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Introduction



Background

e Cloud-based streaming has widespread applications
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Background

e The latency from traditional 2D video streaming may cause issues
e VR rendering needs to handle 7x pixels/second than 2D screen
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Background

e |n comparison, 3D assets can enable responsive interaction




Background

e 3D assets could yet be handled by existing network bandwidth
e GPU has 2.5x FLOP while global internet bandwidth grows 26%
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Background

e Foveated rendering only works for rendering with streamed assets
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Overview
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Overview
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Overview

e Our method can be applied to mes
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Method

e Modeling spatio-temporal vision
o Spatial visual acuity
o Popping artifacts

o Change blindness during saccade
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Spatial visual acuity

e Distribution of retinal cells is not uniform

e As a result, spatial visual acuity is also non-uniform
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Eccentricity importance

e The importance is given by: ch (g, X) — E(g — X)

o E isthe cell density function, x is pixel position and g is gaze position




Popping artifacts

e A major problem of traditional LoD-based procedural rendering
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Model perception of images

e I|n orderto minimize the perceive change
e We first model how human perceive static images
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Model perception of images

e We model human perception on an image as:
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Model perception of images

()4 cycle/im  (b) 16 cycle / im

Decomposition visualization of bandpass filtered contrast
The periphery sensitivity was clamped by E
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Temporal consistency

e Similarly, we model the perceived change as temporally adapted
Weber's contrast to individual frequency band
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Temporal consistency

Temporal consistency
heatmap
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Saccade

e Fast eye movements with gaze speed > 180 deg/sec
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Per-pixel importance

Po(g,x) — Apop(g,l,l’,x) during fixation
Jgrer P,y (g, 1,1 x)dg during saccade

P(g,1.I' x) = {

Pec(gux) ﬁOp(galaI,ax) P(g,[,[’,X)

Eccentricity importance Temporal consistency Per-pixel importance
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Mapping from 2D to 3D

Per-pixel importance Per-3D-unit importance
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Streaming

e We use a greedy approach to fill the update to be streamed

Before update After update
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Neural Acceleration

e Intolerable latency can be introduced during the heavy frequency
domain decomposition for the temporal consistency calculation
e For fast prediction of the importance, a multilayer perceptron

neural network is trained
e Cloud can skip rendering the actual image with neural acceleration

25

NYU



Neural Acceleration

e Trained for a specific scene

e |nput: camera position, camera
direction and gaze position

e Output: predicted importance of
each 3D asset in the scene

Pretrained network
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Neural Acceleration
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User Study



Evaluation

Flicker Noise
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Evaluation
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Eye-tracked study

e Task - two-alternative-forced-choice (2AFC)
experiment

o Each trial consists of a pair of conditions among
the UNI/ECC/OURS

o Participants select which condition appeared
more smoothly and comfortably updated with
fewer artifacts over the entire duration

NYU



Eye-tracked study

e Why didn't task focus on visual quality?

o Participants cannot focus on two different aspects

o There exists objective metrics for visual quality like
FovVideoVDP

o Limited human visual perception during natural,
active viewing conditions
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Eye-tracked study

e FEach pair of comparison contains:
o 8 participants * 8 trials/participant

o =64 trials in total
e Consistency: OURS > ECC ~ UNI
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Screen-based study

e Visual stimuli rendered with
1920x1080 resolution and 60
degree of vertical FoV

e Our protocol automatically
compute and inform participants
of the correct eye-display distance
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Screen-based study

e Task1-temporal consistency

o Similar to eye-tracked study

o Except that user gaze is fixed so that there is no saccade
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Screen-based study

e Task 2 -visual quality

o First observe full-quality rendering

o Then, 2 static images of different conditions are
sequentially displayed

o The 2images are sampled from the sequences
in task T at the same timestamp
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Screen-based study

e FEach pair of comparison
contains:

o 12 participants *5
trials/participant

o

Q?A
N

O

o =060 trialsin total
e Consistency: OURS > ECC ~ UNI
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NYU s



Objective
Analysis



FovVideoVDP

e Full-reference visual quality metric predicts perceptual difference
e Report quality in the JOD (Just-Objectionable-Difference) units
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Visual quality

e Use FovVideoVDP as the metric

e Sample 10-second gaze sequences
from eye-tracked user study

e Measure the timing when
FovVideoVDP reaches a shared
threshold
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Visual quality

e QURS = ECC > UNI in both static and dynamic scenes
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Network

e \We measure the FovVideoVDP

for OURS and UNI under same

network condition, and use the difference as the gain of OURS
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Network

e We also measure the gain under different latencies at 3G/4G/5G
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Conclusion



Summary

e Compared with 2D frame-based streaming, our 3D streaming
method enables low-latency interaction, low cloud overload

e Our system delivers a statistically significant reduction of temporal
artifacts without compromising the visual quality

e Our system can work well under different network conditions
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Limitation and future work

e Only foveation and saccade are used as the main perceptual
mechanisms

e Neural network only trained in static scene

e Our framework only mitigates the perceived flickering

e Gaze motion prediction can be used in the future
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