

ExtraNet: Real-time Extrapolated Rendering for Low-latency Temporal Supersampling

Jie Guo¹ Xihao Fu¹ Liqiang Lin¹ Hengjun Ma¹ Yanwen Guo¹ Shiqiu Liu² Ling-Qi Yan³

¹Nanjing University, ²NVIDIA Corporation ³University of California, Santa Barbara

Background

- Modern real-time rendering applications require more and more realistic graphics.
- Real-time ray tracing technology

Maintaining high resolution at 60fps stably with complicated shading is <u>difficult</u>.

Lowering computation cost to <u>increase frame rate</u>

Spatial Supersampling

Rendering at low resolution, and upscaling to high resolution

NVIDIA	AMD
Deep Learning Super Sampling(DLSS)	Fidelity Super Resolution(FSR)
Applying <u>neural network</u> on resolution upsampling	Non-DL <u>Upscaling</u> + <u>Sharpening</u>

Temporal Denoising/Anti-Aliasing

Shading at low samples and upsampling with temporal filtering

• Shading is still necessary, at least 1spp.

Generating new frames with existing rendered results

Image Warping

Uni- or Bi-directional Warping [Schollmeyer et al. 2017, Yang et al. 2011, Mark et al. 1997]

• Without considering dynamic shading change

Extrapolation

xtrap $f_{i-0.5}$ Extrap f_{i+1} Rendering f_{i+1}		dering f_{i+1}	Extrap . <i>f</i> _{i+1.5}			
Displaying <i>f</i> _{i-1}	Displaying $f_{i-0.5}$	Di	splaying <i>f_i</i>	Displaying $f_{i+0.5}$	Dis	playing f_{i+1}

1

1

н

Interpolation

Rendering	f_i	Interp. $f_{i-0.5}$	Rendering f_{i+1}		Interp. $f_{i+0.5}$	Renderit
Displaying $f_{i-1.5}$	Displaying <i>f</i>	-1	Displaying $f_{i-0.5}$	Displaying	fi	Displaying $f_{i+0.5}$

ASW(2.0) [Oculus 2016]

• (MAYBE) using optical flow of previous frames to extrapolate a new frame

• Distortion when optical flow fail to capture accurate motion

Our Work

Contribution

- A real-time rendering and <u>extrapolation</u> architecture for <u>increasing frame rate</u>
- A neural network that utilizes <u>G-buffers and previous</u> <u>rendered results</u> as input to perform extrapolation
- Low performance overhead with high quality output

Versus related work:

- No shading at extrapolated frames (Minimizing computation)
- Smooth extrapolated sequences (High quality)
- No necessity for future frames (No extra latency)
- Using motion vector rather than optical flow (**No distortion**)

Challenges

How we do extrapolation:

- Disocclusion
- Dynamic Shading Change
- Fast enough for real-time rendering

G-buffers

9 buffers in total

WorldoNorton, SDeptil, Kerklonessenvertalition Werld Northadrk input used for warping and hole marking

Demodulation & Modulation

- Separate albedo and illumination
- For better disocclusion inpainting

Albedo

Demodulated Result

Network Output

Albedo

Modulated Result

Warping

Using **motion vector** to gather samples from previous frames

• Ghosting at wrong temporal correlation

Occlusion MV

Occlusion Motion Vector [Zeng et al. 2021]

Hole Marking

- Why: Marking out the disocclusion
- How: Based on G-buffers information
 - Stencil of moving objects (dynamic objects)
 - World Normal (self occlusion of dynamic objects)
 - World Position (static objects)

Example Mask

Scenes & Data

Four scenes from Unreal Engine 4:

Training and testing setup:

	Model 1	Model 2	Model 3	Model 4
Training Scene(s)	MD	RF	ВК	MD+RF+BK
Testing Scene	MD	RF	ВК	WT

ExtraNet

History Encoder

Frames and Masks (Frame i, i-1 and i-2)

ExtraNet

Training Loss

$$\mathcal{L} = \mathcal{L}_{l_1} + \lambda_{\text{hole}} \mathcal{L}_{\text{hole}} + \lambda_{\text{shade}} \mathcal{L}_{\text{shade}}$$

Results

-

Extrapolated Results

Versus Image Warping Extrapolation

HIW[Schollmeyer et al. 2017]

Versus Image Warping Interpolation

BSR[Yang et al. 2011]

Versus Image Warping Interpolation

3DWarp[Mark et al. 1997]

Versus Video Interpolation

Missing geometry structure

DAIN[Bao et al. 2019]

Ours

Versus ASW

ASW fails to compute accurate optical flow under complicated conditions.

GT

Limitations & Discussions

Out of Screen Disocclusion

When camera rotates at fast speed:

Ground Truth

Ours

Blurry Shadow

The output shading of ExtraNet tends to be blurry.

Ground Truth

Ours

• By applying **temporal** anti-aliasing, it is hard to notice the blurriness in a real game play.

Temporal Discontinuity

Sudden change of light:

Ground Truth

Ours

Boosting Performance

- CUDA implementation of network inference
 - Currently TensorRT is used;
 - Handy-crafted CUDA kernels by utilizing tensor cores may be faster.
- Combining spatial and temporal supersampling
 - Embedding our pipeline into resolution supersampling framework;
 - Lowering G-buffers and inference cost.

Conclusion

Conclusion

- Necessity for increasing frame rate
- An extrapolation pipeline, low latency
- Disocclusion & Dynamic shading change
- Fast algorithm with high quality results

Source Codes:

https://github.com/fuxihao66/ExtraNet

Search or jump to	Pull requests Issues Marketplace	Explore	Q +• @•
📮 fuxihao66 / ExtraNet Public		☆ Pin ③ Unwatch 1	♥ Fork 6 ♥ ☆ Star 15 ♥
<> Code O Issues 1 \$\$ Pull requ	ests 🕑 Actions 🖽 Projects 🖽 Wiki	😲 Security 🗠 Insights 🔞 Settings	
🐉 main 👻 1 branch 💿 0 tags		Go to file Add file - Code -	About 🕸
fuxihao66 Add files via upload		af1065e yesterday 🕚 28 commits	ExtraNet: Real-time Extrapolated Rendering for Low-latency Temporal
DataPreprocessing	data preprocess	12 days ago	Supersampling
EngineModificationGuide	Update README.md	2 days ago	☐ Readme ☆ 15 stars
Metric	Add files via upload	last month	I watching
🛅 Model	data preprocess	16 days ago	ళి 6 forks
🛅 TestData	Delete 新建文本文档.txt	22 days ago	
🗅 ExtraNet.pptx	Add files via upload	yesterday	Releases
T README.md	Update README.md	4 days ago	No releases published Create a new release
requirements.txt	update usage	16 days ago	
🗅 ue.png	final	6 months ago	Packages

SIGGRAPH ASIA 2021 TOKYO

CONFERENCE14 - 17 DECEMBER 2021EXHIBITION15 - 17 DECEMBER 2021TOKYO INTERNATIONAL FORUM, JAPAN

sa2021.siggraph.org

Sponsored by

•• koelnmesse we energize your business | since 1924

Organized by