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Isogeometric analysis (5 JLT 4 47)

@ IGA is an isoparametric, exact geometry approach, which is recently
providing very promising results as an alternative to FEA.

@ proposed by Prof. T. Hughes et al. from University of Texas at Austin
in 2005

@ motivation:

e seamless integration of CAD and CAE.
e avoid geometry approximations of mesh generation in FEA
e high regularity and refinement of B-spline functions.

@ basic idea: use the same standard mathematical representation as in
CAD systems (such as NURBS) for both the geometry and the
solution field (such as thermal conduction).



Difference between IGA and FEA
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Parameterization of computational domain

e Open problem
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Two main differences between FEA and IGA

@ computational domain:

e FEA: discrete mesh

e |IGA: smooth domain(spline form)
@ basis function:

e FEA: Lagrange interpolation polynomial
e |IGA: B-spline basis function




Computational domain for analysis

@ Mesh(computational domain) quality is an important issue in
FEA

@ Improvement of mesh quality in FEA by remesh




IGA-meshing

@ |IGA is a spline-version of FEA
@ Mesh generation in FEA

@ CAD models usually define only the boundary of a solid, but the appli-
cation of isogeometric analysis requires a volumetric representation

@ As itis pointed by Cotrell et al., the most significant challenge facing
iIsogeometric analysis is developing three- dimensional spline
parameterizations from boundary information
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Representation in IGA

@ computational domain:
e 2D: planar B-spline surface
e 3D: B-spline volume

@ solution field :
e 2D: space B-spline surface
e 3D: B-spline volume




Parametrization of computational domain is

for IGA

@ First step in IGA(Mesh generation in FEA)

@ Quality of parametrization is determined by fewer
variables(control points)

@ Refinement operation is not arbitrary

@ Good parametrization is more important for IGA




@ Given planar closed boundary which consists of four B-spline
curves, it has various different parametrization




Impact of different parametrization

@ Impact on the analysis results
@ Impact on the convergence speed
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@ Impact on the analysis results
@ Impact on the convergence speed
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Problem statement

Construction of computational domain from boundary

given boundary control points of computational domain, construct the
iInner control points to generate analysis-suitable parameterization of
computational domain

boundary curves computational domain



Main difficulties

@ 2D problem: given four planar boundary B-spline curves of
computational domain, find the best planar B-spline surface

) Trimmed Surface as parametrization of computational domain.

@ 3D problem: given six boundary B-spline surfaces of
computational domain, find the best B-spline volume as

¢ COII]pl@X tOpOlogY parametrization of computational domain.

@ Unknown variables: inner control points of B-spline

* Analysis-suitable surtzce(volume)




Related work on parameterization for IGA

» Analysis-aware optimal parameterization

E. Cohen et al.(CMAME, 2010) , Xu et al.(CMAME,2011), Pilgerstorfer et al ( CMAME, 2013)

» Volumetric spline parameterization from boundary triangulation
T. Martin et al.(CMAME, 2009), Zhang et al.(CMAME, 2012).

» Analysis-suitable planar parameterization from spline boundary
Xu et al.(CAD, 2013), Gravessen et al.(CMAME, 2014), Xu et al. (CMAME, 2015),
Nian (CMAME, 2016), Kapl M. et al. (CMAME, 2016) , Buchegger and Juttler (CAD, 2017)

» Analysis-suitable volume parameterization from spline boundary
Xu et al.(JCP, 2013), Zhang et al.(CM, 2012), Chan et al (CAD, 2017) ,

Haberleitner and Juttler (CAD, 2017)
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Volumetric parameterization with truncated hierarchical B-splines for
isogeometric analysis

Y Zheng, F Chen - Computer Methods in Applied Mechanics and ..., 2022 - Elsevier
Constructing spline parameterizations for computational domains is one of the fundamental
problems in isogeometric analysis. In this paper, we present an efficient method for ...
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IGA-suitable planar parameterization with patch structure simplification of closed-
form polysquare

S Wang, J Ren, X Fang, H Lin, G Xu, H Bao... - Computer Methods in ..., 2022 - Elsevier

A primary challenge for isogeometric analysis (IGA)-suitable parameterization is to efficiently

decompose a complex computational domain into a small number of high-quality IGA ...
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TCB-spline-based isogeometric analysis method with high-quality
parameterizations

Z Wang, J Cao, X Wei, YJ Zhang - Computer Methods in Applied Mechanics ..., 2022 - Elsevier
Isogeometric analysis (IGA) was introduced to integrate methods for analysis and computer-
aided design (CAD) into a unified process. High-quality parameterization of a physical ...
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Penalty function-based volumetric parameterization method for isogeometric
analysis

Y Ji, MY Wang, MD Pan, Y Zhang, CG Zhu - Computer Aided Geometric ..., 2022 - Elsevier

In isogeometric analysis, constructing bijective and low-distorted parameterizations is a
fundamental task. Compared with the planar problem, the volumetric case is more ...
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Curvature-Based r-Adaptive Isogeometric Analysis with Injectivity-Preserving
Multi-Sided Domain Parameterization
Y Ji, M Wang, Y Yu, C Zhu - Journal of Systems Science and Complexity, 2023 - Springer

Inspired by the r-refinement method in isogeometric analysis, in this paper, the authors
propose a curvature-based r-adaptive isogeometric method for planar multi-sided ...
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Constructing planar domain parameterization with HB-splines via quasi-
conformal mapping
M Pan, F Chen - Computer Aided Geometric Design, 2022 - Elsevier

Constructing a high-quality parameterization of a computational domain is a fundamental
research problem in isogeometric analysis, which has been extensively investigated so far ...
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h-Refinement method for toric parameterization of planar multi-sided
computational domain in isogeometric analysis

Y Ji, JG Li, YY Yu, CG Zhu - Computer Aided Geometric Design, 2022 - Elsevier

Toric surface patches are a class of multi-sided surface patches that can represent multi-
sided domains without mesh degeneration. In this paper, we propose an improved ...
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On an improved PDE-based elliptic parameterization method for isogeometric
analysis using preconditioned Anderson acceleration

Y Ji, K Chen, M Méller, C Vuik - Computer Aided Geometric Design, 2023 - Elsevier

Constructing an analysis-suitable parameterization for the computational domain from its

boundary representation plays a crucial role in the isogeometric design-through-analysis ...
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Boundary Correspondence for Iso-Geometric Analysis Based on Deep Learning
Z Zhan, Y Zheng, W Wang, F Chen - Communications in Mathematics and ..., 2023 - Springer

One of the key problems in isogeometric analysis (IGA) is domain parameterization, ie,
constructing a map between a parametric domain and a computational domain. As a ...
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Construction of IGA-suitable Volume Parametric Models by the Segmentation—
Mapping—Merging Mechanism of Design Features

L Chen, N Bu, Y Jin, G Xu, B Li - Computer-Aided Design, 2022 - Elsevier

Volumetric parameterization is the key and bottleneck issue in the current research of

constructing complex models for isogeometric analysis (IGA). Many researchers used ...
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Curvature-based R-Adaptive Planar NURBS Parameterization Method for
Isogeometric Analysis Using Bi-Level Approach

Y Ji, MY Wang, Y Wang, CG Zhu - Computer-Aided Design, 2022 - Elsevier

Localized and anisotropic features extensively exist in various physical phenomena. The
present work focuses on the r-adaptive parameterization technique for isogeometric analysis ...
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[PDF] Skeleton-Based Volumetric Parameterizations for Lattice Structures
L Chen, S Liang, N Yan, X Yang... - ... INENGINEERING & ..., 2023 - cdn.techscience.cn

Lattice structures with excellent physical properties have attracted great research interest. In
this paper, a novel volume parametric modeling method based on the skeleton model is ...
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Analysis-suitable parameterization (XU 2011)

@ injective (no self-intersections)
@ as uniform as possible
e orthogonal isoparametric curves




Analysis-suitable parameterization (XU 2011)

@ no self-intersections: injective
@ injective condition

Suppose that Fis a mapping from connected domain €, to domain
Q,, if Fis injective on the connteced boundary 0Q, and the
Jacobian determinant of Fis non-zero, then F is injective on the
interior domain of €.




Analysis-suitable parameterization (XU 2011)

@ planar B-spline surface F(u,v)

Fu,v)= ) > BlB!(v)P;
i=0 j=0
with U=1{0,...,0,ups1,...,ur—p-1,1,...,1}
V= {O,...,O,vp+1,...,vr_p_1,1,...,1}
P, = (P;;.,Pfj)

J(F)=‘

=11
-n.m

If the Jacobian determinant J(F) of planar B-spline surface
satisfies J(F) > 0, F(u, v) has no self-intersections.




Analysis-suitable parameterization (XU 2011)

Computation of Jacobian determinant

J

F.(u,v) = ZZPEIO)Nlp 1(”)qu(v)
=0 j

Fuu,v) = Z Pf,?”l)Ni,p(u)Ni,q_l(v)

JF) = FF,-F,F,
= Z GijNi,2p—1 (U)Ni,Zq—l v)

From the convex hull property of B-spline surface and regularity at
four corners, it G;; > 0, then J(F) > 0, that is, F(u, v) has no
self-intersections.
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The condition number of the stiffness matrix, which is a key
factor for the stability of the linear system, depends strongly on
the quality of the domain parameterization

1. In order to obtain a small bound,

@ the lengths of both partial
derivatives should be close to

equal, and the angle between

ding the infl fd i them should be close to 90.
Bounding the influence of domain parameterization and knot . .
spacing on numerical stability in Isogeometric Analysis @ 2. Furthermore ) elements with a

Elisabeth Pilgerstorfer *, Bert Jiittler small area should be avoid Ed, i.e .
Institute of Applied Geometry, Johannes Kepler University, Linz, Austria th e a re a S h O u | d n Ot Va ry to 0 m u C h

between elements in the physical
domain

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma —
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@ Discrete Coons method [G.Farin, 1999]

Given the boundary control points Py, P, , P;o, P; ., the inner contro
points P;; can be constructed as follows:

] ] ' '
Py = (1-S)Pyj+~Py+(1-L)Py+LP,,
n n m m

1 L i] Poo Pom 17%
n n Pn,O Pn,m #




The interior control points P;;, can be constructed as linear combinations
of points described by the following formulas:

Pi

(1 =i/DPojr +i/IPrjx + (1 —j/m)Pioy + j/mP; i
Poox Pomk ” l—j/m ]
Pox Prmk Jj/m

+(1 — k/n)PiJ',() + k/l’lPl'J',n — [1 — l/l, l/l]

o | Pioo Pioan 1 —k/n
E=gfmjimll . P ] [ k/n ]
[ P()J',() PZJ,O 1 -1/l |
[1 k/n, k/n] | POJ,n PlJ,n ] [ l/l

P Po,m [ L=y
+(1-k/n>[[1—i/l’i/l][ p‘j’;”;’ P(l)’ 3] J'/f"/m ”

. . POOn POmn ]l 1_]/m ”
1_ l’ l Uy o/ Tl )
[ 4 l/][ Pl,O,n Pl,m,n ]/m

+k/n




given six boundary B-spline surfaces, find the placement of inner control
points such that the resulted trivariate B-spline parametric volume is a good
computational domain for 3D isogeometric analysis

boundary curves computational domain



2y xkMF % CMAME 2011, CAD 2013

Input: six boundary B-spline surfaces
Output: inner control points and the corresponding B-spline volume
parameterization

@ Construct the initial inner control points by discrete Coons method;
@ Construct the constraint condition from boundary B-spline surfaces;

@ Solve the following constraint optimization problem by using
sequential quadratic programming (SQP for short) method

2 2 2
il f f (log I+ 1l oy 12 + 1l oz I12)

+(U “ T¢e ” + || Oy ”2 + I O ”2
12 || oy IF 421 oz 1P +2 || o |1P)dédndL .
s.t. Gijk >0

@ Generate the corresponding B-spline volume parameterization
o(&,n, ) as computational domain.




Multi-block case

\ | ' = '- 5 _0'1 g ]7, | — — _(TQ Es 1, [ | —
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(b) Isoparametric surfaces and control lattices in C'!

B-spline blocks



Variational harmonic method
( Journal of Computational Physics, 2013)

e Given: computational domain S, parametric domain 2,

n

SEm) = GEnYEM) = ) > NN pi;

i=0 j=0
@ Harmonic mapping: o : S +— P
AE(x,y) =& + &y =0
An(x,y) = ex +yy =0
e ! : P Sisone-to-one




@ Convert the harmonic condition into some constraints on parametric
domain by chain rules:

fxx + ‘fyy =0, Mx T Ny = 0

0*U o*U o*U
Fr 2(xexy + Yeyn) 7 pr. +(x; + )’g) =0

on*
o U=x( nand U =y, n)
@ Relaxation solving method

2 2
(5 + )

@ Drawback: Non-uniform elements near convex(concave) boundary
region



@ Convert the harmonic condition into some constraints on parametric
domain by chain rules:

fxx + fyy =0, xx + Tyy = 0

Lx(&,n) = Ly(&,n) =0
| LS(&, 1) I*= (Lx)* + (Ly)* = 0

@ Objective function combining uniform and orthogonal term:

f | LS, m) IIF +A1 (Il See I* + 1| Sy I
+2 [ Sgn IP) + (1l Se IIF + 11 S,y P)dudv

2 32 62

0
L= (x% + yi)g 2(x§x77 + ygyn) Py + ()c‘f + yf) 77



Input: four coplanar boundary B-spline curves
Output: inner control points and the corresponding planar B-spline
surfaces

@ Construct the initial inner control points by Discrete Coons method;

@ Solve the following optimization problem by using steepest-descent
method

MIN f | LS, m) I* +A1(1] Sge IIF + 1| Sy |I7
+2 || Sg IIF) + 21| Sg |I* + || Sy 1*)dudv

e Generate the corresponding planar B-spline surface S(¢,n) as
computational domain.



Two examples (1/2)

(a)



Two examples (2/2)




Volume parameterization with variational harmonic method

Convert the harmonic condition into some constraints on parametric
domain by chain rules:

Lx(&,n,¢0) = Ly(€,n,{) = Lz(&,1n,4) =0 (1)
where
3’ 9’ 3? 3’ 9? 3’
L=a"— +2a"”— +2a°— +d?— +2d® — ++a¥—, (2)
e e T aw T e T e T a2
a'' = anaz; - 6133, a'? = ajzax — apaz,a = anaxy; — azan,
a* = ayjaz; — aiy, a” = apzan — anan,a = ajan — ai,,
and

air = (Sg, Se),arx = (Sg, Sp), a1z = (8¢, Sp),
ajz) = (ST]’ Si])a az3 = (ST]7 85)7 az3 = (S{3 S(:)'




Overview

Input: six boundary B-spline surfaces
Output: inner control points and the corresponding B-spline volumes

e Construct the initial inner control points by discrete Coons method;

@ Solve the following optimization problem by using steepest-descent
method

Min f | LS, 1, 0) IIF +21(1| See IF + 1| Sy IF +2 11 Sep I +2 1| Sz
+2 11 Sez 1P + 11 Szz 1P + 21 Se P + 1| Sy I + 1| S¢ |1*)dudv

@ Generate the corresponding B-spline volume S(¢,n, ) as
computational domain.



(a) boundary surfaces (b) boundary curves

n



(e) initial iso-parametric surface

(f) final iso-parametric surface

it



3D example |

(a) boundary surfaces (b) boundary curves
e e
S

(c) Coons volume (d) final volume parameterization



Boundary reparameterization for volumetric
parameterization (Computational Mechanics, 2014)

Goal: construct optimal Mdbius reparameterization of boundary
surfaces to achieve high-quality isoparametric structure without
changing the boundary geometry




Mobius reparameterization

N—

n m @ g 5 1 Pr..y q 3
n m p q
zizo j:())\i,jN,' @Nj @,

R(u,v) =

(1 —a)§
New NURBS surface with

U =
(X(l — S) + (1 — a)’g‘ # the same control points
but different weights
(l o ,B)T] and knot vectors

B =)+ =By

Aij=
»J p _ q ,
r:l Klar HS:] L]vs




Optimization method

 Find the optimal

a, p

such that the reparameterized NURBS surtace
minimizes the following objective function

/P (et T — Juve) + o1 (1 Rec |? + 1Ry I2) dEdy




Reparameterization for VP problem

(a) Boundary NURBS surfaces (b) Initial boundary (c) Optimized boundary
parameterization parameterization

(d) Control lattice (e) Final isoparametric structure (top view)



(a) Boundary (b) Boundary e \
NURBS surfaces NURBS curves A | X

(a) Boundary NURBS  (b) Boundary NURBS
surfaces and control curves

il

(c) Initial boundary (d) Optimized
parameterization boundary
parameterization

(c) Resulting control  (d) Final isoparametric
lattice structure

(e) Control lattice (f) Final
isoparametric
structure
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