
ExtraNet: Real-time Extrapolated

Rendering for Low-latency

Temporal Supersampling

Jie Guo1 Xihao Fu1 Liqiang Lin1

Hengjun Ma1 Yanwen Guo1

Shiqiu Liu2 Ling-Qi Yan3

1Nanjing University, 2NVIDIA Corporation
3University of California, Santa Barbara

Background

• Modern real-time rendering applications
require more and more realistic graphics.

• Real-time ray tracing technology

Lowering computation cost to
increase frame rate

Maintaining high resolution at 60fps stably
with complicated shading is difficult.

Spatial Supersampling

NVIDIA AMD

Deep Learning Super
Sampling(DLSS)

Fidelity Super
Resolution(FSR)

Applying neural network on
resolution upsampling

Non-DL
Upscaling +Sharpening

Rendering at low resolution, and upscaling to high resolution

Temporal Denoising/Anti-Aliasing

• Shading is still necessary, at least 1spp.

Noise Image
Rendered at

Low Spp

Temporal Filter
With History

Denoised
Image

History
Information

Shading at low samples and upsampling with temporal filtering

Interpolation Extrapolation

Temporal Supersampling

Generating new frames with existing rendered results

Generated
Frames

Temporal Supersampling

• Without considering dynamic shading change

Image Warping

Uni- or Bi-directional Warping
[Schollmeyer et al. 2017, Yang et al. 2011, Mark et al. 1997]

Warping Blending

or Filling

Video Interpolation
• Especially deep-learning based methods

[Bao et al. 2019; Huang et al. 2020; Jiang et al. 2018; Niklaus and Liu 2020]

• Latency is inevitable for real-time rendering applications

𝑓𝑖&𝑓𝑖+1
Forward &
Backward Flow

𝑓𝑖+0.5

Temporal Supersampling

ASW(2.0) [Oculus 2016]

• (MAYBE) using optical flow of previous frames
to extrapolate a new frame

• Distortion when optical flow fail to capture accurate motion

𝑓𝑖−1&𝑓𝑖 𝑂𝐹𝑖 𝑓𝑖+0.5

Temporal Supersampling

Our Work

• A real-time rendering and extrapolation architecture for
increasing frame rate

• A neural network that utilizes G-buffers and previous
rendered results as input to perform extrapolation

• Low performance overhead with high quality output

• No shading at extrapolated frames (Minimizing computation)
• Smooth extrapolated sequences (High quality)
• No necessity for future frames (No extra latency)
• Using motion vector rather than optical flow (No distortion)

Versus related work:

Contribution

• Disocclusion
• Dynamic Shading Change
• Fast enough for real-time rendering

Challenges

How we do extrapolation:

𝑓𝑖 𝑓𝑖+0.5

Proposed Pipeline
G-Buffers
𝑔𝑖+0.5

𝑓𝑖

𝑓𝑖−1

𝑓𝑖−2

Previous frames

Demodulation
Warping &

Hole Marking

Modulation

Network
Inference

Post
Processing

Extrapolated Frame

Albedo:
used for demodulation

G-buffers

Motion Vector, Stencil,
World Position , NoV,
World Normal:
used for warping and
hole marking

World Normal , Depth,
Roughness, Metallic:
used as network input

9 buffers in total

• Separate albedo and illumination
• For better disocclusion inpainting

/ =

Demodulation & Modulation

Rendered Result Albedo Demodulated Result

× =

Network Output Albedo Modulated Result

Using motion vector to gather samples from previous frames
• Ghosting at wrong temporal correlation

Warping

Occlusion Motion Vector [Zeng et al. 2021]

Traditional MV Occlusion MV

GT Traditional MV Occlusion MV

• Why: Marking out the disocclusion
• How: Based on G-buffers information

• Stencil of moving objects (dynamic objects)
• World Normal (self occlusion of dynamic objects)
• World Position (static objects)

Example Mask

Hole Marking

BKMD RF WT

Model 1 Model 2 Model 3 Model 4

Training
Scene(s)

MD RF BK MD+RF+BK

Testing
Scene

MD RF BK WT

Scenes & Data

Four scenes from Unreal Engine 4:

Training and testing setup:

Output

G-buffers, Mask
Warped Frame i

Light Weight Gated Convolution
[Yi et al. 2020]

Inpainting Network

ExtraNet

Convolution

Encoded
History

History
Encoder

History
Encoder

Warped Historical
Frames and Masks

(Frame i, i-1 and i-2)

History Encoder

ExtraNet

History
Encoder

History Encoder
Architecture

Training Loss

ExtraNet

𝓛 = 𝓛𝒍𝟏 + 𝝀𝐡𝐨𝐥𝐞𝓛𝐡𝐨𝐥𝐞 + 𝝀𝐬𝐡𝐚𝐝𝐞𝓛𝐬𝐡𝐚𝐝𝐞

𝐿1distance between
reference and output
𝐿1distance of the masked
region
𝐿1distance of the top-k
largest errors region

Pixel-Wise
𝐿1 errors

Top-K
Values

Average

Results

Extrapolated Results

Versus Image Warping Extrapolation

HIW[Schollmeyer et al. 2017]

Versus Image Warping Interpolation

BSR[Yang et al. 2011]

Versus Image Warping Interpolation

3DWarp[Mark et al. 1997]

Versus Video Interpolation

Ours DAIN[Bao et al. 2019]

Missing geometry structure

ASW GT Ours

Versus ASW

ASW fails to compute accurate optical flow
under complicated conditions.

G-Buffers
𝑔𝑖+0.5

𝑓𝑖

𝑓𝑖−1

𝑓𝑖−2

Previous frames

Demodulation
Warping &

Hole Marking

Modulation

Network
Inference

Post
Processing

Extrapolated Frame

Runtime Performance

Warping &
Hole Marking

1.35ms

Network
Inference

5.39ms

G-Buffers
Rendering

1.32ms
Total 8.06ms
(at 720p)

G-Buffers rendering cost is averaged
on all of our test scenes

Limitations &

Discussions

When camera rotates at fast speed:

Out of Screen Disocclusion

Ground Truth Ours

Blurry Shadow

Ground Truth Ours

The output shading of ExtraNet tends to be blurry.

• By applying temporal anti-aliasing, it is hard to notice the
blurriness in a real game play.

Temporal Discontinuity

Ground Truth Ours

Sudden change of light:

• CUDA implementation of network inference
• Currently TensorRT is used;
• Handy-crafted CUDA kernels by utilizing tensor

cores may be faster.

• Combining spatial and temporal supersampling
• Embedding our pipeline into resolution super-

sampling framework;
• Lowering G-buffers and inference cost.

Boosting Performance

G-buffers

Previous
Results Extrapolated

Results

Upsampled
Extrapolated

Results

Temporal
Upsample

Spatial
Upsample

Conclusion

• Necessity for increasing frame rate

• An extrapolation pipeline, low latency

• Disocclusion & Dynamic shading change

• Fast algorithm with high quality results

Conclusion

Source Codes:

https://github.com/fuxihao66/ExtraNet

