

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates

Jing Li^{1,2} Tiantian Liu^{3,4} Ladislav Kavan¹ Baoquan Chen⁵

Interactive Applications

Background

$\mathbf{x} \to \mathbf{p}$

global step:

$$\mathbf{C} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$$

Projective Dynamics

local step:

Sparse Cholesky Modification

Timothy A Davis and William W Hager. 2001. Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 4 (2001), 997–1013.

$$\mathbf{A}\mathbf{A}^\intercal + \mathbf{W}\mathbf{W}^\intercal = [\mathbf{A}|\mathbf{W}][\mathbf{A}|\mathbf{W}]^\intercal$$

symbolic update

$$\mathcal{L}_{j} = \{j\} \cup \left(\bigcup_{\{c:j=\pi(c)\}} \mathcal{L}_{c} \setminus \{c\}\right) \cup \left(\bigcup_{\min \mathcal{A}_{k}=j} \mathcal{A}_{k}\right)$$
$$\overline{\mathcal{L}}_{j} = \{j\} \cup \left(\bigcup_{\{c:j=\pi(c)\}} \mathcal{L}_{c} \setminus \{c\}\right) \cup \left(\bigcup_{\min \mathcal{A}_{k}=j} \mathcal{A}_{k}\right) \cup \left(\bigcup_{\min \mathcal{W}_{i}=j} \mathcal{W}_{i}\right)$$

Sparse Cholesky Modification

Related Work

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky updates for interactive mesh parameterization. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–14.

Yeung, Yu-Hong, Alex Pothen, Mahantesh Halappanavar, and Zhenyu Huang. "AMPS: An augmented matrix formulation for principal submatrix updates with application to power grids." SIAM Journal on Scientific Computing 39, no. 5 (2017): S809-S827.

elasticity
$$\sigma W_e W_e^{T}$$
 $W_e = \sqrt{w_e} G_e^{T}$

mass
$$\sigma \mathbf{W}_v \mathbf{W}_v^\intercal$$
 $\mathbf{W}_v = \sqrt{\frac{m_v}{h^2}} \delta_v$

Organized by koelnmesse

0,

8

10

12

SIGGRAPH ASIA 2021

- IV E

.

Table 1. Results on our example models. †: the bending springs are not considered in the cloth cut example.

Example	model	#Verts	#Elems	local/global solve	factorization update					total time	
					refa	ctorizat	ion ou	ır meth	od	PD + refactorization	PD + our method
cloth cut	cloth [†]	14,829	29,172	47ms		36ms		2ms		83ms	49ms
spinning cloth	cloth	14,829	29,172	52ms		77ms		15ms		129ms	67ms
swing	cloth	24,168	47,880	125ms		602ms		4ms		727ms	129ms
stomach	volumetric	36,055	13,7796	617ms		786ms		15ms		1403ms	632ms

Table 2. Scalability test on the cloth cut example of different resolutions.

Example	#Vorts	#Elems			recomputation				
	#Verts		1	4	8	16	32	64	recomputation
cloth cut	3,785	7,326	1ms	1ms	2ms	5ms	9ms	20ms	22ms
cloth cut	14,829	29,172	2ms	5ms	8ms	19ms	26ms	37ms	36ms
cloth cut	58.697	116.424	5ms	13ms	17ms	32ms	56ms	251ms	416ms

Comparisons

Comparisons

- Our method can efficiently update the Cholesky factor even when topological changes are produced with arbitrarily added DOFs.
- Our method requires that the update be low-rank, thus suitable for interactive applications where the update per frame is usually low-rank.
- Our method scales badly with rank of the update, i.e. the number of columns of W.

SIGGRAPH ASIA 2021 TOKYO

CONFERENCE14 - 17 DECEMBER 2021EXHIBITION15 - 17 DECEMBER 2021TOKYO INTERNATIONAL FORUM, JAPAN

sa2021.siggraph.org

Jing Li, Tiantian Liu, Ladislav Kavan, Baoquan Chen

Sponsored by

Organized by

• koelnmesse we energize vour business | since 1924

