Multi-Axis Additive Manufacturing:

Support-free, Mechanical Strength & Motion Planning

Charlie C. L. Wang

Department of Mechanical, Aerospace and Civil Engineering The University of Manchester

April 12, 2022

The University of Manchester

Additive Manufacturing (3D Printing)

- Defined by ASTM as:
 - Process of joining materials to make objects from 3D model data, usually layer upon layer
- Different Types of AM:

- Lasers: Stereolithography Apparatus (SLA), Selective Laser Sintering (SLS)
- Nozzles: Fused Deposition Modeling (FDM)
- Print-heads: Multi-jet Modeling (MJM), Binder-jet Printing (3DP)
- Cutters: Laminated Object Modeling (LOM)
- Mainly used for Rapid Prototyping (Past)
- More and More used for 'Mass'-Production (Present)

2.5D / 3D Printing ? Pros. and Cons.

- Planar-layer-based material accumulation
 - Simplify the algorithms of motion-planning
 - Limited shape of models that can be support-free fabricated – i.e., support-structures in many cases
 - Relatively weak mechanical property between layer – especially at the regions with thin and small features

Robot-Assisted Additive Manufacturing: Multi-Axis and High-DOF Motion

- Using robot arms as device for motion control in AM
- Collaborative operations on two arms More DoFs to fabricate curved regions / layers
- Challenges:
 - Slicing solid into curved surfaces
 - Collision-free tool path generation
 - Planning in Machine Coordinate Sys.

4 Chenming Wu, Chengkai Dai, Guoxin Fang, Yong-Jin Liu, and **Charlie C.L.Wang**, "RoboFDM: a robotic system for support-free fabrication using FDM", IEEE International Conference on Robotics and Automation (ICRA 2017).

Outline

Support-free volume printing by multi-axis motion

- Multi-axis filament alignment with controlled anisotropic strength
- Motion Planning:
 - Planning jerk-optimized trajectory for redundant robots (robotic arm + position table)
 - Singularity-aware motion planning for multi-axis additive manufacturing (x-, y-, z-movement + tilting head / table)

Curved Support-Free Volume Printing

- Tool-path generation problem in volume is challenging:
 - Too many possibility of accumulating materials
 - How to plan collision-free motions for AM
- Problems of existing multi-axis AM approaches:
 - Only very simple shapes (i.e., not general for freeform models)
 - Build collision-detection into the loop of process planning (e.g., a sequence of 462k voxels – FCL takes ~3.4h in a fixed order)
 - When different orders are tested, much more time is needed

Curved Support-Free Volume Printing

- Our solution: field-based method to decompose a solid into a sequence of collision-free working surfaces as curved layers, and then generate tool-paths on each layer
- Two levels of decomposition (constraints):
 - Volume-to-Surface uniform, accessible & self-supported
 - Surface-to-Curve uniform and continuous in position, orientation & pose

Video of Robotic 3D Printing

Support-Free Volume Printing by Multi-Axis Motion

Chengkai Dai¹ Charlie C.L. Wang^{1*}

SIGGRAPH2018

Guoxin Fang¹ Yong-Jin Liu²

¹Delft University of Technology

Chenming Wu² Sylvain Lefebvre³ Yong-Jin Liu²

²Tsinghua University

³Inria

*Corresponding Author

8 C. Dai, **C.C.L.Wang**, C.Wu, S. Lefebvre, G. Fang, and Y.J. Liu, "Support-free Volume Printing by Multi-Axis Motion", *ACM Transactions on Graphics* (SIGGRAPH 2018), vol.37, no.4, article no.134 (13 pages), July 2018.

Pros. and Cons. of 2.5D Printing

- Planar-layer-based material accumulation
 - Simplify the algorithms of motion-planning
 - Limited shape of models that can be support-free fabricated – i.e., support-structures in many cases
 - Relatively weak mechanical property between layer – especially at the regions with thin and small features

Outline

- Support-free volume printing by multi-axis motion
- Multi-axis filament alignment with controlled anisotropic strength
- Motion Planning:
 - Planning jerk-optimized trajectory for redundant robots (robotic arm + position table)
 - Singularity-aware motion planning for multi-axis additive manufacturing (x-, y-, z-movement + tilting head / table)

Anisotropy of Mechanical Property

Tensile

176% enhance in tensile test27% enhance in compress test

[Ahn et al, J. Rapid Prototyping. 2002; Tam and Muller, 3DP&AM. 2017]

- Transversal direction is much weaker than axial direction
- Analyze the stress tensor distribution

Delamination: Major Source of Fracture

 Anisotropic strength caused by the weak adhesion at incompletely filled area

[Ahn et al, J. Rapid Prototyping. 2002]

Reinforcement by Filament Alignment

- Our Solution: aligning filaments along the directions of principal stresses
 - Slicing model with curved layers be tangential to local principal stress direction
 - Generating toolpath in curved layers following the vectors of principal stresses

Computational Framework: Model Slicing by Optimized Scalar Field

Model with volumetric mesh representation

Optimized Scalar Field (on mesh vertex)

Iso-surfaces of Scalar Field as curved layers

- Computation is conducted on volumetric mesh:
 - Continuous representation (scalar field)
 - Effectively in integrating design & manufacturing objectives
 - Reinforcement (following the direction of principal stresses)
 - Fabrication constraints (smoothness, layer thickness control etc.)
 - Curved layers naturally fit with mesh boundary

Computational Framework: Design Objectives on Scalar Field (Gradient)

Computational Framework: Optimization on Vector Field

Computational Framework: Toolpath Generation on Curved Layers

Contour-parallel toolpaths by boundary distance field

Combination of two types of toolpath

Final Connected toolpath

Computational Results

		Solid	Time (sec.) of Field-Opt. Slicing			Time (sec.) of Fabrication Enabling					Support	Total
Model	Fig.	#tets	Field $\mathbf{v}(\cdot)$	Field $G(\cdot)$	Layers	Re-Ort.	Relax. [†]	Support [‡]	Slice*	Toolpath	#tets	(sec.)
Topo-opt	1	70, 505	44.6	5.3	4.1	69.5	-	58.2	301.1	134.0	178.022	616.8
Bunny head	3	60, 375	10.4	1.1	3.1	41.9	-	55.4	270.2	87.6	162, 843	469.7
Yoga	4	52, 446	28.4	3.6	3.5	124.2	-	84.5	523.2	100.9	142, 183	868.3
C^2 -model	7	46, 547	18.6	2.4	5.8	71.1	21.3	78.6	218.2	37.5	152, 799	453.5
Bridge	11	100, 420	67.2	5.2	9.1	40.2	-	189.3	420.3	211.0	394, 834	942.3

Computed with Intel (R) Core TM i7-9700K CPU (6 cores @ 3.6GHz) + 32GB RAM

- Field computing 10% of computing time
- Fabrication Enabling 90% (generate support structure and toolpath is time-consuming)
- All model within 15 mins

Hardware Setup for Fabrication

Setup I (5 DOFs): Multi-axis parallel CNC machine

Setup 2 (8 DOFs): Robot arm (ABB IRB 4600) + Position table

20 G.Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and **C.C.L. Wang**, "Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength", *ACM Transaction on Graphics* (SIGGRAPH Asia 2020), vol.39, no.6, article no.204, 2020.

Multi-Axis AM Fabrication

Fabricated result (support structure removed)

2 G.Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and **C.C.L.Wang**, "Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength", *ACM Transaction on Graphics* (SIGGRAPH Asia 2020), vol.39, no.6, article no.204, 2020.

Fabrication: Multi-Axis Parallel Machine

22 G.Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and **C.C.L.Wang**, "Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength", *ACM Transaction on Graphics* (SIGGRAPH Asia 2020), vol.39, no.6, article no.204, 2020.

Fabrication: Robotic Arm + Tilting Table

Physical fabrication realized on a robotic platform with 8-DOFs

23 G.Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and **C.C.L.Wang**, "Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength", *ACM Transaction on Graphics* (SIGGRAPH Asia 2020), vol.39, no.6, article no.204, 2020.

Reinforced FDM by Anisotropic Strength

Stand up to 203% loads in breaking force (compare to planar method with already optimized printing direction)

Validation: Physical Experiment

Bunny:

635% \uparrow (natural ort.); 42% \uparrow (optimized ort.)

Topo-opt:

450% \uparrow (natural ort.); 103% \uparrow (optimized ort.)

C²-model: 243% \uparrow (natural ort.); 73% \uparrow (optimized ort.)

Yoga:

132% \uparrow (natural ort.); 55% \uparrow (optimized ort.)

25 G.Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and **C.C.L.Wang**, "Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength", *ACM Transaction on Graphics* (SIGGRAPH Asia 2020), vol.39, no.6, article no.204, 2020.

Outline

- Support-free volume printing by multi-axis motion
- Multi-axis filament alignment with controlled anisotropic strength
- Motion Planning:
 - Planning jerk-optimized trajectory for redundant robots (robotic arm + position table)
 - Singularity-aware motion planning for multi-axis additive manufacturing (x-, y-, z-movement + tilting head / table)

Motivation

- Trajectory planning in MCS
- To realize complex motion
 - Multi-axis additive manufacturing
 - Tool-paths for freeform shape have many waypoints
 - Optimized performance in velocity, acceleration & jerk
- Kinematic redundancy is used to optimize motion
 - e.g., 6-DOF robotic arm for 5-DOF constrained tool-path

Continuous Formulation (without hardware constraints):

$$\min_{\mathbf{q}(t)} \int \|\ddot{\mathbf{q}}\|_W dt$$

s.t. $\mathbf{x}(t) = f(\mathbf{q}(t)) \text{ and } \Gamma(\mathbf{q}(t)) < 0$

Veighted norm: $\|\ddot{\mathbf{q}}\|_W = \sqrt{\mathbf{q}^T \mathbf{W} \mathbf{q}}$

Collision-free constraints specified by an indication function by its sign

-) Forward kinematic mapping: $f(\mathbf{q}): \mathbf{q} \in \mathbb{R}^L \mapsto \mathbf{x} \in \mathbb{R}^5$
- Discrete Formulation (with hardware constraints):

$$\begin{split} \min_{\{\mathbf{q}_i\}} \mathbb{J} &= \sum_{i=1}^M \|\ddot{\mathbf{q}}(t_i)\|_W^2 \\ s.t. \quad \mathbf{x}(t_i) &= f(\mathbf{q}(t_i)) \quad (\forall i = 1, \dots, M), \\ \Gamma(\mathbf{q}(t_i)) &< 0, \\ \mathbf{q}_{\min} &\leq \mathbf{q}(t_i) \leq \mathbf{q}_{\max}, \\ |\dot{\mathbf{q}}(t_i)| &\leq \mathbf{v}_{\max}, \ |\ddot{\mathbf{q}}(t_i)| \leq \mathbf{a}_{\max}, \ |\ddot{\mathbf{q}}(t_i)| \leq \mathbf{j}_{\max}. \end{split}$$

Discrete-time constraints : $\mathbf{x}(t_i) = (\mathbf{p}_i, \hat{\mathbf{n}}_i) \quad (\forall i = 1, \dots, M)$

Experimental Results

Scenario 1

6DOF Setup

Example Tool-path

29 C. Dai, S. Lefebvre, K.-M.Yu, J.M.P. Geraedts, and **C.C.L.Wang**, "Planning jerk-optimized trajectory with discrete-time constraints for redundant robots", *IEEE Transactions on Automation Science and Engineering*, vol. 17, no.4, October 2020.

Outline

- Support-free volume printing by multi-axis motion
- Multi-axis filament alignment with controlled anisotropic strength

Motion Planning:

- Planning jerk-optimized trajectory for redundant robots (robotic arm + position table)
- Singularity-aware motion planning for multi-axis additive manufacturing (x-, y-, z-movement + tilting head / table)

Higher Position

Precision

Singularity Issues

Nonlinear mapping in singular region

Uniformly sampled normal in workpiece coordinate system

Non-uniform axis motion in machine coordinate system

D

Three Types of Multi-Axis AM Machines

Graph-Based Algorithm of Motion Planning

Step I: Singular region processing (smooth in singular region) Step 2: Generate collision-free variants (modify orientations) Step 3: Find a shortest path that minimizes $J(\mathcal{T}) = \sum_i |B(\mathbf{c}_i^{T_i}) - B(\mathbf{c}_{i+1}^{T_{i+1}})| + |C(\mathbf{c}_i^{T_i}) - C(\mathbf{c}_{i+1}^{T_{i+1}})|$

Experimental Results

Comparison

Motion

After optimization

34 T. Zhang, X. Chen, G. Fang, Y. Tian, and C.C.L. Wang, "Singularity-aware motion planning for multi-axis additive manufacturing", IEEE Robotics and Automation Letters, 6(4). (Finalist of Best Student Paper Award – IEEE CASE 2021)

Conclusion Remarks

- A convex-front advancing method for support-free volume 3D printing – each model is peeled into curved layers can be collision-freely fabricated
- A field-based computational fabrication framework the anisotropy of fused filaments is well controlled to reinforce the mechanical strength of 3D printed models
- A sampling based local filtering algorithm for planning discretetime constrained trajectory on redundant robots
- A sampling based motion planning algorithm to generate a singularity-aware, smooth and collision-free motion

Impact of Developing "Real" 3D Printing

Accumulating materials in space but not planar layers

(b) Tissue Engineering ^[3] (Life Science)

(f) Printing Electronics [8]

36 ZX. Zhao, Y. Pan, C. Zhou, Y. Chen, and **C.C.L.Wang**, "An integrated CNC accumulation system for automatic buildingaround-inserts", Journal of Manufacturing Processes, vol. 15, no.4, 2013. (**NAMRI/SME Outstanding Paper Award**)

(e) Large-Scale Construction ^[6]

3D Printing Continuous Reinforced Thermoplastic Composites: Adaptive Toolpaths

Without CCF Contour-Zigzag -Without CCF

-Contour-Zigzag

Robot-Based Bioprinting for Bioactive Artificial Blood Vessel & Cardiac Tissue

38 Z. Zhang, C. Wu, C. Dai, Q. Shi, G. Fang, D. Xie, Y.J. Liu, C.C.L.Wang, and X.J. Wang, "A multi-axis robot-based bioprinting platform for bioactive artificial blood vessel and cardiac tissue fabrication", Bioactive Materials, vol. 18, pp. 138-150, 2022.

Acknowledgment

PhD Students

- Chengkai Dai (TU Delft)
- Guoxin Fang (TU Delft / UoM)
- Tianyu Zhang (U. Manchester)
- Yingjun Tian (U. Manchester)
- Neelotpal Dutta (U. Manchester)
- Yuming Huang (U. Manchester)

Collaborators

- Sylvain Lefebvre (INRIA)
- Jo Geraedts (TU Delft)
- Kai-Min Yu (HK PolyU)
- Yong-Jin Liu (Tsinghua)
- Xiu-Jie Wang (CAS)
- Zichun Zhong (Wayne State)

Funding Sources

- MACE Dept. @ U Manchester
- IDE Faculty @TU Delft
- MAE Dept. @ CUHK
- Hong Kong RGC General Research Fund (GRF)
- China Scholarship Council

Charlie C. L. Wang Dept. of Mechanical, Aerospace & Civil Eng. The University of Manchester E-mail: <u>changling.wang@manchester.ac.uk</u>

Physical fabrication realized on a robotic platform with 8-DOFs

Toolpath Gen.

Motion Planning