几何微结构的高效仿真与设计优化 Efficient Homogenization and Design for Microstructures

Lin Lu

http://irc.cs.sdu.edu.cn/~lulin

Computer Science @ Shandong University

Fine structures in industry

Plunger

[Oerlikon]

Heat exchanger

[NASA]

Medical implant

[KLS Martin]

Sneaker insole [Adidas]

Football helmet

[Riddell &Carbon]

Fine structures in nature

Cellular structures in nature

membranes & edges polyhedron cells

struts

truss

shells

TPMS

C d

Artificial cellular structures

Fine structures in nature

Periodic	Stochastic	Hierarchical		
Honeybee Nest	Trabecular Bone	Dragonfly Wing Venation		
Ray	Veiled Lady Mushroom	Amazon Waterlily Leaf		

面向目标物理属性的结构优化

Parametric Kernel driven		
Anisotropy	×	
High Stiffness	\checkmark	
Double Connectivity	×	

[Yan et al. TVCG, 2020]

Implicit Function driven		
Anisotropy	×	
High Stiffness	\checkmark	
Double Connectivity	\checkmark	

Parametric Kernel driven			
Anisotropy	\checkmark		
High Stiffness	\checkmark		
Double Connectivity	\checkmark		

面向目标物理属性的结构优化

- Coupled optimization of geometric structures and physical properties
- ✓ Modelling in a global design space

X High computational cost

- Decoupled optimization
- Feasible for high-resolution structures
- Efficient simulation (Homogenization)
- Efficient microstructure design (Metamaterials)

Geometric Microstructures (Metamaterials)

几何微结构 — 具体指相对于模型整体而言尺寸非常小的几何结构,通常可以在小范围的几何空间内充分定义其形状,并采用周期性密铺等方式填充整体模型。

- Small-scale architectures that modify the macro-scale behavior of an object.
- Separation of scales. The mechanical behavior of microstructures is the average behavior of a sufficiently large volume filled with those microstructures.

Microstructures		Proper	rties
		杨氏模量 剪切模量	孔隙率 扩散率
	实验与仿真	体积模量 泊松比	比表面积 相对密度
		Zener ratio 杨氏模量面	表面曲率 雷诺数
	设计与优化		近电市致 折射率 磁导率
		热膨胀系数	

Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures.
The precise shape, geometry, size, orientation and arrangement gives metamaterials smart properties that go beyond what is possible with conventional materials.

均质化理论(Homogenization):通过分析代表性体积单元(RVE)获取微结构的等效材料性质。

微结构的仿真计算—均质化 (Homogenization)

10

微结构的仿真计算

- 屈服强度计算
- · 应力-应变曲线

 $\bar{\varepsilon} = \bar{\varepsilon}_0 + \Delta \bar{\varepsilon},$

 $\bar{\sigma} = \frac{1}{|\Omega^{y}|} \int_{\Omega^{y}} \sigma \, \mathrm{d}\Omega^{y}.$

- 杨氏模量面
- 展示杨氏模量各向异性

 $\frac{1}{E_{ijk}} = S_{11}^{H} - 2(S_{11}^{H} - S_{12}^{H} - \frac{1}{2}S_{44}^{H}) \\ \times (\ell_{i1}^{2}\ell_{j1}^{2} + \ell_{j2}^{2}\ell_{k3}^{2} + \ell_{i1}^{2}\ell_{k3}^{2}),$

• 冯·米塞斯应力分布

- 展示结构内应力集中
 - $\sigma = C : (\bar{\varepsilon} \varepsilon(u))$

Physical properties of microstructures

微结构力学性能画像(Mechanical Property Profiles, MPP)

杨氏模量 E, 剪切模量 G, 泊松比 v, 压缩强度 σ_{ys} , 剪切强度 τ_{ys} , 杨氏模量面, 冯米塞斯应力分布

微结构的仿真计算—均质化 (Homogenization)

Localization step: FEM \Leftrightarrow Solving linear equation system $u = K^{-1}f$ is quite time-consuming!

Integration step: $C^{H} = \frac{1}{|\Omega|} \sum_{e \in \Omega} (\varepsilon_{0} - \varepsilon_{e}(u_{e}))^{T} C^{b} (\varepsilon_{0} - \varepsilon_{e}(u_{e})) d\Omega$

微结构的仿真计算-数据驱动均质化

Filter: 5x5x5@16

Pooling: 2x2x2

 $\begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \end{bmatrix}$ G_{23} IG₁₃, G_{12} v_{21} v_{31} v_{12} v_{32} Conv + ReLU v_{13} ReLU V23 101x101x101x2 101x101x101x16 50x50x50x16 50x50x50x32 25x25x25x32 500Kx1 64x64x12 12x1

Filter: 5x5x5@32 Pooling: 2x2x2 Flattening

Implicit homogenization predictor via CNN [Rao et al. 2020]

Fully Connected Layer

Explicit microstructure-to-material map [Schumacher et al. 2015]

PH-Net (Parallelpiped microstructure Homogenization)

Current ML/DL methods

PH-Net

PH-Net (Parallelpiped microstructure Homogenization)

Pros:

- Material-voxel tensor and shape-material transformation make the input of PH-Net more generalize w.r.t microstructure type, base material and boundary shape
- Label-free and high efficient CNN framework
- Not only for predict homogeneous properties but also for microscopic properties, e.g., strain and stress distribution and yield strength, etc.

Parameters of PH-Net

- Microstructure ${f \Omega}$
- Base material
 - Hard base material C^{bh}
 - Soft base material C^{bs}
- Boundary shape
 - Angle $\alpha_{xy}, \alpha_{yz}, \alpha_{xz}$
 - Scale l_x , l_y , l_z

形状改变导致均质化材料性质改变

Shear matrix $S(\alpha_{xy}, \alpha_{yz}, \alpha_{xz})$ Scale matrix $T(l_x, l_y, l_z)$ Shape transformation J = ST

The generalization of PH-Net

- Material-voxel tensor $\mathcal{C}^{bh} imes \Omega + \mathcal{C}^{bs} imes (1 \Omega)$ as Input
 - \succ C^{bh} : hard base material
 - ➤ C^{bs}: soft base material
 - > Ω : voxel-based microstructure
- Shape-material transformation [Limited to parallelpiped boundary shape]

Results of PH-Net

Label-free and high efficient

- Training time: PH-Net 20 hrs. (66 epochs) with 50K inputs
- Magnitude of prediction error: PH-Net 10^{-3} , Numerical homogenization 10^{-6}
- Prediction time: PH-Net 5ms, numerical homogenization [6s, 14s] along with the increase of volume fraction

Results of PH-Net

Not only for predicting homogeneous material, but also for microscopic properties

20

Conclusion

Method	On-the-fly	Microstructure type	Base material	Boundary shape	Microscopic properties	Label-free
Numerical Homogenization	×	\checkmark	\checkmark	\checkmark	\checkmark	_
Microstructure-to- material map		×	×	×	×	×
Current ML/DL methods		\checkmark	×	×	×	×
PH-Net	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

MANGO: Microstructures ANalyzer, Generator and Optimizer

Live demo

hank you!

Lin Lu

http://irc.cs.sdu.edu.cn/~lulin

Computer Science @ Shandong University

