

Differentiable Time-Gated Rendering

Lifan Wu^{1*}, Guangyan Cai^{2*},

Ravi Ramamoorthi³, and Shuang Zhao²

¹NVIDIA ²University of California, Irvine ³University of California, San Diego (* equal contribution)

Time-of-Flight Light Transport

• ToF Imaging

Seeing through fog [Satat et al. 2018] Looking around corners [Velten et al. 2012]

Time-resolved measurements are useful Time-Gated Forward rendering

Ellipsoidal connections [Pediredla et al. 2019]

Transient rendering [Jarabo et al. 2014]

Consider lengths of light paths when sampling

Time-Gated Inverse Rendering

• Non-line-of-sight (NLOS) shape optimization based on gradients

[Tsai et al. 2019] [Iseringhausen and Hullin 2020] Light transport limited to **3 bounces** (only one bounce on the unseen object)

Challenging to reconstruct concave shapes

Physics-Based Differentiable Rendering

[Li et al. 2018]

A scene with complex geometry and visibility (1.8M triangles)

[Loubet et al. 2019]

Complex light transport

Differentiating **arbitrary** scene parameters

[Zhang et al. 2020]

[Bangaru et al. 2020]

Our Contributions

Forward rendering

Differentiation

ToF camera

Time-gated rendering

Steady-state differentiable rendering

time-gated rendering

Preview of Results

Time-Gated Derivatives

sa2021.siggraph.org

2

Optimized

Differentiable Time-Gated Theory

Path Integral

$$I = \int_{\boldsymbol{\Omega}} f(\bar{\boldsymbol{x}}) \,\mathrm{d}\mu(\bar{\boldsymbol{x}})$$

- Introduced by Veach [1997]
- Ω : Path space
- $f(ar{m{x}})$: Measurement contribution function
- $\mathrm{d}\mu(ar{m{x}})$: Area-product measure

Time-Gated Path Integral

Material-Form Reparameterization

Time-gated path integral

$$I = \int_{\mathbf{\Omega}(\boldsymbol{\theta})} W_{\tau}(\|\bar{\boldsymbol{x}}\|) f(\bar{\boldsymbol{x}}) \,\mathrm{d}\mu(\bar{\boldsymbol{x}})$$

Material-form reparameterization [Zhang et al. 2020]

Dependent of θ

Difficult to differentiate

Material-form time-gated path integral

$$I = \int_{\widehat{\mathbf{\Omega}}} W_{\tau}(\|\bar{\mathbf{x}}\|) \frac{f(\bar{\mathbf{x}})}{d\mu(\bar{\mathbf{p}})} \left\| \frac{\mathrm{d}\mu(\bar{\mathbf{x}})}{\mathrm{d}\mu(\bar{\mathbf{p}})} \right\| \mathrm{d}\mu(\bar{\mathbf{p}})$$
$$=: \hat{f}(\bar{\mathbf{p}})$$

Independent of heta

Easier to differentiate

Differential Time-Gated Path Integral

(Material-form) time-gated path integral $I = \int_{\hat{\Omega}} W_{\tau}(\|\bar{x}\|) \hat{f}(\bar{p}) d\mu(\bar{p})$ Differentiate

Differential time-gated path integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\hat{\boldsymbol{\Omega}}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, \hat{f}(\bar{\boldsymbol{p}}) \right] \mathrm{d}\mu(\bar{\boldsymbol{p}}) + \int_{\partial \hat{\boldsymbol{\Omega}}} W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, g(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}(\bar{\boldsymbol{p}}) + \sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\boldsymbol{\Omega}}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) \, h(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}_{\tau}(\bar{\boldsymbol{p}})$$

Interior component

• Differentiated integrand with $W_{ au}(\|ar{m{x}}\|)$

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\hat{\mathbf{\Omega}}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, \hat{f}(\bar{\boldsymbol{p}}) \right] \mathrm{d}\mu(\bar{\boldsymbol{p}}) + \\ \int_{\partial \hat{\mathbf{\Omega}}} W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, g(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}(\bar{\boldsymbol{p}}) + \\ \sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\mathbf{\Omega}}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) \, h(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}_{\tau}(\bar{\boldsymbol{p}})$$

- Generalization of the steady-state version (PSDR by Zhang et al. 2020)
- Paths with exactly one **boundary segment**

Visibility boundary component

 x_1 is on the visibility boundary w.r.t. x_2

Path-Length Boundary Integral

$$\begin{split} \frac{\mathrm{d}I}{\mathrm{d}\theta} &= \int_{\hat{\mathbf{\Omega}}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, \hat{f}(\bar{\boldsymbol{p}}) \right] \mathrm{d}\mu(\bar{\boldsymbol{p}}) + \\ &\int_{\partial \hat{\mathbf{\Omega}}} W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, g(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}(\bar{\boldsymbol{p}}) + \\ &\sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\mathbf{\Omega}}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) \, h(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}_{\tau} \end{split}$$

- Handle discontinuities in W_{τ} $\Delta \mathbb{R}[W_{\tau}] = \{\tau_{\min}, \tau_{\max}\}$
- Unique to diff. time-gated rendering

Path-length boundary component

Path length $\|ar{m{x}}\|$ is a discontinuity point of $W_{ au}$

Sponsored by

 $\tau_{\min} \tau_{\max}$

 $ar{m{p}}$

Path-Length Boundary Integral

$$\sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\mathbf{\Omega}}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) \underbrace{\hat{f}(\bar{\boldsymbol{p}}) v_{\tau}(\boldsymbol{q})}_{=:h(\bar{\boldsymbol{p}})} \mathrm{d}\dot{\mu}_{\tau}(\bar{\boldsymbol{p}})$$

- $\Delta W_{\tau}(s)$: Difference of path-length importance across the discontinuity boundary
- $\hat{f}(\bar{\boldsymbol{p}})$: Path contribution function
- $v_{\tau}(q)$: Computed from the evolution of pathlength boundaries

I U E

Monte Carlo Estimators

Estimating Interior Integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\hat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, \hat{f}(\bar{\boldsymbol{p}}) \right] \mathrm{d}\mu(\bar{\boldsymbol{p}}) + \int_{\partial \hat{\Omega}} W_{\tau}(\|\bar{\boldsymbol{x}}\|) \, g(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}(\bar{\boldsymbol{p}}) + \sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\Omega}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) \, h(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}_{\tau}(\bar{\boldsymbol{p}})$$
Narrow time gate

- Sample a path using standard methods (unidirectional PT)
- Incorporate path-length importance

Handling Narrow Time Gate

- Ellipsoidal next-event estimation
 - Step 1: Sample a path length $au_0 \sim W_{ au}(\|ar{m{x}}\|)$
 - Step 2: Trace a path from camera and sample a point on light
 - Step 3: Ellipsoidal connection [Pediredla et al. 2019]

 $m{q}$ is on an ellipsoid such that $\|m{p}_0-m{q}\|+\|m{q}-m{p}_1\|= au_0-\|m{p}_1-m{p}_2\|$

- Antithetic sampling [Zhang et al. 2021]
 - Generate a pair of negatively correlated samples
 - High-magnitude derivatives cancel out

$$\frac{\mathrm{d}}{\mathrm{d}s}W_{\tau}(\bullet) + \frac{\mathrm{d}}{\mathrm{d}s}W_{\tau}(\bullet) = 0$$

koelnmesse

Evaluation Estimating Interior Integral

• Configuration: near-delta time gate, derivative w.r.t. the vertical position

reduction

 p_2

- Antithetic sampling for variance
- **Ellipsoidal NEE** is mandatory

 $\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\hat{\boldsymbol{\Omega}}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{\boldsymbol{x}}\|) \,\hat{f}(\bar{\boldsymbol{p}}) \right] \mathrm{d}\mu(\bar{\boldsymbol{p}}) + \int_{\partial \hat{\boldsymbol{\Omega}}} W_{\tau}(\|\bar{\boldsymbol{x}}\|) \,g(\bar{\boldsymbol{p}}) \,\mathrm{d}\dot{\mu}(\bar{\boldsymbol{p}}) + \right]$

- $\sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\mathbf{\Omega}}_{\tau}(\|\bar{\boldsymbol{x}}\|)} \Delta W_{\tau}(s) h(\bar{\boldsymbol{p}}) \, \mathrm{d}\dot{\mu}_{\tau}(\bar{\boldsymbol{p}})$

Estimating Path-Length Boundary

 \boldsymbol{q}

Evaluation Estimating Path-Length Boundary Integral

• Configuration: near-delta time gate, derivative w.r.t. the vertical position

Results

Validation

sa2021.siggraph.org

Inverse Rendering Results Bunny

- A rough-glass bunny inside a diffuse box
- ToF camera is **blocked** (NLOS configuration)
- Search for position
- 20 ToF images used, 4 shown
- Only the **image loss** is used for optimization

Inverse Rendering Results

- A glossy tree model lit by a small area light
- Search for the **position** of the light source
- Near-delta time gate

200

200

Inverse Rendering Results Height field (ToF)

- Search for the height of each vertex (121 unknown variables)
- 12 ToF images used, 4 shown

Inverse Rendering Results Height field (steady-state)

- A single steady-state image is used
- Optimization becomes highly under-constrained

Inverse Rendering Results Corridor (Full interreflections, our estimator)

- Search for the position of the end of the corridor
- Not directly visible to the camera (NLOS)
- Concave shape
- Simulating full interreflections is crucial

Inverse Rendering Results Corridor (3 bounces)

- Simulating only
 3 bounces
- Suffering significant energy loss

Inverse Rendering Results Corridor (Full interreflections, finite differences)

- Derivatives computed using **finite differences**
- Derivative estimates are biased and high-variance

Limitations and Future Work

- Volumetric light transport
- Dirac delta path-length importance function
 - Interior integral involves 2nd-order derivatives
- Current implementation: CPU-based, simple forward-mode autodiff
 - GPU-based system [Nimier-David et al. 2019, 2020; Vicini et al. 2021]
 - Ability to handle millions of parameters
 - Real-world large-scale ToF imaging problems

TLIE

Conclusion

Efficient Monte Carlo estimators

Ellipsoidal NEE

• Differential time-gated path integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\hat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[W_{\tau}(\|\bar{x}\|) \, \hat{f}(\bar{p}) \right] \mathrm{d}\mu(\bar{p}) + \int_{\partial \hat{\Omega}} W_{\tau}(\|\bar{x}\|) \, g(\bar{p}) \, \mathrm{d}\mu(\bar{p}) + \sum_{s \in \Delta \mathbb{R}[W_{\tau}]} \int_{\partial \hat{\Omega}_{\tau}(\|\bar{x}\|)} \Delta W_{\tau}(s) \, h(\bar{p}) \, \mathrm{d}\mu_{\tau}(\bar{p}) \right]$$
Unique path-length boundary caused by
$$\int_{\mathcal{T}_{\min}} \mathcal{T}_{\max}$$

٠

Anonymous reviewers

 Funding: NSF 1900927, NSF 2105806, NVIDIA Graduate Fellowship, the Ronald L. Graham Chair

Acknowledgements

Project webpage https://bit.ly/3vIn2jn

SIGGRAPH ASIA 2021

U E

SIGGRAPH ASIA 2021 TOKYO

CONFERENCE14 - 17 DECEMBER 2021EXHIBITION15 - 17 DECEMBER 2021TOKYO INTERNATIONAL FORUM, JAPAN

sa2021.siggraph.org

Thank you for your attention!

Sponsored by

••• koelnmesse

Organized by