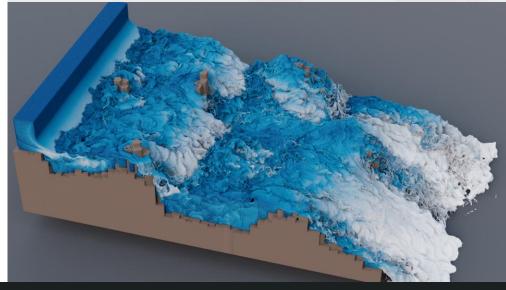


Han Shao, Libo Huang, Dominik L. Michels

CONTENT

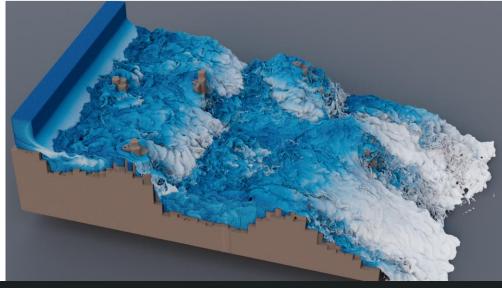
- Background and Motivation
 - Simulation of Incompressible Flow
 - Pressure Poisson Equation
 - Variational Viscosity Equation
- Our framework: UAAMG
 - Multigrid, AMG, Unsmoothed Aggregation
 - Matrix-free Coarsening and Matrix Vector Multiplication
- Experiments and Results
 - Unit Test
 - Complex Scene



- Simulation of Incompressible Flow
 - NS Equation
 - Viscous and non-viscous

$$\overrightarrow{\mathbf{u}}_{t} + \left(\overrightarrow{\mathbf{u}} \cdot \nabla\right) \overrightarrow{\mathbf{u}} = -\frac{\nabla p}{\rho} + \frac{\nabla \cdot \tau}{\rho} + \overrightarrow{\mathbf{g}}$$

$$\tau = \mu \left(\nabla \overrightarrow{\mathbf{u}} + \nabla \overrightarrow{\mathbf{u}}^{T}\right)$$


- Simulation of Incompressible Flow
 - Projection Method (Chorin, 1967)
 - Variational Viscosity (Batty, 2008)

• Advection:
$$\frac{\overrightarrow{\mathbf{u}}^* - \overrightarrow{\mathbf{u}}^n}{\Delta t} + (\overrightarrow{\mathbf{u}}^n \cdot \nabla) \overrightarrow{\mathbf{u}}^n = \overrightarrow{\mathbf{g}}^n$$

• Pressure:
$$-\nabla^2 p = \frac{\rho}{\Delta t} \nabla \cdot \overrightarrow{\mathbf{u}}^*, \quad \frac{\overrightarrow{\mathbf{u}}^{**} - \overrightarrow{\mathbf{u}}^*}{\Delta t} = -\frac{\nabla p}{\rho}$$

• Viscosity:
$$\frac{\overrightarrow{\mathbf{u}}^{***} - \overrightarrow{\mathbf{u}}^{**}}{\Delta t} = \frac{\nabla \cdot \tau}{\rho}$$

- Pressure Poisson Equation
 - Discretization

$$-\nabla^2 p = \frac{\rho}{\Delta t} \nabla \cdot \overrightarrow{\mathbf{u}}^*$$

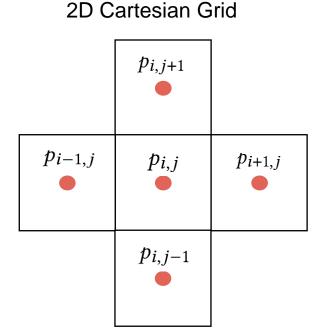
$$C_1 p_{i-1,j} + C_2 p_{i+1,j} + C_3 p_{i,j-1} + C_4 p_{i,j+1} + C_5 p_{i,j} = C_0$$

Parallelly Calculating the Matrix-Vector Multiplication in a Matrix-Free Fashion!

$p_{i,j+1}$ $p_{i-1,j}$ $p_{i,j}$ $p_{i+1,j}$

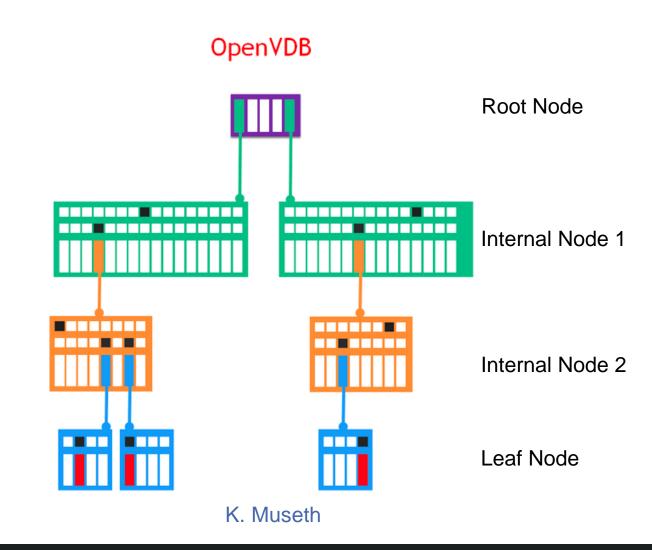
 $p_{i,j-1}$

2D Cartesian Grid


- Pressure Poisson Equation
 - SIMD Single Instruction/Multiple Data

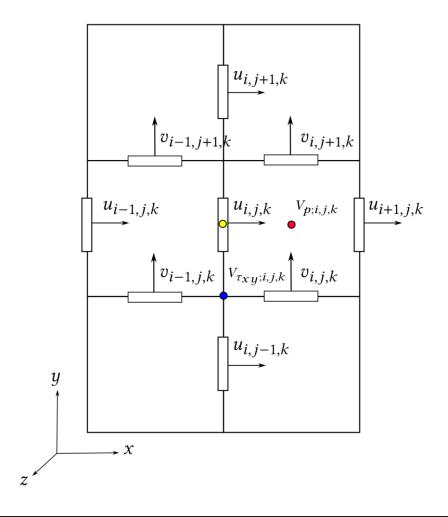
$$C_1 p_{i-1,j} + C_2 p_{i+1,j} + C_3 p_{i,j-1} + C_4 p_{i,j+1} + C_5 p_{i,j} = C_0$$

A floating point number 32 bits


Intel AVX register 256 bits

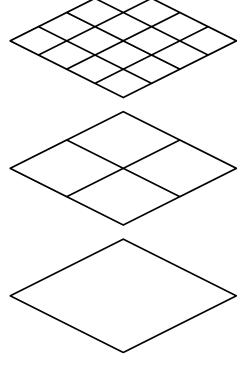
Parallel computation of the above operation from j=k to j=k+8

- Pressure Poisson Equation
 - OpenVDB
 - Variant of B+Tree
 - A leaf Node contains 8X8X8 voxels
 - Improve cache locality



- Pressure Poisson Equation
 - Linear Solver
 - Gauss-Seidel, Damped/Scheduled Jacobian, SOR
 - DPCG/ICPCG
 - Geometric multigrid method
 - Adaptive octree approach
 - UAMMG
 - How to be compatible with SIMD implementation?

- Variational Viscosity Equation
 - Discretization
 - Poisson Equation + Cross Term
 - Three channels of velocity
 - Linear Solver
 - Inefficient smoother for multigrid



- Multigrid and AMG
 - High-frequency error can be quickly smoothed
 - Transform 'low-frequency' error into "high-frequency"
 - Solve on fine grid
 - Compute residual of the equation
 - Restriction, down-sample residual to coarse grid
 - Solve on coarse grid
 - Prolongation, interpolate correction to fine grid
 - Update the fine grid solution

Level 0

Multigrid and AMG

Fine level, equation:
$$A_h u_*^h = f^h$$
 , error: $e_{\mathrm{old}}^h = u_*^h - u_{\mathrm{old}}^h$

Residual:
$$A_h e_{\text{old}}^h = r_{\text{old}}^h = f^h - A_h u_{\text{old}}^h$$

Restriction to coarse level:
$$r^H = Rr_{old}^h$$

Coarse level, equation:
$$A_H e^H = r^H$$

Prolongation and correction:
$$u_{\text{new}}^h = u_{\text{old}}^h + \alpha P e^H$$

- Coarsening: get matrix A_H
- Geometric Multigrid:
 - Coarse grid matrix depends on the discretization
- Algebraic Multigrid:
 - Coarse grid matrix is calculated following Galerkin Principle

$$A_H := RA_h P$$

- Multigrid and AMG
 - Algorithm Overview
 - Key Components:
 - Smoother
 - Matrix on each level A
 - Prolongation P, Restriction R
 - Matrix Vector Multiplication

```
Input: initial guess u_l, current level l, right hand side f_l
Output: updated u_l
if l = nLevels - 1 then
    solve A_I u_I = f_I directly;
    return u_I;
end
apply \nu times relaxations to A_I u_I = f_I; /* pre-smooth */
r_l = f_l - A_l u_l; /* calculate this level residual */
                                              /* restriction */
r_{l+1} = R_l r_l ;
e_{l+1} \leftarrow 0;
apply \mu times e_{l+1} \leftarrow \mu-Cycle(e_{l+1}, l+1, r_{l+1});
if Poisson and Preconditioner then
    u_l \leftarrow u_l + 2P_l e_{l+1};
                                            /* prolongation */
else
    u_l \leftarrow u_l + P_l e_{l+1} \; ;
                                            /* prolongation */
end
```

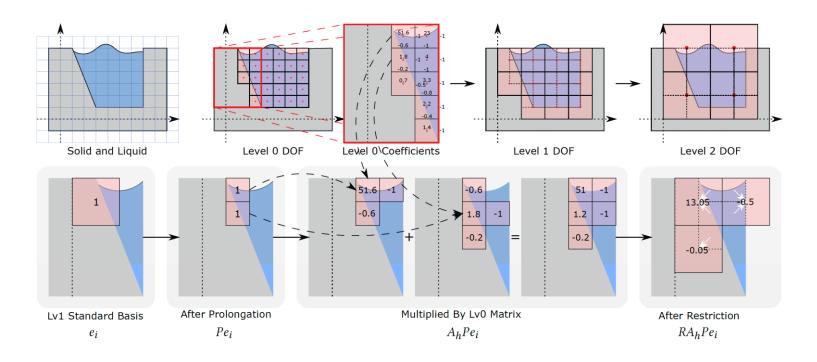
apply ν times relaxations to $A_l u_l = f_l$; /* post-smooth */

Algorithm 1: Recursive μ -cycle.

© 2022 SIGGRAPH. ALL RIGHTS RESERVED.

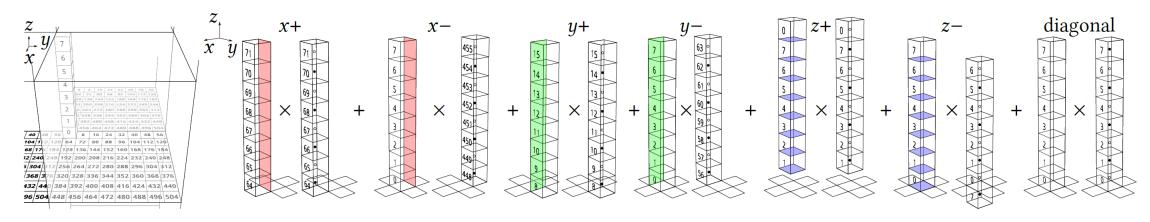
return u_l ;

- Unsmoothed Aggregation
 - Aggregation: Each fine mesh element maps to only one coarse mesh element
 - Unsmooth: Piece-wise constant restriction/prolongation
 - Geometric information: 1 coarse voxel contains 8 fine voxels


$$R_{ij} = \begin{cases} 1/8, & \text{if coarse voxel } i \text{ covers fine voxel } j, \\ 0, & \text{otherwise.} \end{cases}$$

$$P = 8R^T$$

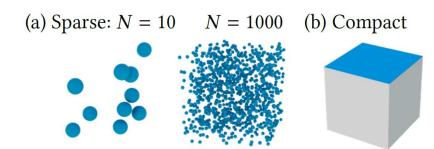
Galerkin Principle: $A_H := RA_hP$

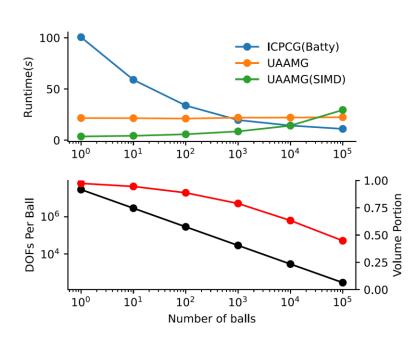


- Matrix-free Coarsening
 - Explicit matrix multiplication for $A_H := RA_hP$ is avoided
 - Using geometric information
 - Diagonal:
 - Off-diagonal:

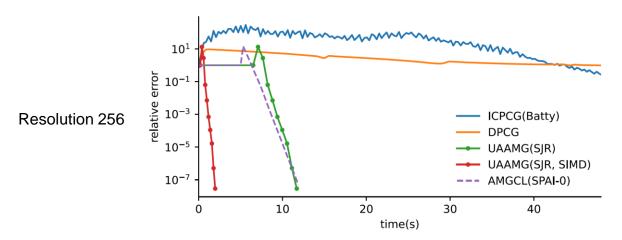
Matrix-free Matrix Vector Multiplication

- Matrix-free matrix vector multiplication is done by:
 - Multiplying coefficient SIMD vector and DOF SIMD vector
 - Summing up

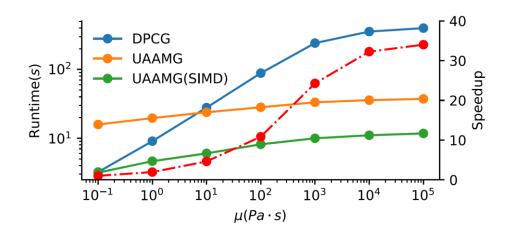

Red: x direction


Green: y direction

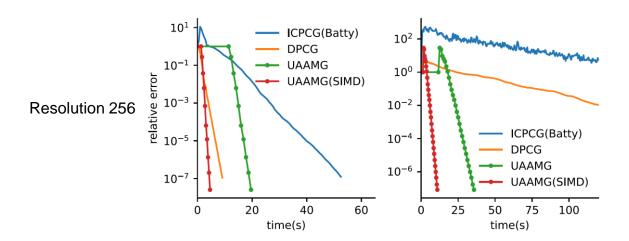
Blue: z direction


- Unit Test Pressure Poisson Equation
 - Compact Scene
 - Compared to best baseline ICPCG
 - 20X, 59X, 147X for different resolutions
 - #DOFs, 2M, 17M, 135M
 - Sparse Scene
 - SIMD perform well unless in extreme sparse scene

- Unit Test Pressure Poisson Equation
 - SMID vs Naïve Approach
 - Matrix-free Coarsening
 - Default Tree Trimming
 - Compared to AMGCL



Resolution		128	256	512	1, 024
# DOFs		2, 146, 685	16, 974, 589	135, 005, 693	1, 076, 890, 621
DPCG		1,323 iters 18.6s	4,544 iters 584.7s	9,322 iters 8,756.4s	-
ICPCG (Eigen)		782 iters 108.9s	2,538 iters 6,407.1s	-	-
ICPCG (Batty)		195 iters 7.5s	395 iters 116.8s	903 iters 1,943.7s	-
UAAMG	DJ	11 iters 691ms (746ms)	11 iters 6.3s (6.4s)	11 iters 50.3s (53.2s)	-
	SRJ	9 iters 569ms (747ms)	9 iters 5.2s (6.5s)	9 iters (41.5s)(53.7s)	-
	RBGS	7 iters 595ms (766ms)	7 iters 5.8s (6.5s)	8 iters 53.1s (54.6s)	-
	SPAI-0	12 iters 754ms (732ms)	12 iters 7.0s (7.0s)	13 iters 60.3s (54.7s)	-
UAAMG (SIMD)	DJ	11 iters 371ms (61ms)	11 iters 2,161ms (174ms)	11 iters 14.9s (935ms)	11 iters 111.6s (6.6s)
	SRJ	9 iters 308ms (60ms)	9 iters 1,789ms (180ms)	9 iters (12.3s)(956ms)	10 iters 102.9s (6.8s)
	SRJ, NT	9 iters 376ms (60ms)	9 iters 2,534ms (198ms)	9 iters (18.7s)(1,178ms)	10 iters 162.5s (8.9s)
	RBGS	7 iters 332ms (62ms)	7 iters 1,896ms (173ms)	8 iters 14.6s (915ms)	8 iters 108.7s (6.7s)
	SPAI-0	12 iters 424ms (58ms)	12 iters 2,457ms (181ms)	13 iters 18.2s (918ms)	13 iters 137.4s (6.7s)
AMGCL	DJ	18 iters 634ms (702ms)	24 iters 7.1s (4.8s)	26 iters 71.3s (40.6s)	-
	SPAI-0	17 iters 600ms (703ms)	23 iters 6.9s (5.0s)	25 iters (64.0s)(38.8s)	-


- Unit Test Variational Viscosity Equation
 - Different Resolutions
 - Compared to best baseline DPCG for low/high viscosity coefficient
 - 0.62X, 1.98X, 3.09X, 3.99X for low viscosity
 - 8.92X, 32.35X, 51.22X, 63.74X for high viscosity
 - #DOFs, 2M, 15M, 49M
 - Speedup vs. Viscosity Coefficient
 - UAAMG performs well for stiff cases

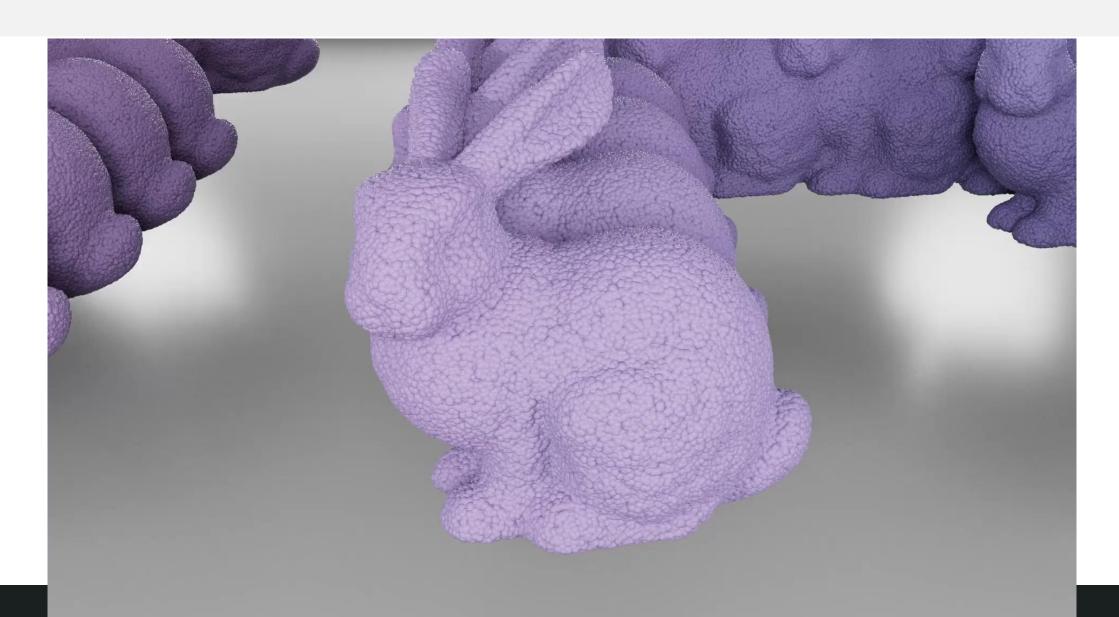
- Unit Test Variational Viscosity Equation
 - SMID vs Naïve Approach
 - Matrix-free Coarsening
 - Default Tree Trimming
 - High/Low viscosity

Resol	ution	128	256	384	512
# D0	OFs	1, 892, 865	14, 627, 457	48, 805, 069	115, 018, 077
	DPCG	33 iters	65 iters	98 iters	133 iters
μ(1 Pa·s)	Dred	540ms	9.1s	43.9s	133.5s
	ICPCG	19 iters	108 iters	138 iters	164 iters
	(Batty)	1,981ms	52.5s	216.4s	572.5s
	UAAMG	6 iters	9 iters	10 iters	11 iters
	OAAMG	640ms (1,513ms)	8.2s (11.4s)	32.1s (40.4s)	82.6s (100.8s)
	UAAMG	6 iters	9 iters	10 iters	11 iters
	(SIMD)	417ms (454ms)	3.3s (1.3s)	10.8s (3.4s)	26.1s (7.4s)
	UAAMG	6 iters	9 iters	10 iters	11 iters
	(SIMD, NT)	510ms (448ms)	4.8s (1.2s)	16.6s (3.0s)	42.1s (6.6s)
	DPCG	1,155 iters	2,705 iters	4,706 iters	5,375 iters
	DrcG	18.3s	355.8s	1,798.2s	5,252.2s
	ICPCG	484 iters	1,186 iters	2,154 iters	
	(Batty)	26.7s	495.2s	2,951.3s	_
$\mu(10^4 \mathrm{Pa \cdot s})$	UAAMG	23 iters	27 iters	30 iters	32 iters
$\mu(10^{\circ} \text{ Fa·s})$	UAAMG	2.3s (1.8s)	24.1s (11.7s)	94.8s (50.6s)	242.1s (98.9s)
	UAAMG	23 iters	27 iters	30 iters	32 iters
	(SIMD)	1.6s (451ms)	9.7s (1.3s)	31.8s (3.3s)	74.9s (7.5s)
	UAAMG	23 iters	27 iters	30 iters	32 iters
	(SIMD, NT)	1.9s (439ms)	13.7s (1.2s)	47.7s (3.0s)	118.5s (6.7)

Complex Scene - non-viscous flow

2.94X 5.32X 3.55X

Compared to Houdini, adaptive octree approach, per-step statistics



Complex Scene - viscous flow

Compared to Houdini, adaptive octree approach for both pressure Poisson and variational viscosity equation, per-step statistics

SUMMARY

Contributions

- A matrix-free matrix vector multiplication implementation using SIMD and OpenVDB
- A Galerkin coarsening strategy which preserves stencils
- A parallel implementation of the coarsening strategy
- A multi-color Gauss-Seidel smoother which is efficient for variational viscosity equation

SUMMARY

- Our Website
 - http://computationalsciences.org/publications/shao-2022-multigrid.html

Thank you for listening!