

Department of COMPUTER SCIENCE

Towards Semantic Understanding of Urban-Scale 3D Point Clouds: Datasets, Benchmarks and Challenges

Qingyong Hu Supervisor: Niki Trigoni & Andrew Markham Department of Computer Science, University of Oxford, UK

> Contact Email: qingyong.hu@cs.ox.ac.uk

Agenda

Urban-Scale Point Cloud Dataset SensatUrban, CVPR'21 & IJCV'21

Urban-Scale Data Generation

STPLS3D, Arxiv'22

Introduction

Background & Literatures

Urban-Scale Scene Understanding *SQN, Arxiv'22*

Conclusion

Introduction Background

Today's AI systems: 2D Recognition / Detection / Segmentation

These systems do not really perceive the 3D world !

Introduction Background

Future of AI: Intelligent systems that perceive the 3D world

Introduction

Emerging 3D applications

Introduction

Urban 3D Scene Understanding

Figure from Xiangli et al. "CityNeRF: Building NeRF at City Scale"

Figure from "Immerse View for Google Maps"

Figure from Hu et al, "SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds"

Figure from Liu et al, "UrbanScene 3D: A Large Scale Urban Scene Dataset and Simulator"

Semantic Understanding of Urban-Scale 3D Scenes

> How to build urban-scale 3D datasets? What are the main challenges of urban 3D

understanding?

- How to achieve synthetical generation of urban-scale 3D scenes?
- How to achieve label-efficient learning of large-scale 3D scenes?

Research Question 1

How to build urban-scale 3D datasets? What are the main challenges of urban 3D understanding?

Large-scale annotated datasets have driven tremendous progress in this field

Figure from Chang et al, "ShapeNet: An Information-Rich 3D Model Repository", Arxiv 2015

Figure from Qi et al, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", CVPR 2017

ScanNet Benchmark Challenge

Figure from Dai et al, "ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes", CVPR 2017

Indoor Scene-Level, RGB-D surface reconstructed Point Clouds

Figure from Hackel et al, "SEMANTIC3D.NET: A new large-scale point cloud classification benchmark", ISPRS 2017

Figure from Tan et al, "Toronto-3D : A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways", CVPRW 2020

Outdoor Roadway-Level Point Clouds

Figure from Behley et al, "SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences", ICCV 2019

Sequential Street-View LiDAR Point Clouds

Figure from Varney et al, "DALES: A large-scale aerial LiDAR data set for semantic segmentation", CVPRW 2020

Aerial Urban-level LiDAR Point Clouds

Figure from Zolanvari et al, "DublinCity: Annotated LiDAR Point Cloud and its Applications", BMVC 2019

SensatUrban Summarize

- Various modalities: indoor RGB-D reconstruction, outdoor LiDAR
- Increasing spatial scale: from object-level -> indoor scene-level -> outdoor roadway-level -> urban city-level
- Richer information: 3D coordinates, RGB color, sequential flow
- Geometrical structure: simple object -> complex structure

Sta Un Shaj	iversity pNet	ASLIG vKI	rizona State niversity TTI	ETH 2 Semai	z <i>ürich</i> ntic3D	Paris NPN	VES Tech ▲ 13D	UNIVERSITÄ Semanti	CKITTI	DAI	niversity Dayton LES	Sensat	FORD
2015/12		2016/06		2017/04	201	8/07		2019/08		2020/04		2020/11	
201	16/06	2	2017/04		2017/09		2019/07		2020/03		2020/08		
	S3DIS Stanf Univer	ord (Scar	nNet n ford iversity		port3D nceto versit	Dub N Trin Y	nity College Dubl nity College Dubl te na Tríonóide, Baile Átha C níversity of Dublin		ito3D ersity of FERLOO	Camp Reference	us3D IUS nal University ngapore	

SensatUrban Overview

02

- Largest urban-scale photogrammetric point cloud dataset (nearly three billion labeled 3D points)
- Consists of large areas from three UK cities, covering about 7.6 km² of the city land-scape.
- Point is manually-labeled as one of 13 semantic categories such as ground, vegetation, car, etc

Dataset

Dataset

Dataset

SensatUrban

Visualization

SensatUrban

Comparison with existing datasets

	#Name and Reference	#Year	#Spatial size ¹	#Classes ²	#Points	#RGB	#Sensors
Object level	ShapeNet [8]	2015	-	55	-	No	Synthetic
Object-level	PartNet [34]	2019	-	24	-	No	Synthetic
Indoor	S3DIS [3]	2017	$6 \times 10^3 m^2$	13 (13)	273M	Yes	Matterport
Scene-level	ScanNet [13]	2017	$1.13 \times 10^5 m^2$	20 (20)	242M	Yes	RGB-D
	Paris-rue-Madame [44]	2014	$0.16 \times 10^3 m$	17	20M	No	MLS
	IQmulus [54]	2015	$10{ imes}10^3~m$	8 (22)	300M	No	MLS
Outdoor	Semantic3D [21]	2017	-	8 (9)	4000M	Yes	TLS
Roadway-level	Paris-Lille-3D [43]	2018	$1.94 \times 10^3 \ m$	9 (50)	143M	No	MLS
	SemanticKITTI [5]	2019	$39.2 \times 10^3 m$	25 (28)	4549M	No	MLS
	Toronto-3D [48]	2020	$1 \times 10^3 m$	8 (9)	78.3M	Yes	MLS
	ISPRS [42]	2012	-	9	1.2M	No	ALS
	DublinCity [67]	2019	$2 \times 10^6 m^2$	13	260M	No	ALS
Urban laval	DALES [55]	2020	$10 imes 10^6 m^2$	8 (9)	505M	No	ALS
Ulball-level	LASDU [61]	2020	$1.02 imes 10^6 m^2$	5	3.12M	No	ALS
	Campus3D [26]	2020	$1.58 \times 10^{6} m^{2}$	24	937.1M	Yes	UAV Photogrammetry
	SensatUrban (Ours)	2020	$7.64 \times 10^6 m^2$	13 (31)	2847M	Yes	UAV Photogrammetry

Table 1: Comparison with the representative datasets for segmentation of 3D point clouds. ¹The spatial size (Area/Length) in the dataset, m: meter, ² The number of classes used for evaluation and the number of sub-classes annotated in brackets. MLS: Mobile Laser Scanning system, TLS: Terrestrial Laser Scanning system, ALS: Aerial Laser Scanning system.

SensatUrban Data Collection

Acquisition Equipment

eBee X Fixed-Wing Mapping Drone

senseFly S.O.D.A. 3D photogrammetry camera

Fig. 2 The drones and cameras we used in the urban survey.

	Specification
Sensor size	1 inch
RGB Lens	F/2.8-11, 10.6 mm (35 mm equivalent: 29 mm)
RGB Resolution	5,472 x 3,648 px (3:2)
Exposure compensation	± 2.0 (1/3 increments)
Shutter	Global Shutter 1/30 – 1/2000s
White balance	Auto, sunny, cloudy, shady
ISO range	125-6400
RGB FOV	Total FOV: 154°, 64° optical, 90° mechanical
GNSS	RTK/PPK

Sequential Aerial Imagery Acquisition

(a) Multi-flights survey

(b) Zoomed-in single flight survey

Figure 2: The survey of a region in Cambridge. All 9 flight plans (*left*) are collated together to cover the site. Lines with different colors represent different flight paths of UAVs. The circular path is the takeoff and landing pattern.

SensatUrban Data Annotation

Point-wise Semantic Annotations

Figure 3: Examples of our SensatUrban dataset. Different semantic classes are labeled by different colors.

SensatUrban Statistics

02

Data Distribution

Fig. 6 Statistics of our SensatUrban dataset. The number of points in different semantic categories is reported. Please note that the vertical axis is on the logarithmic scale. Additionally, there are no points annotated as *rail* in Cambridge.

Evaluation of 7 representative methods

	OA(%)	mAcc(%)	mloU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet [37]	80.78	30.32	23.71	67.96	89.52	80.05	0.00	0.00	3.95	0.00	31.55	0.00	35.14	0.00	0.00	0.00
PointNet++ [38]	84.30	39.97	32.92	72.46	94.24	84.77	2.72	2.09	25.79	0.00	31.54	11.42	38.84	7.12	0.00	56.93
TagentConv [50]	76.97	43.71	33.30	71.54	91.38	75.90	35.22	0.00	45.34	0.00	26.69	19.24	67.58	0.01	0.00	0.00
SPGraph [24]	85.27	44.39	37.29	69.93	94.55	88.87	32.83	12.58	15.77	15.48	30.63	22.96	56.42	0.54	0.00	44.24
SparseConv [19]	88.66	63.28	42.66	74.10	97.90	94.20	63.30	7.50	24.20	0.00	30.10	34.00	74.40	0.00	0.00	54.80
KPConv [51]	93.20	63.76	57.58	87.10	98.91	95.33	74.40	28.69	41.38	0.00	55.99	54.43	85.67	40.39	0.00	86.30
RandLA-Net [23]	89.78	69.64	<u>52.69</u>	80.11	98.07	91.58	48.88	40.75	51.62	0.00	56.67	33.23	80.14	32.63	0.00	71.31

Table 2: Benchmark results of the baselines on our SensatUrban. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) scores are reported.

- Carefully selected 7 representative baselines, including projection, volumetric, point based methods
- KPConv achieves the highest mIoU scores
- A number of key categories such as bridge, rail, street, footpath, bike that are poorly segmented.

Challenge 1: Data preparation

	Sampling	Input sets	OA(%)	mAcc(%)	mIoU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet	Grid	Constant Number	90.57	56.30	49.69	83.55	97.67	90.66	22.56	43.54	40.35	9.29	50.74	29.58	68.24	29.27	0.00	80.55
PointNet	Grid	Constant Volume	88.27	49.80	42.44	80.20	96.43	87.88	8.45	35.14	32.52	0.00	43.03	19.26	54.66	18.26	0.00	75.87
PointNet	Random	Constant Number	90.34	55.17	48.49	83.47	97.51	90.89	18.55	33.31	42.82	11.85	47.95	26.83	68.37	29.12	0.00	79.71
PointNet	Random	Constant Volume	88.09	48.45	41.68	79.82	96.24	87.64	5.69	27.70	34.98	0.00	42.85	13.81	54.29	20.64	0.00	78.24
RandLA-Net	Grid	Constant Number	91.55	74.87	58.64	82.99	98.43	93.41	57.43	49.47	55.12	27.33	60.65	39.43	84.57	39.48	0.00	73.97
RandLA-Net	Grid	Constant Volume	88.11	64.91	49.18	78.18	97.92	90.87	45.02	30.89	35.82	0.00	45.73	31.96	77.78	29.90	0.00	75.30
RandLA-Net	Random	Constant Number	91.14	74.14	57.55	82.25	98.33	92.37	54.20	43.10	54.74	25.02	60.40	39.17	82.77	37.59	0.00	78.25
RandLA-Net	Random	Constant Volume	88.37	60.84	47.27	81.16	97.52	90.45	44.75	16.36	37.18	0.00	4219	26.28	76.76	30.46	0.00	71.39

Table 3: Quantitative results achieved by PointNet [23] and RandLA-Net [23] with different input preparation steps. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

- Step 1: Downsample the raw point clouds at the very beginning (Random sampling vs. Grid sampling)
- Step 2: To obtain individual input set of points to feed into the networks. (Constant-number vs. Constant-volume)

Challenge 2: Geometry vs. Appearance

	OA(%)	mAcc(%)	mIoU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet [37] (w/o RGB)	83.50	33.52	28.85	67.35	92.66	84.72	16.02	0.00	13.65	2.68	17.09	0.33	54.54	0.00	0.00	26.04
PointNet [37] (w/ RGB)	90.57	56.30	49.69	83.55	97.67	90.66	22.56	43.54	40.35	9.29	50.74	29.58	68.24	29.27	0.00	80.55
PointNet++ [38] (w/o RGB)	90.85	56.94	50.71	79.05	98.37	94.22	66.76	39.74	37.51	$-\overline{0}.\overline{0}0$	51.53	38.82	81.71	5.80	0.00	65.68
PointNet++ [38] (w RGB)	93.10	64.96	58.13	86.38	98.76	94.72	65.91	50.41	50.53	0.00	58.40	46.95	82.31	38.40	0.00	82.88
$\overline{SPGraph}$ $\overline{[24]}$ $\overline{(w/oRGB)}$	84.81	42.12	35.29	69.60	94.18	88.15	34.55	20.53	15.83	16.34	31.44	10.54	55.01	0.98	0.00	21.57
SPGraph [24] (w RGB)	85.27	44.39	37.29	69.93	94.55	88.87	32.83	12.58	15.77	15.48	30.63	22.96	56.42	0.54	0.00	44.24
KPConv [51] (w/o RGB)	91.47	57.43	51.79	80.43	98.82	94.93	74.17	44.53	32.11	0.00	54.32	37.83	84.88	14.48	0.00	56.79
KPConv [51] (w RGB)	93.92	71.44	64.50	87.04	99.01	96.31	77.73	58.87	49.88	37.84	62.74	56.60	86.55	44.86	0.00	81.01
RandLA-Net [23] (w/o RGB)	88.90	67.96	51.53	77.30	97.92	91.24	51.94	47.46	45.04	9.71	49.79	34.21	79.97	21.13	0.00	64.18
RandLA-Net [23] (w RGB)	91.24	74.68	58.14	82.23	98.39	92.69	56.62	49.00	54.19	25.10	60.98	38.69	83.42	38.74	0.00	75.80

Table 4: Quantitative results of five selected baselines on our SensatUrban dataset.Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

02

Challenge 3: Extremely imbalanced distribution

	0A(%)	mAcc(%)	mloU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet+ce	90.57	56.30	49.69	83.55	97.67	90.66	22.56	43.54	40.35	9.29	50.74	29.58	68.24	29.27	0.00	80.55
PointNet+wce [23]	88.13	68.05	51.24	81.01	97.12	87.87	24.46	45.76	47.78	34.93	49.82	29.58	61.28	31.78	0.00	74.67
PointNet+wce+sqrt [2]	89.72	67.97	52.35	82.87	97.33	90.42	28.32	44.94	48.39	32.07	49.58	32.63	65.11	32.59	2.60	73.71
PointNet+lovas [6]	89.58	67.50	52.53	82.74	97.27	90.28	28.11	43.89	48.53	33.58	49.68	32.21	64.01	33.05	1.46	78.13
PointNet+focal [28]	89.46	67.33	52.37	82.47	97.34	90.25	28.36	51.87	46.40	30.50	48.62	32.43	65.00	32.23	1.21	74.10
RandLA-Net+ce	93.10	64.30	57.77	85.39	98.63	95.40	62.55	54.85	56.49	0.00	58.13	45.90	82.24	30.68	0.00	80.70
RandLA-Net+wce [23]	91.24	74.68	58.14	82.23	98.39	92.69	56.62	49.00	54.19	25.10	60.98	38.69	83.42	38.74	0.00	75.80
RandLA-Net+wce+sqrt [2]	92.51	79.92	62.80	84.94	98.47	95.07	59.01	62.18	56.76	28.96	57.36	44.47	84.67	41.67	24.31	78.49
RandLA-Net+lovas [6]	92.56	76.99	61.51	84.92	98.55	94.64	63.17	52.37	55.43	36.37	59.35	45.79	84.28	41.24	2.66	80.89
RandLA-Net+focal [28]	92.49	77.26	60.41	85.03	98.38	94.74	59.49	<u>58.70</u>	57.11	25.97	58.19	42.74	82.26	42.00	2.71	77.97

Table 5: Quantitative results achieved by PointNet [37] and RandLA-Net [23] with different loss functions. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

Challenge 4: Cross-city generalization

	0A(%)	mAcc(%)	mloU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet [37]	87.33	54.76	48.73	80.91	94.58	87.40	33.69	0.51	66.23	16.98	49.55	36.08	74.59	1.49	0.00	91.51
PointNet++ [38]	89.85	64.24	57.39	84.34	97.11	89.74	61.56	3.78	68.08	41.95	54.43	51.54	84.73	14.43	0.00	94.34
SPGraph [24]	80.13	42.87	36.95	65.75	93.33	87.24	41.28	0.00	42.69	20.94	2.28	32.05	64.06	0.00	0.00	30.76
KPConv [51]	91.44	68.41	61.65	86.00	97.66	92.90	75.07	0.91	69.74	55.50	57.94	60.73	89.48	21.44	0.00	94.13
RandLA-Net [23]	90.77	72.11	<u>59.72</u>	85.14	96.89	90.77	59.45	1.52	75.83	48.88	62.58	48.65	86.31	28.82	0.00	91.51
PointNet [37]	86.06	38.56	29.70	74.94	94.57	85.38	8.62	13.42	16.47	0.00	38.64	14.27	36.96	0.09	0.00	2.75
PointNet++ [38]	89.46	44.64	36.93	77.68	97.28	91.95	54.59	0.52	15.84	0.00	42.08	29.00	67.71	0.24	0.00	3.16
SPGraph [24]	82.02	24.83	20.70	61.72	88.26	78.27	8.29	0.00	0.00	0.00	0.64	1.87	30.00	0.00	0.00	0.00
KPConv [51]	90.62	48.71	40.51	78.88	98.33	94.24	76.20	0.01	14.70	0.00	41.77	39.32	74.22	0.39	0.00	8.61
RandLA-Net [23]	88.92	51.57	40.29	78.46	97.12	89.93	46.77	28.76	20.03	0.00	46.98	18.70	65.99	24.91	0.00	6.15

Table 6: All baselines are trained on the Birmingham split. The top five records show the testing results on the testing split of Birmingham, while the bottom five rows show the scores on the testing split of Cambridge. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

Challenge 5: Cross-dataset generalization

Table 14 Quantitative cross-dataset generalization results were achieved by the selected baseline approaches on the proposed SensatUrban dataset and the DALES dataset.

Methods	Settings	OA(%)	mIoU(%)	Ground	Vegetation	Cars	Street furniture	Fences	Buildings
	$DALES \rightarrow DALES$	94.10	59.72	94.68	86.69	16.48	73.62	0.00	86.87
PointNat Oi at al. (2017a)	$DALES \rightarrow SensatUrban$	74.25	30.75	89.44	55.69	0.02	0.03	0.00	39.32
Folitivet QI et al. (2017a)	$SensatUrban \rightarrow SensatUrban$	92.46	56.27	92.90	92.14	52.69	0.33	14.25	85.33
	SensatUrban \rightarrow DALES	87.45	41.98	92.64	72.15	2.77	11.79	8.31	64.23
	$DALES \rightarrow DALES$	96.98	84.31	96.99	92.71	80.54	89.08	50.09	96.47
Rendl A Net Hu et al. (2020)	$DALES \rightarrow SensatUrban$	83.69	40.69	93.02	64.03	0.25	0.23	16.63	69.96
RandLA-Net Hu et al. (2020)	$SensatUrban \rightarrow SensatUrban$	96.55	79.47	96.87	98.28	80.44	45.18	60.92	95.16
	SensatUrban→DALES	84.25	43.57	92.63	66.26	27.33	2.27	8.89	64.07

Challenge 5: Pre-Training

	OA(%)	mAcc(%)	mloU(%)	ground	veg.	building	wall	bridge	parking	rail	traffic.	street.	car	footpath	bike	water
PointNet-Rand [37]	86.29	53.33	45.10	80.05	93.98	87.05	23.05	19.52	41.80	3.38	43.47	24.20	63.43	26.86	0.00	79.53
PointNet-Jigsaw [44]	87.38	56.97	47.90	83.36	94.72	88.48	22.87	30.19	47.43	15.62	44.49	22.91	64.14	30.33	0.00	77.88
PointNet-OcCo [57]	87.87	56.14	48.50	83.76	94.81	89.24	23.29	33.38	48.04	15.84	45.38	24.99	65.00	27.13	0.00	79.58
PCN-Rand [66]	86.79	57.66	47.91	82.61	94.82	89.04	26.66	21.96	34.96	28.39	43.32	27.13	62.97	30.87	0.00	80.06
PCN-Jigsaw [44]	87.32	57.01	48.44	83.20	94.79	89.25	25.89	19.69	40.90	28.52	43.46	24.78	63.08	31.74	0.00	84.42
PCN-OcCo [57]	86.90	58.15	48.54	81.64	94.37	88.21	25.43	31.54	39.39	22.02	45.47	27.60	65.33	32.07	0.00	77.99
DGCNN-Rand [58]	87.54	60.27	51.96	83.12	95.43	89.58	31.84	35.49	45.11	38.57	45.66	32.97	64.88	30.48	0.00	82.34
DGCNN-Jigsaw [44]	88.65	60.80	53.01	83.95	95.92	89.85	30.05	43.59	46.40	35.28	49.60	31.46	69.41	34.38	0.00	80.55
DGCNN-OcCo [57]	88.67	61.35	53.31	83.64	<u>95.75</u>	89.96	29.22	41.47	46.89	40.64	49.72	33.57	70.11	<u>32.35</u>	0.00	79.74

Table 8: Quantitative results achieved by using OcCo [57], Jigsaw [44] and Random (Rand) initialization on the SensatUrban dataset, based on PointNet [37], PCN [66] and DGCNN [58] encoders. Note that, all the initialized weights are obtained by pre-training on the ModelNet40 [60], since these techniques are mainly designed for object-level classification and segmentation. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

Urban3D 202

Organizers

Qingyong Hu University of Oxford

Bo Yang The Hong Kong Polytechnic University

Sheikh Khalid Sensat Inc.

Ronarld Clark Imperial College London

Wen Xiao Newcastle University

Yulan Guo

National University of Defense Technology

Andrew Markham University of Oxford

Aleš Leonardis University of Birmingham

Niki Trigoni University of Oxford

SensatUrban ICCV 2021 workshop

- 446 researchers from different institutes have registered to download our SensatUrban dataset
- 111/154 teams have successfully participated in our challenge in CodaLab
- Nearly 200 valid submissions are reported during the competition phase
- The top performed method has surpassed the baseline methods (KPConv, RandLA-Net) by more than 15% in terms of mIoU

Research Question 2

How to achieve synthetical generation of urban-scale 3D scenes?

It is highly challenging for individuals to complete the whole pipeline of dataset creation!

- Equip individuals with the full capability of:
- Creating large-scale annotated photogrammetry datasets
 - Exploring open geospatial data sources
 - Leveraging off-the-shelf commercial packages

• Controllable & Efficient & Low cost

- Procedurally synthetic 3D data generation
- Automatic annotation generation, avoiding time-consuming manual annotation

Realistic & Effective

- Simulates the reconstruction process of the real environment
- Following the same UAV flight pattern, ensure similar quality, noise pattern, and diversity

03

Name and Reference	# Semantic	# Instance ¹	# Views / scenes	2D Annotations	Area ² (km^2)	Sensor
DublinCity [107]	13	No	8,504 / 2	No	2	
DALES [93]	8	No	1 large scene	-	10	Aerial LiDAR
LASDU [102]	5	No	1 scene	-	1.02	
Swiss3DCities [6]	5	No	3 scenes	No	2.7	quadcopter + photogrammetry
Campus $3D$ [52]	14	4 classes	6 scenes	No	1.58	quadcopter + photogrammetry
SensatUrban [40]	13	No	3 scenes	No	4.4	fixed wing $+$ photogrammetry
STPLS3D - Real	<u> </u>	No	16,376 / 4	Yes	1.27	quadcopter + photogrammetry
STPLS3D - SyntheticV1	5	No	17,164 / 14	Yes	4.22	Synthetic Aerial photogrammetry
STPLS3D - SyntheticV2	17	14 classes	13,229 / 24	Yes	5.76	Synthetic Aerial photogrammetry
STPLS3D - SyntheticV3	18	$14 \ classes$	15,888 / 25	Yes	6	Synthetic Aerial photogrammetry

• Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset

- Synthetic V1-V3: 16 km² of the city landscape, with up to 18 semantic classes and 14 instance classes
- Real Datasets: 1.27 km² landscape, 6 semantic classes

Dataset Highlights

• Quality

STPLS3D

Highlights

03

- Fully exploits existing open geo-spatial data sources, compared with limited gaming environments in virtual gaming engine-based generation
- Leverage procedural modeling tools to create building models with variations and adapted different material databases to enrich the diversity for building appearances
- Simulate similar UAV paths over the virtual terrain as the real-world survey
- Up to 18 different semantic annotations + point-wise instance labels

• Scalability

- Synthetic environments were procedurally generated with great flexibility and scalability
- Freely changing scene layouts, object materials, architectural models
- Explicitly balance the class distribution by heuristically placing 3D models

Synthetic 3D point cloud with annotations

Synthetic aerial photogrammetry point cloud generation pipeline

03

STPLS3D

Data Generation Pipeline

3D Scene Generator

OSM building footprints

DSM

Generated Object Positions

Adding details

Game Objects

Procedural City

Data Generation Pipeline

STPLS3D

03

2D Rendering Engine/Simulator (AirSim)

STPLS3D Data Generation Pipeline

Photogrammetric point clouds with annotations

03

Synthetic Subsets

03 STPLS3D Data Visualization

Real-World Subsets

STPLS3D Data Distribution

03

Data Distribution

Ray casted point clouds

Photogrammetric reconstructed point clouds

Comparison of Data Quality

STPLS3D

Comparison of Collection Cost

Real-World Subset:

- Spatial area: 1.27 km²
- Cost: Over four months of team efforts
 - ✓ Getting flight permits
 - ✓ Planning
 - ✓ Repeatedly executing the data collection process
 - \checkmark Data cleaning, sanitization
 - ✓ Semantic & instance labeling

Synthetic Subset:

- Spatial area: over 16 km²
- Cost: Single person within a month efforts
 - ✓ A desktop PC
 - ✓ Intel Core[™] i9-10900X CPU
 - ✓ NVIDIA RTX 3090
 - ✓ Can be parallel accelerated
 - ✓ Not constrained by workforce talent

STPLS3D Experiments

Semantic Segmentation Results

Training sata	Mothoda	mIoII (%)	$\Delta \alpha (\%)$	Per Class IoU (%)								
Training sets	Methods	mioo (70)	OACC (70)	Ground	Building	Tree	Car	Light pole	Fence			
	RandLA-Net [42]	42.33	60.19	46.13	24.23	72.46	53.37	44.82	12.95			
Real subsets	SCF-Net $[25]$	45.93	75.75	68.77	37.27	65.49	51.50	31.22	21.34			
	KPConv [89]	45.22	70.67	60.87	32.13	69.05	53.80	52.08	3.40			
	RandLA-Net [42]	45.03	81.30	76.78	57.74	56.08	28.44	40.36	10.78			
Synthetic subsets	SCF-Net [25]	47.82	82.69	77.51	68.68	56.81	29.87	42.53	11.52			
	KPConv [89]	49.16	88.08	85.50	70.65	63.84	28.75	32.97	13.22			
Real+Synthetic	RandLA-Net [42]	50.53	86.25	82.90	66.59	63.77	33.91	41.84	14.19			
	SCF-Net [25]	50.65	83.32	77.80	58.98	64.86	46.37	40.50	15.41			
	KPConv [89]	53.73	89.87	87.40	78.51	66.18	39.63	41.30	9.34			

- Baselines: RandLA-Net, SCF-Net, KPConv
- Mapping to 6 unified semantic classes
- Testing set: real-world test set (WMSC)

Instance Segmentation Results

	Metric	mean $(\%)$	Build.	LowVeg.	MediumVeg.	HighVeg.	Vehicle	Truck	Aircraft	MilitaryVeh.	Bike	Motorcycle	LightPole	StreetSign	Clutter	Fence
	AP	40.4	68.7	29.8	23.9	25.4	78.8	59.2	47.4	37.9	13.0	59.3	56.4	10.2	23.0	32.4
HAIS[15]	AP50	51.9	73.2	46.4	34.5	29.8	89.0	69.3	66.7	48.1	24.3	76.4	70.5	16.7	28.4	53.0
	AP25	57.3	74.2	56.0	42.8	32.0	91.2	76.1	73.8	51.9	26.4	82.2	75.6	18.3	32.1	69.0
	\overline{AP}	27.4	62.3	17.3	18.2	20.4	62.8	47.0	31.0	24.3	4.5	19.1	27.7	9.2	15.1	24.1
PointGroup[46]	AP50	44.2	71.1	36.8	30.3	26.0	87.4	67.3	50.0	40.7	12.6	60.3	54.2	15.6	20.8	45.9
	AP25	54.2	73.9	50.6	37.9	29.9	91.4	71.9	61.9	50.6	21.7	80.2	75.2	18.0	23.8	72.0

- Baselines: HAIS, PointGroup
- Selected 14 instance classes
- Training set: 20 synthetic data from V3; Testing set: 5 synthetic data from V3

Urban3D 202

2nd International Workshop on Urban-Scale Point Clouds Understanding, at ECCV 2022

- 1st place: \$1500
- 2nd place: \$1000
- 3rd place: \$500
- Invited presentation at ECCVW 2022

Organizers

Qingyong Hu University of Oxford

Meida Chen University of Southern California - Institute for Creative Technologies

Ta-Ying Cheng University of Oxford

Bo Yang The Hong Kong Polytechnic University

Ronarld Clark Imperial College London

Leying Zhang Sun Yat-sen University Yulan Guo

National University of Defense Technology

Niki Trigoni

University of Oxford

Aleš Leonardis University of Birmingham

Andrew Markham University of Oxford

Rongkun Yang Sun Yat-sen University

Sheikh Khalid

Sensat LTD.

Jiahui Chen Sun Yat-sen University

Research Question 3

How to achieve label-efficient learning of urban-scale 3D scenes?

Background

Semantic Query Network Motivation

Statistics

- > A single vehicle with LiDAR captures **84 billion** points per day
- It takes more than 1700 hours to annotate the SemanticKITTI dataset (4 billion points)
- It takes around 22.3 minutes to annotate a single indoor scene (5m×5m×2m) in ScanNet,
 - even with the oversegmentation preprocessing to reduce labeling cost

Goal

Reducing the labeling efforts for large-scale point clouds with billions of points

Related works

Limited Indirect Annotations

Generating pseudo labels from indirect scene-level tags/seg-level/sub-cloud labels/
2D image labels (MPRM'CVPR20, SegGroup'Arxiv21, BMVC19)

(c) Seg-Level Labels

(d) Point-Level Labels

Related works

Limited Point Annotations

- Approximating gradients with fewer 3D labels (10x Fewer labels'CVPR20)
- **Contrastive pretraining followed by fine-tuning with fewer labels** (PointContrast'ECCV20, DepthContrast'Arxiv21, P4Contrast'Arxiv21)

Training Data with Limited Annotations

Semantic Query Network Key questions

Limitations

- Existing approaches adopt custom methods and proportions of labels for training (10%/5%/1% of raw points or superpoints), making fair comparison infeasible.
- Existing pipelines usually involve multiple stages including careful data augmentation, self-pretraining, fine-tuning, and/or post-processing such as the use of dense CRF.
- The strong local semantic homogeneity of point neighbors in largescale point clouds is not fully exploited yet.

Semantic Query Network Key questions

Questions

Whether, and how, do existing fully-supervised methods perform given different amounts of annotated data for training?

Given fewer and fewer labels, where the weakly supervised regime actually begins?

Exploring Weak Supervision

Weakly-Supervised Setting

Input Point Clouds

Random Sparse Annotation

Exploring Weak Supervision

04

 Dense annotations are actually unnecessary to obtain a comparable and favorable segmentation accuracy.

Exploring Weak Supervision

04

 This critical point (1‰) indicates that keeping a certain amount of training signals is also essential for weak supervision.

Exploring Weak Supervision

04

The new question: Given extremely limited point annotations (*e.g.*, 0.1%), how to fully utilize the sparse yet valuable training signals to update the network parameters?

Neural Architecture

SQN Architecture

- Insights
 - Why Semantic Query Network?
 - Training with **limited annotation**
 - The query point is assumed to shares similar semantic information with the collected point features, such that the training signals from the query points can be shared and back-propagated to the relevant points.
 - Flexible
 - The **query point can be arbitrary points in 3D space**, even not within the input point clouds. This allows training in incomplete point clouds, testing in complete point clouds.
 - Novel
 - Without using the mature **U-Net architecture and skip connection**
 - Memory & computationally efficient, Lightweight

Experimental results

S3DIS

	Methods	mIoU(%)	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
	PointNet [46]	41.1	88.8	97.3	69.8	0.1	3.9	46.3	10.8	58.9	52.6	5.9	40.3	26.4	33.2
	PointCNN [34]	57.3	92.3	98.2	79.4	0.0	17.6	22.8	62.1	74.4	80.6	31.7	66.7	62.1	56.7
Full	SPGraph [31]	58.0	89.4	96.9	78.1	0.0	42.8	48.9	61.6	84.7	75.4	69.8	52.6	2.1	52.2
supervision	SPH3D [33]	59.5	<u>93.3</u>	97.1	81.1	0.0	33.2	45.8	43.8	79.7	86.9	33.2	71.5	54.1	53.7
supervision	PointWeb [96]	60.3	92.0	98.5	79.4	0.0	21.1	59.7	34.8	76.3	88.3	46.9	69.3	64.9	52.5
	RandLA-Net [24]	63.0	92.4	96.7	80.6	0.0	18.3	61.3	43.3	77.2	85.2	71.5	71.0	69.2	52.3
	KPConv rigid [65]	65.4	92.6	97.3	81.4	0.0	16.5	54.5	<u>69.5</u>	80.2	90.1	66.4	74.6	63.7	<u>58.1</u>
Limited	1T1C (0.02%) [37]	50.1	-	-	-	-	-	-	-	-	-	-	-	-	-
superpoint labels [†]	SSPC-Net (0.01%) [9]	51.5	-	-	-	-	-	-	-	-	-	-	-	-	-
	Π Model (10%) [30]	46.3	91.8	97.1	73.8	0.0	5.1	42.0	19.6	67.2	66.7	47.9	19.1	30.6	41.3
	MT (10%) [60]	47.9	92.2	96.8	74.1	0.0	10.4	46.2	17.7	70.7	67.0	50.2	24.4	30.7	42.2
	Xu (10%) [84]	48.0	90.9	97.3	74.8	0.0	8.4	49.3	27.3	71.7	69.0	53.2	16.5	23.3	42.8
Limited	Zhang et al. (1%) [90]	61.8	91.5	96.9	80.6	0.0	18.2	58.1	47.2	75.8	85.7	65.2	68.9	65.0	50.2
Difficuence contraction contra	PSD (1%) [91]	63.5	92.3	97.7	80.7	0.0	27.8	56.2	62.5	78.7	84.1	63.1	70.4	58.9	53.2
labels	$\overline{\Pi} \overline{\mathrm{Model}} (\overline{0}.\overline{2}\overline{\%}) \overline{[30]}$	44.3	89.1	97.0	71.5	0.0	$-\overline{3.6}$	43.2	27.4	63.1	62.1	43.7	14.7	24.0	36.7
labels	MT (0.2%) [60]	44.4	88.9	96.8	70.1	0.1	3.0	44.3	28.8	63.7	63.6	47.7	15.5	23.0	35.8
	Xu (0.2%) [84]	44.5	90.1	97.1	71.9	0.0	1.9	47.2	29.3	64.0	62.9	42.2	15.9	18.9	37.5
	RandLA-Net (0.1%)	52.9	89.9	95.9	75.3	0.0	7.5	52.4	26.5	62.2	74.5	49.1	60.2	49.3	45.1
	Ours (0.1%)	61.4	91.7	95.6	78.7	0.0	24.2	55.8	63.1	70.5	83.1	60.6	67.8	56.1	50.6

Table 1. Quantitative results of different methods on the *Area-5* of S3DIS dataset. Mean IoU (mIoU, %), and per-class IoU (%) scores are reported. Note that, [†]The ratios of these methods represent the ratio of super-point annotations and cannot be directly compared. Bold represents the best result in weakly setting and underlined represents the best in fully setting.

Experimental results

S3DIS

Experiments

Qualitative results

Input Point Clouds

Semantic Predictions

Experimental results

ScanNet

Semantic3D

Settings	Methods	mIoU(%)			Sen	nantic 8	Rec	luced 8
	PointNet++ [47]	33.9		Methods	OA(%)	mIoU(%)	OA(%)	mIoU(%)
	$\frac{1}{2} \text{ODI} \text{ATN}_{24} [55]$	20.2		$\operatorname{SnapNet}[4]$	91.0	67.4	88.6	59.1
	SPLAINET [55]	39.3		PointNet++ [51]	85.7	63.1	-	-
Full	TangentConv [61]	43.8	E.,11	ShellNet [102]	-	-	93.2	69.3
supervision	PointCNN [34]	45.8	Full	GACNet [77]	-	-	91.9	70.8
	PointConv [81]	55.6	sup.	$\operatorname{RGNet}[71]$	90.6	72.0	94.5	74.7
	SPH3D-GCN [33]	61.0		SPG [35]	92.9	76.2	94.0	73.2
		61.0		KPConv [70]	-	-	92.9	74.6
	KPConv [65]	68.4		ConvPoint [6]	93.4	76.5	-	-
	RandLA-Net [24]	64.5		WreathProdNet [79]	94.6	77.1	-	-
	MPRM* [76]	41.1		RandLA-Net [28]	95.0	75.8	94.8	77.4
Weak	Zhang <i>et al.</i> (1%) [90]	51.1		Zhang <i>et al.</i> (1%) [97]	-	-	-	72.6
supervision	PSD (1%) [01]	547	Weak	PSD (1%) [98]	-	-	-	75.8
	13D(1%)[91]	54.7	sup.	Ours (0.1%)	94.8	72.3	93.7	74.7
	Ours (0.1%)	56.9		Ours (0.01%)	91.9	58.8	90.3	65.6

Sub-cloud labels: Labeling on the fly

Sparse annotation: **one-pass labeling at the beginning**, more friendly

Experimental results

DALES & SensatUrban & Toronto3D & SemanticKITTI

Settings	Methods	DALES [67]		,	SensatUrban	[23]	Toront	to3D [57]	SemanticKITTI [3]
Settings	wiethous	OA(%)	mIoU(%)	OA(%)	mAcc (%)	mIoU(%)	OA(%)	mIoU(%)	mIoU(%)
	PointNet [46]	-	-	80.8	30.3	23.7	-	-	14.6
	PointNet++ [47]	95.7	68.3	84.3	40.0	32.9	84.9	41.8	20.1
	PointCNN [34]	97.2	58.4	-	-	-	-	-	-
	TangentConv [61]	-	-	77.0	43.7	33.3	-	-	40.9
	ShellNet [95]	96.4	57.4	-	-	-	-	-	-
Full supervision	DGCNN [75]	-	-	-	-	-	94.2	61.8	-
	SPG [31]	95.5	60.6	85.3	44.4	37.3	-	-	17.4
	SparseConv [16]	-	-	88.7	63.3	42.7	-	-	-
	KPConv [65]	<u>97.8</u>	81.1	<u>93.2</u>	63.8	<u>57.6</u>	<u>95.4</u>	69.1	<u>58.1</u>
	ConvPoint [4]	97.2	67.4	-	-	-	-	-	-
	RandLA-Net [24]	97.1	80.0	89.8	<u>69.6</u>	52.7	92.9	77.7	53.9
Weak	Ours (0.1%)	97.0	72.0	91.0	70.9	54.0	96.7	77.7	50.8
supervision	Ours (0.01%)	95.9	60.4	85.6	49.4	37.2	94.2	68.2	39.1

Semantic Query Network Ablation study

Sensitivity to random sparse annotation

	OA(%)	mIoU(%)	ceil.	floor	wall	beam	col.	wind.	door	table	chair	sofa	book.	board	clut.
Iter1	85.03	57.52	93.28	96.68	75.15	0.00	15.08	46.69	59.81	72.18	81.78	51.25	63.27	44.23	48.37
Iter2	84.04	55.07	91.38	95.30	74.72	0.00	11.87	50.83	48.18	65.28	77.79	41.20	63.89	50.00	45.49
Iter3	84.99	57.10	91.66	96.93	76.64	0.00	13.26	50.08	57.70	67.52	82.15	56.01	64.19	38.88	47.25
Iter4	84.58	55.42	90.48	96.26	75.50	0.00	12.97	47.69	40.51	71.95	81.10	55.26	65.03	35.42	48.24
Iter5	84.54	55.93	89.07	95.43	76.92	0.00	14.34	48.42	62.87	68.47	79.96	41.71	63.16	41.07	45.69
Average	84.64	56.21	91.17	96.12	75.79	0.00	13.50	48.74	53.81	69.08	80.56	49.09	63.91	41.92	47.01
STD	0.40	1.06	1.55	0.73	0.95	0.00	1.24	1.70	9.24	2.96	1.76	7.20	0.76	5.54	1.37

04

Semantic Query Network

Ablation study

Variants of Semantic Queries

Model	1st	2nd	3rd	4st	OA(%)	mIoU(%)
А	\checkmark				48.66	22.89
В				\checkmark	75.54	46.02
С	\checkmark	\checkmark			70.76	38.18
D	\checkmark	\checkmark	\checkmark		82.37	54.21
Е	\checkmark	\checkmark	\checkmark	\checkmark	86.26	61.37

- Querying at the last layer can achieve much better results than in the first layer
- Querying at different encoding layers and combining them is likely to achieve better segmentation results

Ablation study

Varying Number of Queried Neighbours

Ablation study

Extension to Region-wise Annotated Data

	SPVCNN [63]	MinkowskiUnet [11]	SQN (Ours)
Random	49.61	46.15	60.19
Softmax Confidence [74]	51.05	45.45	57.24
Softmax Margin [74]	50.80	44.33	57.94
Softmax Entropy [74]	50.35	49.99	57.98
MC Dropout [18]	50.39	49.94	58.30
ReDAL $[85]$	50.89	47.88	54.24

Ablation study

SQN with different backbones

Discussion

Train in partial point clouds, test in complete point clouds

Predictions

Ground Truth

Predictions

Ground Truth

Discussion

Number of annotated points in practice

	Grid size	Raw pts	Grid sampled pts	Anno. pts (0.1%)	
S3DIS [2]	0.04	273M	18.6M	18,600	
Semantic3D [18]	0.06	4000M	78.1M	78,100	0.002%
ScanNet [67]	0.04	242M	60.2M	60,200	
SemanticKITTI [3]	0.06	5299M	3401M	3.4M	
DALES [67]	0.32	505M	211M	211,000	
SensatUrban [23]	0.2	2847M	221M	221,000	
Toronto3D [57]	0.04	78.3M	24.3M	24,300	

Sparse annotation demo

✓ Save up to 98% annotation cost for large-scale 3D point clouds

Conclusion Other Works

- > Dynamic point cloud processing; (Kinet, CVPR2022)
- Efficient semantic segmentation of large-scale point clouds; (RandLA-Net, CVPR 2020)
- Efficient 3D object detection; (IA-SSD, CVPR 2022)
- Geometry/Attribute compression of 3D scenes; (3DAC, CVPR 2022)
- Generalized 3D point clouds registration; (SpinNet, CVPR 2021)

05 Conclusion Future directions

Learning Unified 3D Representation

Conclusion

Future Directions

Future directions

Figure from "Immerse View for Google Maps"

Figure from Matthew et al. "Block-NeRF: Scalable Large Scene Neural View Synthesis"

Department of COMPUTER SCIENCE

MANY THANKS !

Follow us if you are interested in our work: Homepage: <u>https://qingyonghu.github.io/</u> GitHub: <u>https://github.com/QingyongHu</u>