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Live Demo
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Our system captures real-time human pose and translation from 6 inertial sensors



Live Demo
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Our system captures physically correct human motion from 6 inertial sensors



Live Demo
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Our system captures joint torques and ground reaction forces from 6 inertial sensors



Our Researches

 TransPose: Real-time 3D Human Translation and Pose Estimation 
with Six Inertial Sensors (SIGGRAPH 2021)

◼ Multi-stage body pose estimation (IMU -> Joints -> Pose)

◼ Fusion-based global translation estimation (physics rules + neural networks)

 PIP: Physics-aware Real-time Human Motion Tracking from Sparse 
Inertial Sensors (CVPR 2022 Best Paper Finalist)

◼ Physics-based motion optimization

◼ Learning-based RNN hidden state initialization

◼ Dual PD controller: global motion control
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Outline

 Introduction

Method

Results
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INTRODUCTION

12



Background

 Applications of motion capture

◼ Movie production

◼ Augmented/Virtual reality

◼ Human-computer interaction

◼ Gaming

◼ Sports

◼ …
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Background

 Commercial solutions
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Vicon (https://www.vicon.com/)

Optical motion capture

Xsens (https://www.xsens.com/)

Inertial motion capture

https://www.vicon.com/
https://www.xsens.com/


Background

 Previous works
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Marker-free video-based Sparse inertial sensor-based

Xnect
[Mehta et al. 2020]

Monocular Real-time Full Body 
Capture [Zhou et al. 2021]

DeepCap
[Habermann et al. 2020]

Neural PhysCap
[Shimada et al. 2021]

Sparse Inertial Poser
[Marcard et al, 2017]

Deep Inertial Poser
[Huang et al, 2018]



Challenges

 Challenges in sparse inertial mocap
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ambiguity

• Learning pose prior

• IMU signals are sparse and noisy

• Estimating global movements

• No direct distance measurement

• Acceleration signals are noisy

• Ensuring physical plausibility



Challenges

 Challenges in sparse inertial mocap
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Pose ambiguity Physical correctness

Previous works cannot disambiguate poses 
with similar sensor readings well

Previous works cannot ensure physical 
correctness of the motion

(False stand-up caused by the sparsity of IMUs) (Jitter caused by noisy IMU signals)



METHOD
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Method：TransPose

 Overview of TransPose [2021]
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Method：TransPose

 Overview of TransPose [2021]
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𝑹 ∈ ℝ3×3

𝒂 ∈ ℝ3

Input: orientations 𝑹 and accelerations 𝒂 of 6 IMUs



Method：TransPose

 Overview of TransPose [2021]
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Input: orientations 𝑹 and accelerations 𝒂 of 6 IMUs



Method：TransPose

 Overview of TransPose [2021]

22

Output: pose parameters 𝜽 and translations 𝒗 of the subject

𝜽 ∈ ℝ3𝐽

𝒗 ∈ ℝ3



Method：TransPose

 Overview of TransPose [2021]
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Pose estimation subtask: pose parameters



Method：TransPose

 Overview of TransPose [2021]
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Translation estimation subtask: global translations



Method：TransPose

 TransPose: multi-stage pose estimation
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Introducing intermediate joint position estimation task to better model pose prior



Method：TransPose

 TransPose: multi-stage pose estimation
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Pose Stage 1: IMUs → leaf joint positions



Method：TransPose

 TransPose: multi-stage pose estimation
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Pose Stage 2: IMUs + leaf joint positions → full joint positions



Method：TransPose

 TransPose: multi-stage pose estimation
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Pose Stage 3: IMUs + full joint positions → joint rotations



Method：TransPose

 TransPose: fusion-based translation estimation
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Leveraging physics rules and a complementary neural network to estimate translation 



Method：TransPose

 TransPose: fusion-based translation estimation
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Translation Branch 1: IMUs + leaf joint positions → physics-rule-based translations



Method：TransPose

 TransPose: fusion-based translation estimation
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Translation Branch 2: IMUs + full joint positions → network-regressed translations



Method：TransPose

 TransPose: fusion-based translation estimation
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Translation Fusion: physics rule + network → final translation



Method：TransPose
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Method：TransPose

 Summary of TransPose [2021]

34



Method：TransPose
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Method：PIP

 Physical correctness in motion capture
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How does the subject move? What causes the movement?

Kinematics Dynamicsvs
• Joint positions

• Joint rotations

• Joint velocities

• Joint accelerations

• Joint torques

• Body mass distribution

• Body shapes

• Contact forces

• …

• Joint positions

• Joint rotations

• Joint velocities

• Joint accelerations

• …



Method：PIP
37

 Physics model for human body

We use a torque-controlled floating-base character model 

based on PhysCap [Shimada et al. 2020]

Just like a …



Method：PIP
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 Our system

Our system consists of a neural kinematics estimator and a physics-based motion optimizer

Model motion 
prior

Model physics 
rules



Method：PIP
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 Kinematics Estimator: inertia measurements → motion status

Different from TransPose [Yi et al. 2021], we use unidirectional LSTM

• to retain full historical information during online prediction

• for better runtime performance and lower latency



Method：PIP
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 Kinematics Estimator: inertia measurements → motion status

To disambiguate motions with similar sensor measurements, only using RNN is not enough …

We need a new RNN hidden state initialization scheme



Method：PIP
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 Typical RNN training

We use stand/sit as an example

(ambiguity comes from similar IMU measurements)

Ground-truth pose

Input inertia data



Method：PIP
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 Typical RNN training

Typically, we cut the input sequences into small pieces 

and train RNNs in a mini-batch manner

Ground-truth pose

Input inertia data



Method：PIP
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 Typical RNN training

Oops! The network is trained with the same inputs but different outputs

Ground-truth pose

Input inertia data



Method：PIP
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 Typical RNN training

On the other pieces, the first few frames are also inconsistently trained!

Ground-truth pose

Input inertia data



Method：PIP
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 Learning-based RNN initialization

The problem is, the RNN hidden states are always constantly initialized (e.g., zero),

while the beginning pose of each sequence can be different (e.g., standing/sitting/lying)

Ground-truth pose

Input inertia data



Method：PIP
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 Learning-based RNN initialization

During training, we regress the RNN hidden state from the beginning pose

The RNN is trained as usual (compatible with black-box RNN implementation)

Ground-truth pose

Input inertia data



Method：PIP
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 Kinematics Estimator: inertia measurements → motion status

During prediction, the subject will always begin with T-pose as we need a T-pose calibration

These two networks are only used at the beginning of the capture



Method：PIP
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Method：PIP
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We propose a novel RNN initialization scheme which helps with pose disambiguation



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

Target: estimate a set of forces & torques to control the physics model 

to imitate the kinematically predicted motion



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

ሷθdes = kpθ θref − θ − kdθ
ሶθ ←  Control the local rotation of each joint

To imitate the reference motion, what accelerations does the character need?



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

ሷθdes = kpθ θref − θ − kdθ
ሶθ ←  Control the local rotation of each joint

To imitate the reference motion, what accelerations does the character need?

ሷrdes = kpr rref − r − kdr ሶr ←  Control the global rotation of each joint
rref = r + T v Δt， ሶr = J ሶq



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

Quadratic Programming

ሷ𝑞: acceleration

𝜆: ground reaction forces

𝜏: joint torques



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

PD term ℰPD( ሷq):

The linear & angular accelerations 

should be similar to the ones given 

by the dual PD controller



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

Regularization term ℰreg(𝜏, 𝜆):

• External forces must act on contacts

• Joint torques should be small

• No actuation at the root joint



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

Equation of motion:

The relationship between forces and 

accelerations —— in other words, 

𝐹 = 𝑚𝑎



Method：PIP
58

 Physics Optimizer : motion status → pose & translation & forces

Friction cone:

Linearization of the Coulomb friction 

law —— in other words, 𝑓 ≤ 𝜇𝑁 and 

𝑁 ≥ 0



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

No sliding:

The body should not slide or 

penetrate the ground at the contact 

points



Method：PIP
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 Physics Optimizer : motion status → pose & translation & forces

q(t+1) = q(t) + ሶq(t)Δt

Update the pose & translation from the estimated acceleration

ሶq(t+1) = ሶq(t) + ሷq(t)Δt



Method：PIP
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RESULTS
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Comparisons
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Better accuracy and physical correctness than all online methods

Comparable results with the best offline method

Compared with SOTA : 
• pose error reduces 14%
• jitter reduces 87%
• latency reduces 81%



Comparisons
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• SIP Error (degrees)：global orientation error of the upper arms and legs

• Angular Error (degrees): global orientation error of all joints

• Positional error (cm): joint position error (root aligned)

• Mesh error (cm): mesh vertex error (root aligned)

Metrics for 
pose accuracy



Comparisons
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• Relative jitter (km/s3)：jerk (time derivative of acceleration) of all joints (root fixed)

• Absolute jitter (km/s3)：jerk of all joints in the global space 

• ZMP distance (m): Distance between zero-moment point (ZMP) and the

support polygon (lower value for better equilibrium)

Metrics for 
physical correctness



Comparisons
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• Latency (ms)： time from receiving the inertia measurements to outputting

the pose and translation for the corresponding frame
Metrics for 

real-time performance



Comparisons
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PIP Translation drift: 4.6%

Compared with SOTA : 
• translation error

reduces 26%



Comparisons
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Examples picked at

1. 10%

2. mode

3. median

4. 95%

point from the mesh error 

distribution of TotalCapture

dataset

Compared with SOTA : 
• +4% AUC



Comparisons
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Comparisons
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We ensure physical correctness by incorporating physics using a novel dual PD controller



Evaluations
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The physics module is helpful for estimating translation 

and improving the physical correctness of the motion 



Evaluations
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PIP generates plausible ground reaction forces and joint torques



In-the-wild Test
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Limitations
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Thank You!
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