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We Digitize Our World in 3D
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Future Al: Towards 3D Aware
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Long-term Vision
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Long-term Vision

Scene Generation

3D Reconstruction

Image Synthesis
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Bottleneck of Existing 3D Learning Models is the Lack of 3D Data

The size of 2D datasets can Existing 3D data is far from sufficient
be as large as millions
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The ImageNet dataset
contains millions of images
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Why Challenging?



3D Reconstruction and Image Synthesis are Challenging

Scene Generation

3D Reconstruction
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Image Synthesis
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Classical Computer Graphics Pipeline

3D Reconstruction jl)magmhgeﬁyﬂﬂﬂenstruction

Computer Graphics Rendering
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Image-based 3D Reconstruction

fesh: dense_fused.ply
4

COLMAP [Johannes et al. 2016, Schoenberger et al. 2016]
(Input: 100 images)
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Computer Graphics Rendering

Rendering requires very high-quality 3D models
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Output of Image-based Required Input for Photo-
Reconstruction realistic Rendering
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Photo-realistic Large-scale Scene Generation
is Extremely Challenging

Scene Generation

3D Reconstruction $ Image Synthesis
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Photo-realistic Large-scale Scene Generation
is Extremely Challenging
= Manually creating a scene is time-consuming
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Self-supervised Learning of 3D Scenes

Allow the gradients of 3D
objects to be calculated and
propagated through images

Neural Differentiable
Representations Rendering

3D Rec&& . ' >Sy. Image Loss C
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Neural 3D Scene Representations

Neural scene
representation
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Generative Query Networks [Flynn et E.ll" 2016; Zhou et al., 2018b; RenderNet [Nguyen-Phuoc et al. 2018]
, Mildenhall et al. 2019] -
[Eslami et al. 2018] . Voxel Grids + CNN decoder
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NeRF [Mildenhall et al. 2020]  IDR [Yariv et al. 2020]
Implicit Fields
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NeRF [Midenhall et al. 2020]

Input Images Optimize NeRF Render new views
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Neural Radiance Fields (NeRF)

Scene
L2 loss
2
‘xr o xg t ‘ 2
(p' U) // \
X \ X
MLPs Rendered Image Ground Truth Image

[Mildenhall et al. 2020]
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Hybrid Scene Representation for Fast Rendering

A A .
NeRF (Mildenhall et al. 2020) Ours (NSVF)
lllustration of (Rendering speed: 100 s/frame) (Rendering speed: 2.62 s/frame)

Neural Sparse Voxel Fields

L. Liu, J. Gu, K.Z. Lin, T.S. Chua, C. Theobalt. Neural Sparse Voxel Fields, NeurlPS 2020 Spotlight
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Surfaces Extracted from Learned Representation

Volume density used as scene representation lacks surface constraints
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Neural Surface Representation for High-quality Reconstruction
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Surface Representgtlon Our surface geometry Our rendering
+ Volume Rendering (w/o mask supervision) (w/o mask supervision)

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, W. Wang. NeuS: Learning Neural Implicit Surfaces by
Volume Rendering for Multi-view Reconstruction, NeurlPS 2021 Spotlight
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Physics Informed Scene Representation

Input Neural Radiance Representation Neural Velocity Representation
Sparse RGB Videos f(x,y,z,t) = (d,c) f(x, v,7,t) = u
1 of 5 Given Views Opposite Novel View  Rotating View Time Frozen

differentiable
physics

differentiable
rendering

7 -
ScalarFlow = . L4 i

[Eckert et al. %01 9]

M. Chu, L. Liu, Q. Zheng, E. Franz, H.P. Seidel, C. Theobalt, R. Zayer.

Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data, SIGGRAPH 2022 (Journal track)
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Neural Animatable Human Representation

5D Input Output
Position + Dlrectlon I]["] Color + Density
(x..z.0,4) > —(RGBe) —\

= o

Skinned Multi-person _
Linear Model (SMPL) Neural Scene Representations

L. Liu, M. Habermann, V. Rudneyv, K. Sarkar, J. Gu, C. Theobalt.
Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021
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Neural Animatable Human Representation

A

Input Driving Poses

S S

R‘(SIEI"GI.WCG Video Our Bestilt
of Driving Person

L. Liu, M. Habermann, V. Rudneyv, K. Sarkar, J. Gu, C. Theobalt.
Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021
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How to Generate New 3D Scenes?

Training Data? Multi-view Images?
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How to Generate New 3D Scenes?
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How to Generate New 3D Scenes?
Model? 2D GANs? VAE?

= Generative Models

Likelihood-based (VAEs, Flow, DDPM, Autoregressive models, etc)
Likelihood-free (GANS)

= Generative Adversarial Networks (GANS)

= o

Z
Sample Latent ol G
vector(s) RGB

2D CNNs/Transformers o .
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How to Generate New 3D Scenes?
. Model? | 2D GANs? VAE?

Generate merely 2D images,
without 3D information

Results of the state-of-the-art GAN model (StyleGAN2)
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HumanGAN: A Generative Model of Human Images

Appearance sampling on a given pose Pose transfer on a given identity Body parts sampling (HEAD)

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)
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HumanGAN: A Generative Model of Human Images

Partial Texture-map

| (Ts) Encoder

UV Texture Extraction

g

Source Image (I5) Extracted Pose (P;)

Sampled Noise Warped Noise Image

:| Sample

=

(zs) (Z,)

Z —>

Warp

Generator Generated Image (1)

KL Divergence loss: L
GAN Loss: Ly

prior

Reconstruction Loss: Lygg + Lfage

'\‘

Target Pose (P;) Target Image (1)

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)
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Appearance Sampling

Input

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)
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Appearance Sampling

Ours

VUNet

Pix2PixHD
+Noise

Pix2PixHD
+WNoise

DAE
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Part Sampling
= Head
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Part Sampling
= Upper Body
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Part Sampling

= Lower Body

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)
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Garment Transfer

Garments Garment Transfer
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Garment Transfer

Garments

Garment Transfer
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Latent Space Interpolation

Latent Space Interpolation of the entire body
(Conditioning poses are not shown)
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Pose Transfer
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ours

target

source




Motion Transfer and Interpolation

&

By changing both the pose and the latent vector,
we can perform motion transfer with varying appearances.

Lingjie Liu



3D GANs

J. Gu, L. Liu, P. Wang, C. Theobalt.
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis, ICLR 2022
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3D GANs
Naive implementation of putting NeRF into GANs

=
G -
NXNXK RGB'J

How to make rendering as efficient
as possible (during training)

MLP

44 Lingjie Liu



3D GANs
Naive implementation of putting NeRF into GANs

Dataset =——p Z

* Rendering with NeRF is SLOW

Sample « Recent advances of fast rendering of
Camera NeRF (e.g., caching, sparse voxels) £ =V
does not work in the GAN setting. — Sl

Sample Latent 4
vector(s)
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Goal

= We propose to address the above issues simultaneously:

High-resolution
Efficient
Multi-view consistent

J. Gu, L. Liu, P. Wang, C. Theobalt.
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis, ICLR 2022
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Method

= Approximated Volume Rendering

o0

INRE () :V/n Paw (1) Cop (7 (1), d)dt, wWhere py,(t) = ex

Early

L) = [ () - heo 83 (r(0). (@) dt ~ o [0 SEEgET
0
nne (A(Ryr)) ~ Upsample (605" (A(Ry))) 2D

00 upsampling
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Preserve 3D consistency

= Remove view direction input

We found that view direction will break the consistency and did not
contribute to much quality (our dataset is single image)

= NeRF-path regularization

1

TrOX - ¢ )2
|S] Z(«;-j)es (I,ﬁ‘fl ()2, 5] — 15: RF(RDM[?’*]D)

£NeRF—path —

= Up-sampler design

Upsample(X) = Conv2d (Pixelshuffle (Repeat(X,4)+1p(X),2),K)
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StyleNeRF

= Up-sampler: we have tested many ways

— Filter-based (bilinear interpolation, FIR filters, etc) + MLP (1x1 Conv) will
cause “bubble shape” artifacts

— Learning-based (transposed conv, pixelshuffle, LIIF) will easily cause
texture sticking artifacts

— We combine these two methods
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Ablation: Different Upsampling Operators

LIIF: Having the "texture sticking" artifacts
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Ablation: Different Upsampling Operators

Bilinear: Having the "bubble-shape" artifacts
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Our proposed operator: Highly preserving 3D consistency
while getting rid of bubble-shape artifacts
52

Lingjie Liu



Ablation: Importance of Progressive Training

Results of no progressive training
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Our Results

T

This 1s the first time that a generative model can synthesize high-resolution images
from novel views while preserving high 3D consistency
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Results

= V.s. Existing works

= High resolution

FFHQ 256° AFHQ 256  CompCars 2567 Rendering time (ms / image)
Models EID KD E KID D KD 64— 128 2s6 S10 1004
2D GAN 4 1.1 9 23 3 1.6 - - 46 51 53
HoloGAN | 75 680 78 594 48 39.6 213 215 222 - -
GRAF 71 572 121 838 101 86.7 61 246 990 3852 15475
7-GAN 85 900 47 293 295 3289 58 198 766 3063 12310
GIRAFFE | 35 237 31 139 32 23.8 8 - 9 - -
Ours 8§ 37 14 35 8 4.3 - - 65 74 08
Models  FFHQ 512°  AFHQ 512° MetFace 512°  FFHQ 1024°
‘ FID KID FID KID FID KID FID KID
2DGAN 3.1 07 86 1.7 189 27 27 05
Ours 78 22 132 36 204 33 8.1 24
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Results

Istency evaluation

= Cons
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Style Interpolation

Our synthesized results (512x512)
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Applications: Style Mixing (Styles of Geometry)
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Results

= Interactive Demo
https://hugqgingface.co/spaces/facebook/StyleNeRF
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Explosion of 3D GANs
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Discriminator

2022]

StyleSDF [Or-El et al. 2022]
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GAN2X: Non-Lambertian Inverse Rendering of Image GANs

Shape Normal Albedo Diffuse Specular Rotate Relighting

Inverse rendering New view&light

X. Pan, A. Tewairi, L. Liu, C. Theobalt.
GAN2X: Non-Lambertian Inverse Rendering of Image GANs, 3DV 2022
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Method

G

Exploitation

refine reconstruction

Projected images

3D Scene
Representation 2D GAN UDHHHH

render\b%e

Re-rendered images

Exploration

X. Pan, A. Tewairi, L. Liu, C. Theobalt.

GAN2X: Non-Lambertian Inverse Rendering of Image GANs, 3DV 2022
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Scene Representation

Volume renderlng‘g/@ light

shape
EFE, »8S
X
—[: s,p) X : 3D coordinate
materlal S :signed distance

A /a : diffuse albedo
K, /k; : specular intensity
P/p : Shininess
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Method: Exploration

Reconstruction
Loss

encoder generator

Input I Initial shape

T

Encoder

B  Fixed Network

> >
N

. Network to be
optimized

p——" o
re-rendered samples {I; } projected samples {I; }
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Method: Exploitation

(b) Exploitation
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material
view
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Qualitative Comparison on CelebA: Rotation

Rendering Shape Normal Albedo

Unsup3d

GAN2Shape

Ours




Qualitative Comparison on CelebA: Relighting

Input Rendering Diffuse Specular Albedo

N/A

Ours disentangles
specularity better




Rendering Shape Normal Albedo




Input Rendering Diffuse Specular Albedo
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Quantitative Results

Input Unsup3d GAN2Shape [ ShadeGAN Ground truth

Single-view 3D reconstruction on the H3DS dataset.

Method|Unsup3d GAN2Shape pi-GAN ShadeGAN Ours(w/o SBR) Ours
CD | 3.60 2.62 3.29 2.49 221 2.08

<)
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Quantitative Results

Total

Input Unsup3d  GAN2Shape Relighting

-

:

Quantitative comparison of albedo and surface normal on CelebA

Unsup3d  GAN2Shape  Ours SIE: scale-invariant error

SIE (x1072) | 3.21 3.05 2.16 MAD: mean-angle deviation
MAD | 18.66 21.75 12.67

N\

) U

-
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What's Next?
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3D-aware Generative Models Trained on More Diverse Datasets
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Multi-modal Learning

Neural scene representations

Large-scale multimodal
learning models
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Multi-modal Learning

= Text-to-3D generation
= Language learning via 3D generation

‘. o | LY

A small purple metal i A large blue metal sphere above

A large blue metal sphere to the leftofa | a small red rubber cylinder
small green rubber cube | A large blue metal sphere to the

sphere above a small : .

red rubber cylinder A small purple metal i left of a small blue rubber cylinder
sphere below a large { | Alarge blue metal sphere behind

red metal cube i a small cyan metal sphere

1 Relation 2 Relations 3 Relations
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Thank you!
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