.90 5.83 0.13 0.85 0.59 -
DIP [20] 17.10 15.16 7.33 8.96 3.01 - - 117
Online | TransPose [73] 16.68 8.85 5.95 7.09 0.61 1.46 1.67 94
PIP (Ours) 15.02 8.73 5.04 5.95 0.23 0.24 0.12 16
Method TotalCapture
SIP Error | Ang Error | Pos Error | Mesh Error | Rel Jitter | Abs Jitter | ZMP Dist | Latency
Offline DIP [20] 18.47 17.54 9.47 11.19 291 - - -
TransPose [ 73] 14.71 12.19 5.44 6.22 0.16 0.91 0.76 -
DIP [20] 18.62 17.22 9.42 11.22 3.62 - - 117
Online | TransPose [73] 16.58 12.89 6.55 7.42 0.95 1.87 1.40 94
PIP (Ours) 12.93 12.04 5.61 6.51 0.20 0.20 0.23 16
(Compared with SOTA :

* pose error reduces 14%
* jitter reduces 87%
. * latency reduces 81%

~N

J




Comparisons

SIP Error | Ang Error | Pos Error | Mesh Error
16.36 14.41 6.98 8.56
13.97 7.62 4.90 5.83

17.10 15.16 7.33 8.96
16.68 8.85 5.95 7.09
15.02 8.73 5.04 5.95

SIP Error | Ang Error | Pos Error | Mesh Error
18.47 17.54 9.47 11.19
14.71 12.19 5.44 6.22

18.62 17.22 9.42 11.22
16.58 12.89 6.55 7.42
12.93 12.04 5.61 6.51

« SIP Error (degrees): global orientation error of the upper arms and legs
Metrics for  Angular Error (degrees): global orientation error of all joints
POse accuracy + Positional error (cm): joint position error (root aligned)

« Mesh error (cm): mesh vertex error (root aligned)
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Comparisons

ZMP inside support polygon ~ the subject is in balance

Abs Jitter

ZMP Dist

0.85

0.59

0.61

1.46

1.67

Rel Jitter
' 3 2.34
\ % 0.13
" ﬁ" 3.01

0.23

0.24

0.12

Abs Jitter

ZMP Dist

291

‘ ure
> . W Rel Jitter

0.16

0.91

0.76

W

| 3.62

1.87

1.40

support \Q 0.95
polygon 0.20

0.20

0.23

« Relative jitter (km/s3): jerk (time derivative of acceleration) of all joints (root fixed)
Metrics for « Absolute jitter (km/s3): jerk of all joints in the global space

physical correctness

ZMP distance (m): Distance between zero-moment point (ZMP) and the

support polygon (lower value for better equilibrium)
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Comparisons

Latency |

Metrics for « Latency (ms): time from receiving the inertia measurements to outputting

real-time performance the pose and translation for the corresponding frame
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Comparisons

Cumulative Translation Error

’g‘ 0.4 -
=
o
Qt) 0.3 /
=
2
= 05 —— TransPose
g / ——— PIP (w/o phys)
S o — PIP (w/o learning-init)
< —— PIP (w/o dual-PD)
— PIP
0.0 1
0 ! 2 3 4 5 6 7

Real travelled distance (m)
Compared with SOTA :

e translation error
PIP Translation drift: 4.6% reduces 26%




Percentage

Comparisons

Mesh Error Distribution

e~ _____________ e s} e M et et e e i e e e s E

AUC=0.60 |
AUC=0.76
AUC=0.80

Ground-truth AUC=1

! !

Examples picked at
1. 10%
2. mode
3. median
4. 95%

point from the mesh error

distribution of TotalCapture

dataset
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Compared with SOTA :
+49% AUC




Ground Truth
(with video reference)

Comparisons

Pose Comparison

DIP [Huang et al.] TransPose [Yi et al.] PIP (Ours)
(no global position)

Dataset: TotalCapture [Trumble et al.]
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Comparisons

Full Motion Comparison

P'P ICy:vs)
Ground Truth
~
4

"
o

Dataset: TotalCapture [Trumble et al.]

We ensure physical correctness by incorporating physics using a novel dual PD controller



Evaluations

Method DIP—IMU' TotalCaptm.‘e
SIP Error | Jitter | SIP Error | Jitter
w/0 learning-init 15.12 0.27 13.70 0.23
w/0 dual-PD 15.04 0.28 12.93 0.32
w/0 physics module 15.04 0.48 12.84 0.51
Ours 15.02 0.24 12.93 0.20

The physics module is helpful for estimating translation

and improving the physical correctness of the motion
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PIP generates plausible ground reaction forces and joint torques
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Limitations

- Limitation: Very Rare Pose

Our method is not capable of very rare and ambiguous pose.
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