
Instant Reality: Gaze-Contingent 
Perceptual Optimization for 3D 

Virtual Reality Streaming

22.03.10

Shaoyu Chen, Budmonde Duinkharjav, Xin Sun, Li-Yi Wei, 
Stefano Petrangeli, Jose Echevarria, Claudio Silva, Qi Sun



Introduction

P A R T   0 1



3

Background
● Cloud-based streaming has widespread applications
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Background
● The latency from traditional 2D video streaming may cause issues
● VR rendering needs to handle 7x pixels/second than 2D screen

Source: https://youtu.be/o6pf988yFSc

Latency and Unstable
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Background
● In comparison, 3D assets can enable responsive interaction

Responsive and Interactive
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Background
● 3D assets could yet be handled by existing network bandwidth
● GPU has 2.5x FLOP while global internet bandwidth grows 26%

4X playback

sec
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Background
● Foveated rendering only works for rendering with streamed assets

[Patney et al., 2016][Tursun et al., 2019]
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Overview
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Overview



10

Overview
● Our method can be applied to meshes, volume, and dynamic scene



Method
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Method
● Modeling spatio-temporal vision

○ Spatial visual acuity

○ Popping artifacts 

○ Change blindness during saccade
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Spatial visual acuity
● Distribution of retinal cells is not uniform
● As a result, spatial visual acuity is also non-uniform

[Watson, 2014]
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Eccentricity importance
● The importance is given by: 

○ E is the cell density function, x is pixel position and g is gaze position
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Popping artifacts 
● A major problem of traditional LoD-based procedural rendering
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Model perception of images
● In order to minimize the perceive change
● We first model how human perceive static images

[Barten, 2004]
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Model perception of images
● We model human perception on an image as:

gaze pixel image
sensitivity function

given frequency band f,
brightness of display L 

bandpass filtered 
point contrast
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Model perception of images

Decomposition visualization of bandpass filtered contrast
The periphery sensitivity was clamped by E
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Temporal consistency

gaze pixelcurrent
image sensitivity function 

given frequency band f,
brightness of display L 

bandpass filtered 
point contrast

changed
image

● Similarly, we model the perceived change as temporally adapted 
Weber’s contrast to individual frequency band

balancing parameter 
for low-intensity stimuli
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Temporal consistency

LOD 1 image LOD 0 image Temporal consistency 
heatmap



21

Saccade
● Fast eye movements with gaze speed > 180 deg/sec
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Per-pixel importance

−λ =

Eccentricity importance Temporal consistency Per-pixel importance
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Mapping from 2D to 3D

Per-pixel importance Per-3D-unit importance
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Streaming
● We use a greedy approach to fill the update to be streamed

Before update After update
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Neural Acceleration
● Intolerable latency can be introduced during the heavy frequency 

domain decomposition for the temporal consistency calculation
● For fast prediction of the importance, a multilayer perceptron 

neural network is trained
● Cloud can skip rendering the actual image with neural acceleration
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Neural Acceleration
● Trained for a specific scene
● Input: camera position, camera 

direction and gaze position
● Output: predicted importance of 

each 3D asset in the scene
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Neural Acceleration

w/o acceleration with acceleration



User Study
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Evaluation

Eye-tracked study Screen-based study Objective analysis
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Evaluation

OURS ECC UNI
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Eye-tracked study
● Task - two-alternative-forced-choice (2AFC) 

experiment

○ Each trial consists of a pair of conditions among 
the UNI/ECC/OURS

○ Participants select which condition appeared 
more smoothly and comfortably updated with 
fewer artifacts over the entire duration
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Eye-tracked study
● Why didn’t task focus on visual quality?

○ Participants cannot focus on two different aspects

○ There exists objective metrics for visual quality like 
FovVideoVDP

○ Limited human visual perception during natural, 
active viewing conditions
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Eye-tracked study
● Each pair of comparison contains:

○ 8 participants * 8 trials/participant 

○ = 64 trials in total

● Consistency: 𝑂𝑈𝑅𝑆 > 𝐸𝐶𝐶 ≈ 𝑈𝑁𝐼

VR eye-tracked temporal consistency
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Screen-based study
● Visual stimuli rendered with 

1920×1080 resolution and 60 
degree of vertical FoV

● Our protocol automatically 
compute and inform participants 
of the correct eye-display distance
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Screen-based study
● Task 1 – temporal consistency

○ Similar to eye-tracked study

○ Except that user gaze is fixed so that there is no saccade
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Screen-based study
● Task 2 – visual quality

○ First observe full-quality rendering

○ Then, 2 static images of different conditions are 
sequentially displayed

○ The 2 images are sampled from the sequences 
in task 1 at the same timestamp
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Screen-based study

Video-based temporal consistency Video-based quality

● Each pair of comparison 
contains:

○ 12 participants * 5 
trials/participant 

○ = 60 trials in total

● Consistency: 𝑂𝑈𝑅𝑆 > 𝐸𝐶𝐶 ≈ 𝑈𝑁𝐼

● Quality: 𝑂𝑈𝑅𝑆 ≈ 𝐸𝐶𝐶 > 𝑈𝑁𝐼



Objective 
Analysis
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FovVideoVDP
● Full-reference visual quality metric predicts perceptual difference
● Report quality in the JOD (Just-Objectionable-Difference) units

JOD 7.4506 JOD 6.4633



40

Visual quality
● Use FovVideoVDP as the metric
● Sample 10-second gaze sequences 

from eye-tracked user study
● Measure the timing when 

FovVideoVDP reaches a shared 
threshold
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Visual quality
● 𝑂𝑈𝑅𝑆 ≈ 𝐸𝐶𝐶 > 𝑈𝑁𝐼 in both static and dynamic scenes
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Network
● We measure the FovVideoVDP for OURS and UNI under same 

network condition, and use the difference as the gain of OURS

quality gain w.r.t. bandwidth
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Network
● We also measure the gain under different latencies at 3G/4G/5G 

speed

quality gain w.r.t. artificially introduced network latencies



Conclusion
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Summary
● Compared with 2D frame-based streaming, our 3D streaming 

method enables low-latency interaction, low cloud overload
● Our system delivers a statistically significant reduction of temporal 

artifacts without compromising the visual quality
● Our system can work well under different network conditions



46

Limitation and future work
● Only foveation and saccade are used as the main perceptual 

mechanisms
● Neural network only trained in static scene
● Our framework only mitigates the perceived flickering
● Gaze motion prediction can be used in the future



Thank you!


