

Predicting High-Resolution Turbulence Details in Space and Time

KAI BAI¹, CHUNHAO WANG¹, MATHIEU DESBRUN², XIAOPEI LIU¹

1.SHANGHAITECH UNIVERSITY

2. INRIA / ÉCOLE POLYTECHNIQUE / CALTECH

• Predicting high-resolution turbulence details in space and time

RELATED WORK

Voticity confinement [Fedkiw et al. SIG '01]

Modified turbulence model [Pfaff et al. SIG '10]

Frequency guiding [Forootaninia et al. SIG Asia '20]

Stream guiding [Sato et al. SIG '21]

[Chu et al. SIG '17]

[Xie et al. SIG '18]

[Um et al. SCA '18]

[Bai et al. TOG '20]

RELATED WORK

Previous methods cannot handle high-res turbulence details well

Voticity confinementModified turbulence modelFrequency guidingStream guiding[Fedkiw et al. SIG '01][Pfaff et al. SIG '10][Forootaninia et al. SIG Asia '20][Sato et al. SIG '21]

[Bai et al. 2020] scales well, but has limited generalizability

We significantly improve on their generalizability

[Chu et al. SIG '17]

Xie et al. SIG '18

[Um et al. SCA '18]

[Bai et al. TOG '20

Recap of the approach by Bai et al. [2020]

Dictionary-based learning for flow synthesis [Bai et al. 2020]

Bai et al. [2020] construct a patch dictionary for upsampling

Neural network structure of Bai et al. [2020]

Multi-scale dictionary-based neural network

Different variants proposed in [Bai et al. 2020]

> Input using up to three consecutive velocity field at times [t, t-1, t-2]

> Even include vorticity patches in the input

> Two types of patch encoding (space-time/phase-space)

Observation & Motivation

Characteristics of turbulent flows

Complex global structure can be synthesized as a *combination of local structures*.

Characteristics of turbulent flows

A localized learning-based approach is key!

Complex global structure can be synthesized as a *combination of local structures*.

OBSERVATION

Note that the minimal error is reached for a specific filtering (red box).

OBSERVATION

Note that the minimal error is reached for a specific filtering (red box).

What we realized:

- 1. Aliasing artifacts in the input render the learning of detailed predictions *more difficult than it should*
- 2. Training patches without spurious structures makes the training much easier/faster and more generalizable
- 3. Incorporating a more customized filtering in the neural network is needed

New learning framework to flow upsampling

Simple low-pass filtering

Gaussian filter + downsampling

Adaptive filtering

Filter the coarse input, which is then taken as the new base flow

Adaptive filtering

Make the coarse input more "identifiable"

Result of adaptive filtering (purely spatial upsampling)

SIGGRAPH ASIA 2021 TOKYO

Input structure design

Result of input design (purely temporal upsampling)

Comparison of [Bai et al. '20] vs. our neural network

- Low-pass filtering
- Adaptive filtering
- Input structure design

our neural network structure

$$y_{L} = [\hat{u}_{L}^{t}, \hat{u}_{L}^{t-1}, \gamma]$$

(input vector $\gamma \in [0, 1]$)
$$y_{L} = [\hat{u}_{L}^{t}, \hat{u}_{L}^{t-1}, \gamma]$$

(input vector $\gamma \in [0, 1]$)

Our learning-based framework can handle *both* spatial and temporal upsampling of high-res turbulent flows.

SIGGRAPH

Training and applications

VELOCITY FIELD UPSAMPLING

Training for spatial upsampling

VELOCITY FIELD UPSAMPLING

Training for temporal upsampling

VELOCITY FIELD UPSAMPLING

SIGGRAPH

1 U E

FLUID DATA COMPRESSION

Patch-based compressor (in space only for now)

FLUID DATA COMPRESSION

Time-varying flow field compression

FLUID DATA COMPRESSION

Time-varying flow field compression

RESULTS: Unique Training Set

RESULTS: Spatial Super-Resolution

our synthesized high-resolution smoke (resolution: 720x240x240)

RESULTS: Spatial Upsampling

RESULTS: Temporal Upsampling

RESULTS: Space-Time Upsampling

RESULTS: Compression

Compared with wavelet compression, our approach could achieve a 10x improvement in compression ratio.

Discussions

Generalizability

- Additional filtering to reduce aliasing artifacts
- Training from a very limited training set is enough
- > Temporal upsampling is more challenging than spatial upsampling

Performance

Figs	input type	σ	k	input resolution	output resolution	Re	low-res preparation time	high-res simulation time	prediction time	speed-up
Fig. 1	low frame rate downsampled input	1.4	10	200×80×80	800×320×320	50,000	n/a	256.9 sec.	44.3 sec.	5.8
Fig. 6	downsampled input	1.4	n/a	150×80×80	600×320×320	20,000	n/a	170.4 sec.	33.9 sec.	5.0
Fig. 7	low frame rate input	0.0	10	320×480×320	320×480×320	20,000	n/a	140.6 sec.	28.5 sec.	4.9
Fig. 9 (left)	Gaussian filtered input	2.0	n/a	600×320×320	600×320×320	4,000	n/a	170.4 sec.	33.9 sec.	5.0
Fig. 9 (middle)	Gaussian filtered input	2.0	n/a	600×320×320	600×320×320	20,000	n/a	170.4 sec.	33.9 sec.	5.0
Fig. 9 (right)	Gaussian filtered input	2.0	n/a	600×320×320	600×320×320	100,000	n/a	170.4 sec.	33.9 sec.	5.0
Fig. 8	downsampled input	1.4	n/a	180×60×60	720×240×240	20,000	n/a	154.1 sec.	20.4 sec.	7.6
Fig. 10	low-res simulation input	4.0	n/a	250×100×100	1000×400×400	50,000	6.1 sec.	678.3 sec.	93.2 sec.	6.8
Fig. 11	low frame rate input	0.0	15	320×160×320	320×160×320	30,000	n/a	59.7 sec.	6.8 sec.	8.8
Fig. 13	low frame rate Gaussian filtered input	2.0	10	600×200×250	600×200×250	100,000	n/a	93.5 sec.	13.7 sec.	6.8

Our approach can achieve 5x-10x faster than the corresponding high-res simulation.

other fluid solvers

our synthesized high-resolution smoke (resolution: 400x400x400)

SIGGRAPH ASIA 2021

- IV E

Reflection-advection MacCormack solver

Applicability to

Comparison with tempoGAN [Xie et al. SIGGRAPH 2018]

- Temporal synthesis still exhibits only relatively limited generalizability when trained on limited examples
- We cannot ensure physical accuracy
- Not enough dictionary patches may lead to bad "extrapolation"

• A simple and effective learning-based approach

predicting turbulent flow details in space and time

An adaptive filtering strategy with new input design

> that is more generalizable for both space and time upscaling

A unified framework for spatio-temporal upsampling

offering a wide range of applications

SIGGRAPH ASIA 2021 TOKYO

CONFERENCE14 - 17 DECEMBER 2021EXHIBITION15 - 17 DECEMBER 2021TOKYO INTERNATIONAL FORUM, JAPAN

sa2021.siggraph.org

THANK YOU!

Presented by: Kai BAI

Sponsored by

Organized by

• koelnmesse we energize vour business | since 1924

