Photo-realistic 3D-aware Scene Generation

Lingjie Liu

Postdoc at Max Planck Institute for Informatics Incoming Assistant Professor at the University of Pennsylvania

Photo-realistic 3D-aware Scene Generation

Lingjie Liu

Postdoc at Max Planck Institute for Informatics Incoming Assistant Professor at the University of Pennsylvania

We Digitize Our World in 3D

Future AI: Towards 3D Aware

Long-term Vision

Long-term Vision

Bottleneck of Existing 3D Learning Models is the Lack of 3D Data

The size of 2D datasets can be as large as millions

The ImageNet dataset contains **millions** of images

12k synthetic models

1k indoor scenes

Existing 3D data is far from sufficient

1k indoor scenes

7.2k demonstrations of a robot performing kitchen tasks Lingjie Liu Why Challenging?

3D Reconstruction and Image Synthesis are Challenging

Classical Computer Graphics Pipeline

Computer Graphics Rendering

Image-based 3D Reconstruction

COLMAP [Johannes et al. 2016, Schoenberger et al. 2016] (Input: 100 images)

Computer Graphics Rendering

Rendering requires very high-quality 3D models

Output of Image-based Reconstruction

Required Input for Photorealistic Rendering

Photo-realistic Large-scale Scene Generation is Extremely Challenging

Photo-realistic Large-scale Scene Generation is Extremely Challenging

Manually creating a scene is time-consuming

Self-supervised Learning of 3D Scenes

Neural 3D Scene Representations

NeRF [Midenhall et al. 2020]

Neural Radiance Fields (NeRF)

[Mildenhall et al. 2020]

Hybrid Scene Representation for Fast Rendering

Illustration of Neural Sparse Voxel Fields

NeRF (Mildenhall et al. 2020) (Rendering speed: 100 s/frame) Ours (NSVF) (Rendering speed: 2.62 s/frame)

L. Liu, J. Gu, K.Z. Lin, T.S. Chua, C. Theobalt. Neural Sparse Voxel Fields, NeurIPS 2020 Spotlight

Surfaces Extracted from Learned Representation

Volume density used as scene representation lacks surface constraints

Neural Surface Representation for High-quality Reconstruction

Surface Representation + Volume Rendering

Our surface geometry (w/o mask supervision)

Our rendering (w/o mask supervision)

P. Wang, *L. Liu,* Y. Liu, C. Theobalt, T. Komura, W. Wang. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021 Spotlight

Physics Informed Scene Representation

M. Chu, *L. Liu*, Q. Zheng, E. Franz, H.P. Seidel, C. Theobalt, R. Zayer. Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data, SIGGRAPH 2022 (Journal track)

Neural Animatable Human Representation

Skinned Multi-person Linear Model (SMPL)

Neural Scene Representations

L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, C. Theobalt. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021

Neural Animatable Human Representation

Reference Video of Driving Person

Our Result

L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, C. Theobalt. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGGRAPH Asia 2021

Training Data? Multi-view Images?

Model?

2D GANs? VAE?

- Generative Models
 - Likelihood-based (VAEs, Flow, DDPM, Autoregressive models, etc)
 - Likelihood-free (GANs)
- Generative Adversarial Networks (GANs)

Model?

2D GANs? VAE?

Generate merely 2D images, without 3D information

Results of the state-of-the-art GAN model (StyleGAN2)

HumanGAN: A Generative Model of Human Images

Appearance sampling on a given pose

Pose transfer on a given identity

Body parts sampling (HEAD)

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)

Lingjie Liu

HumanGAN: A Generative Model of Human Images

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)

Appearance Sampling

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)

Appearance Sampling

Part Sampling

Head

Part Sampling

Upper Body

Part Sampling

Lower Body

K. Sarkar, L. Liu, V. Golyanik, C. Theobalt. HumanGAN: A Generative Model of Humans Images. 3DV 2021 (Oral)
Garment Transfer

Garment Transfer

Latent Space Interpolation

Latent Space Interpolation of the entire body (Conditioning poses are not shown)

Pose Transfer

Motion Transfer and Interpolation

By changing both the pose and the latent vector, we can perform *motion transfer with varying appearances.*

Lingjie Liu

3D GANs

J. Gu, *L. Liu,* P. Wang, C. Theobalt. StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis, ICLR 2022

3D GANs

Naïve implementation of putting NeRF into GANs

How to make rendering as efficient as possible (during training)

3D GANs

Naïve implementation of putting NeRF into GANs

Goal

- We propose to address the above issues simultaneously:
 - High-resolution
 - Efficient
 - Multi-view consistent

J. Gu, L. Liu, P. Wang, C. Theobalt.

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis, ICLR 2022

Method

Approximated Volume Rendering

$$I_{\boldsymbol{w}}^{\text{NeRF}}(\boldsymbol{r}) = \int_{0}^{\infty} p_{\boldsymbol{w}}(t) \boldsymbol{c}_{\boldsymbol{w}}(\boldsymbol{r}(t), \boldsymbol{d}) dt, \text{ where } p_{\boldsymbol{w}}(t) = \exp\left[\int_{0}^{\infty} p_{\boldsymbol{w}}(t) \cdot h_{c} \circ [\phi_{\boldsymbol{w}}^{n_{c}}(\boldsymbol{r}(t)), \zeta(\boldsymbol{d})] dt \approx h_{c} \circ [\phi_{\boldsymbol{w}}^{n_{c}, n_{\sigma}} \bigcup \boldsymbol{d}]\right] \xrightarrow{\text{Early}}_{\text{aggregation}} dt$$

$$\phi_{\boldsymbol{w}}^{n,n_{\sigma}}(\mathcal{A}(R_{H})) \approx \text{Upsample}\left(\phi_{\boldsymbol{w}}^{n,n_{\sigma}}(\mathcal{A}(R_{L}))\right)$$

Preserve 3D consistency

- Remove view direction input
 - We found that view direction will break the consistency and did not contribute to much quality (our dataset is single image)
- NeRF-path regularization

$$\mathcal{L}_{\text{NeRF-path}} = \frac{1}{|S|} \sum_{(i,j)\in S} \left(I_{\boldsymbol{w}}^{\text{Approx}}(R_{\text{in}})[i,j] - I_{\boldsymbol{w}}^{\text{NeRF}}(R_{\text{out}}[i,j]) \right)^2$$

Up-sampler design

 $Upsample(X) = Conv2d(Pixelshuffle(Repeat(X,4) + \psi_{\theta}(X), 2), K)$

StyleNeRF

- Up-sampler: we have tested many ways
 - Filter-based (bilinear interpolation, FIR filters, etc) + MLP (1x1 Conv) will cause "bubble shape" artifacts
 - Learning-based (transposed conv, pixelshuffle, LIIF) will easily cause texture sticking artifacts
 - We combine these two methods

Ablation: Different Upsampling Operators

LIIF: Having the "texture sticking" artifacts

Ablation: Different Upsampling Operators

Bilinear: Having the "bubble-shape" artifacts

Ablation: Different Upsampling Operators

Our proposed operator: Highly preserving 3D consistency while getting rid of bubble-shape artifacts

Ablation: Importance of Progressive Training

Results of no progressive training

Our Results

This is the first time that a generative model can synthesize high-resolution images from novel views while preserving high 3D consistency

Results

• V.s. Existing works

	FFHQ 256 ²		AFHQ 256^2		CompCars 256 ²		Rendering time (ms / image)				
Models	FID	KID	FID	KID	FID	KID	64	128	256	512	1024
2D GAN	4	1.1	9	2.3	3	1.6	-	-	46	51	53
HoloGAN	75	68.0	78	59.4	48	39.6	213	215	222	-	-
GRAF	71	57.2	121	83.8	101	86.7	61	246	990	3852	15475
π -GAN	85	90.0	47	29.3	295	328.9	58	198	766	3063	12310
GIRAFFE	35	23.7	31	13.9	32	23.8	8	-	9	-	-
Ours	8	3.7	14	3.5	8	4.3	-	-	65	74	98

High resolution

Models	FFHQ 512^2		AFHQ 512^2		MetFace 512^2		FFHQ 1024^2	
	FID	KID	FID	KID	FID	KID	FID	KID
2D GAN	3.1	0.7	8.6	1.7	18.9	2.7	2.7	0.5
Ours	7.8	2.2	13.2	3.6	20.4	3.3	8.1	2.4

Results

Consistency evaluation

Style Interpolation

Our synthesized results (512x512)

Applications: Style Mixing (Styles of Geometry)

Our synthesized results (512x512)

Results

Interactive Demo

https://huggingface.co/spaces/facebook/StyleNeRF

Explosion of 3D GANs

GRAF [Schwarz et al. 2020]

Output Image Implicit 3D Scene Shape and Representation Appearance Decoder 2D CNN Shape and Appearance eature Image Pose Camera Shape and Appearance Pose Sampled Posed Volume Rendering Neural Rendering Feature Fields Feature Fields of Feature Image of Output Image

GIRAFFE [Niemeyer et al. 2020]

EG3D [Chan et al. 2022]

CIPS-3D [Zhou et al. 2021]

VolumeGAN [Xu et al. 2022]

GRAM [Deng et al. 2022]

StyleSDF [Or-El et al. 2022]

GAN2X: Non-Lambertian Inverse Rendering of Image GANs

Inverse rendering

New view&light

X. Pan, A. Tewari, *L. Liu,* C. Theobalt. GAN2X: Non-Lambertian Inverse Rendering of Image GANs, 3DV 2022

Method

Exploration

X. Pan, A. Tewari, *L. Liu,* C. Theobalt. GAN2X: Non-Lambertian Inverse Rendering of Image GANs, 3DV 2022

Scene Representation

 ${f X}$: 3D coordinate ${f S}$: signed distance ${f A}/{f a}$: diffuse albedo K_s/k_s : specular intensity P/p: Shininess

Method: Exploration

Method: Exploitation

Qualitative Comparison on CelebA: Rotation

GAN2Shape

Unsup3d

Ours

Rendering

Shape

Albedo

Qualitative Comparison on CelebA: Relighting

Shape

Normal

Albedo

Quantitative Results

Single-view 3D reconstruction on the H3DS dataset.

Method	Unsup3d	GAN2Shape	pi-GAN	ShadeGAN	$Ours(w/o \ SBR)$	Ours
CD ↓	3.60	2.62	3.29	2.49	2.21	2.08

Quantitative Results

Quantitative comparison of albedo and surface normal on CelebA

	Unsup3d	GAN2Shape	Ours
SIE $(\times 10^{-2})\downarrow$	3.21	3.05	2.16
$MAD\downarrow$	18.66	21.75	12.67

SIE: scale-invariant error MAD: mean-angle deviation

What's Next?

3D-aware Generative Models Trained on More Diverse Datasets

Lingjie Liu
Multi-modal Learning

Large-scale multimodal learning models

Neural scene representations

Multi-modal Learning

- Text-to-3D generation
- Language learning via 3D generation

Thank you!