

GAMES 106

现代图形绘制流水线原理与实践

霍宇驰 eehyc0@gmail.com

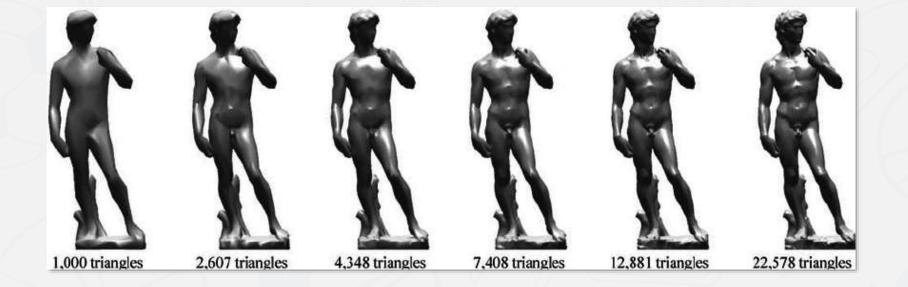
L11 2023/7/12

资产层次细节

・ 几何LOD

- 减面算法
- ・ 几何距离
- 网格简化

•



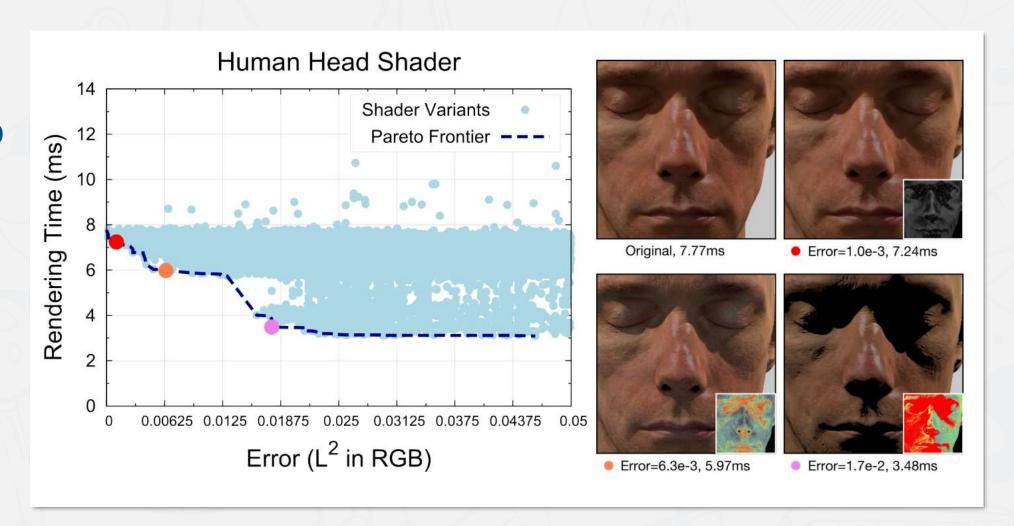
・ 纹理LOD

- 纹理滤波
- Mipmap
- 纹理压缩
- •

流水线优化技术

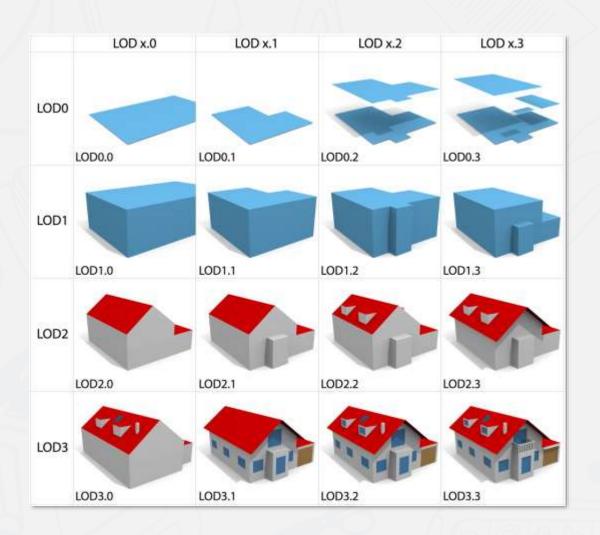
・着色器LOD

- 减化规则
- 质量预测
- 优化框架
- •



LOD的类型

- ・ 离散LOD (DLOD)
- · 连续LOD (CLOD)
- ・ 视角相关LOD (VLOD)
- ・ 层次结构LOD (HLOD)

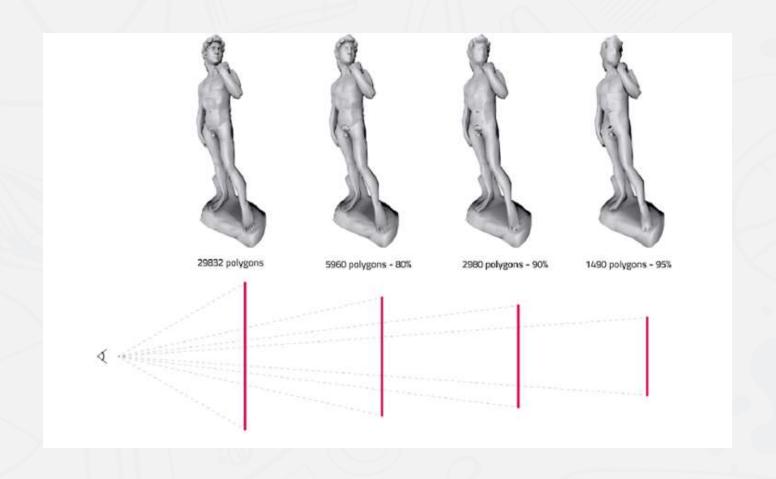


- ・ 离散LOD
- · 由数个不同层次细节的模型/ 纹理/着色器组成的
 - ・ 优点: 通用性好
 - ・ 缺点: Popping
- · 解决Popping的方案
 - 延迟效果的出现
 - ・几何变形
 - 透明混合



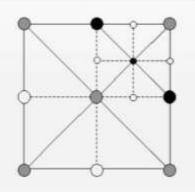
L11 2023/7/12

- · 每一帧,需要为每个模 选择一个LOD级别
- · 基于模型误差选择:
 - · 根据模型代表点与视 点的距离选择(假设 误差与距离相关)
 - · 根据模型包围球在屏幕的投影面积选择
 - · 根据模型包围盒在屏 幕的投影面积选择
 - 基于目标面片数选择



连续LOD

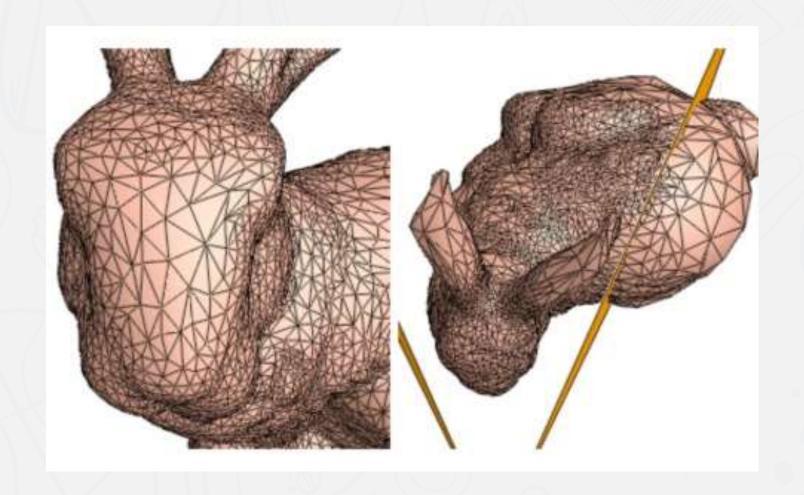
· 需要一个可实时获得 所需层次细节的数据 结构表示



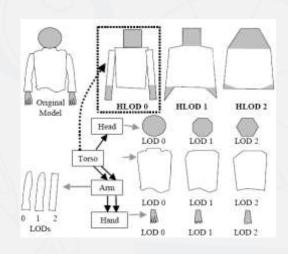
- ・真实感更高
- ・更多细节
- 更平滑的过渡

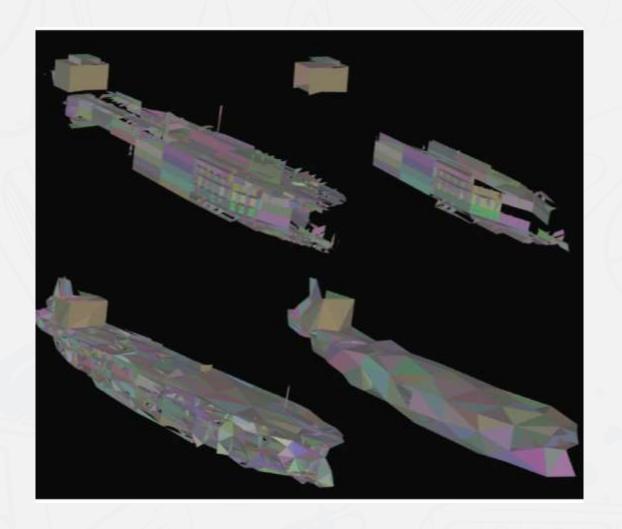
· 视角相关LOD

- · 通常也是连续 LOD
- · 层次细节与视角 方向相关
- · 自适应地分配同 一个物体的细节
- · 对地形等大型物 体友好

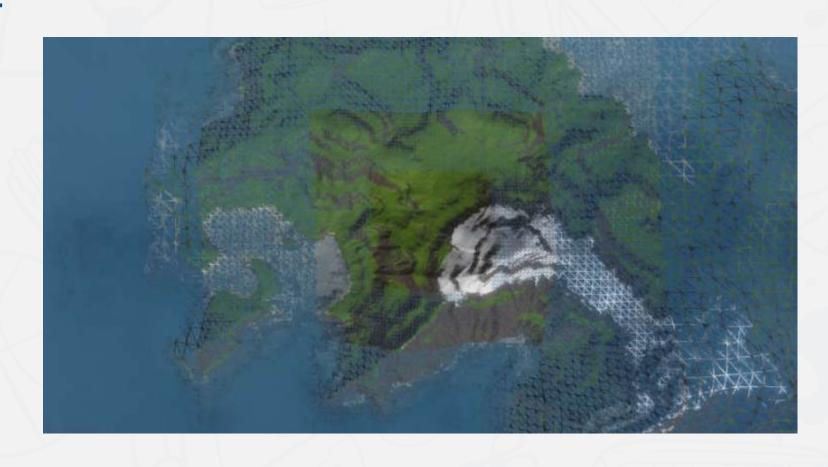


- ・ 层次结构LOD
 - Hierarchical LOD
 - · 既表示场景图中Node间的层次,又对每个Node提供多分辨率表示
 - · Node A被绘制,则A包含的 所有子Node都不必绘制





- · 地形是LOD的一种典型 应用
- · 同时包含了远景和近景 的层次细节
- 经典类型:
 - ROAM
 - Geomipmaps
 - Chunked LOD
 - Geometry clipmaps



ROAM

LOD管理技术

- Real-time optimally adaptive mesh (ROAM)
- · 一种的视角相关连续LOD, 用于
- 由高度场自适应地构建网格
- ・ 连续多分辨率
- 视点连续变化,网格也相应的"连续"变化

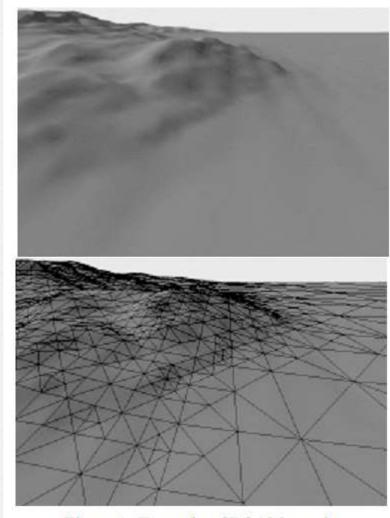
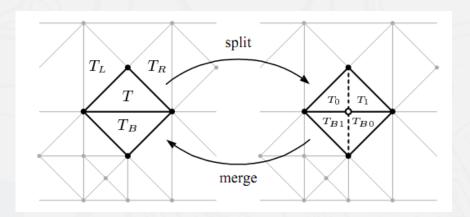


Figure 1: Example of ROAM terrain.

LOD管理技术

- ・ 通过长边剖分 的方法来构建 网格
- · 二叉树来表示 网格
- · 根据投影误差 来决定三角形 分裂和合并



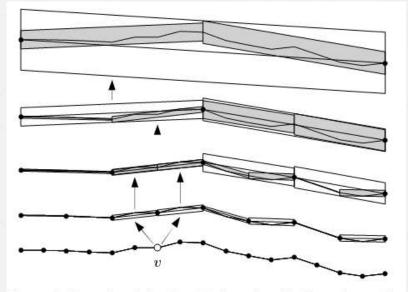
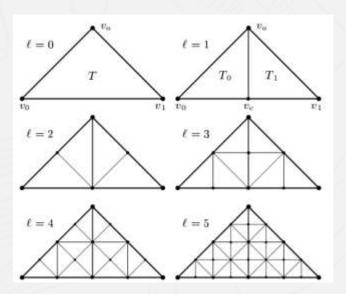


Figure 6: Nested wedgies for 1-D domain with dependents of v.

L11 2023/7/12



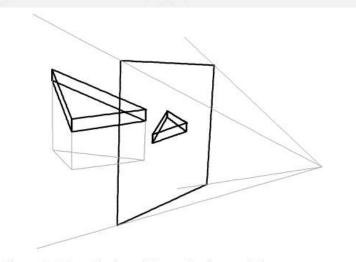
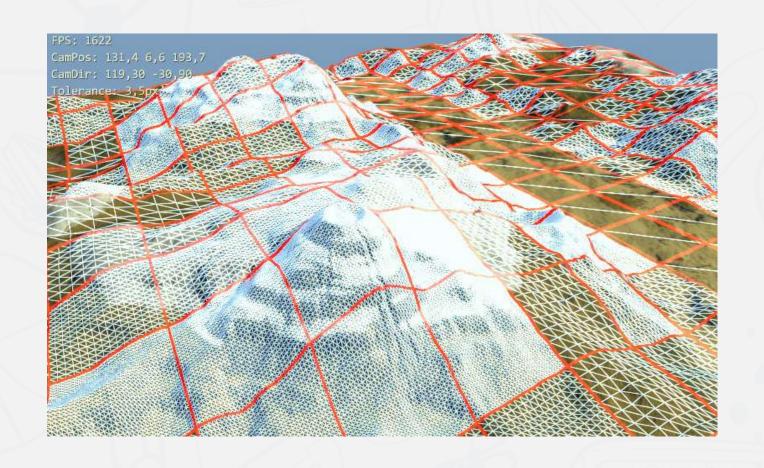
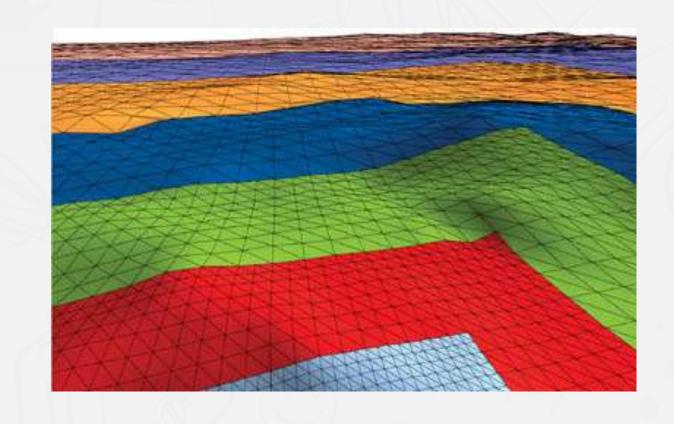


Figure 7: Distortion bound by projecting wedgie to screen space.

- · 视角相关的离散LOD
- · 运用了图像mipmap技术的原理
- · 在运行时根据屏幕空间 误差选择层次细节
- · 使用几何变形技术避免 popping



- · 由近到远层层嵌套的网 格组成
- · 随着位置的改变 (距离 变化) 更新数据
- ・优势
 - ・实现简洁
 - 存储消耗低
 - 根据距离同步更新



Chunked LOD

LOD管理技术

- · 用层次四叉树存储更多 的细节
- · 当接近叶结点时,细节 非常丰富
- · 按需细化,可避免无效 面片的渲染

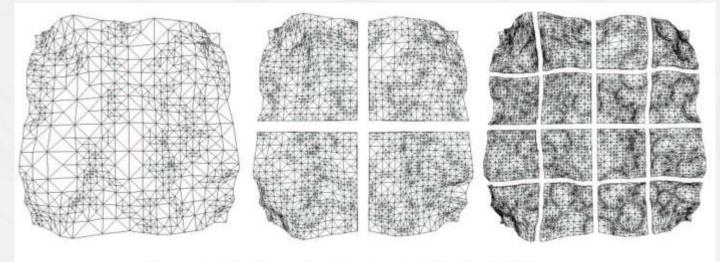
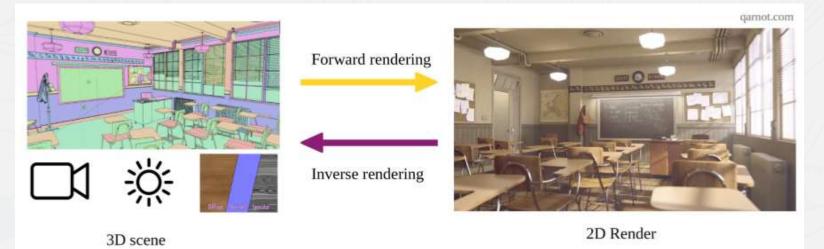


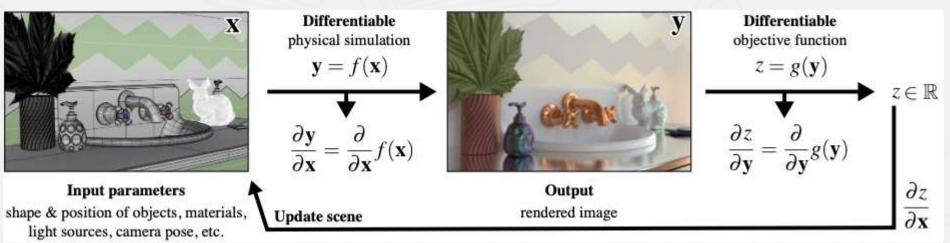
Figure 1: The first three levels of a Chunked LOD tree.

逆向绘制技术

・逆向绘制



[@Ariane Robineau]



[@Zhao et al.]

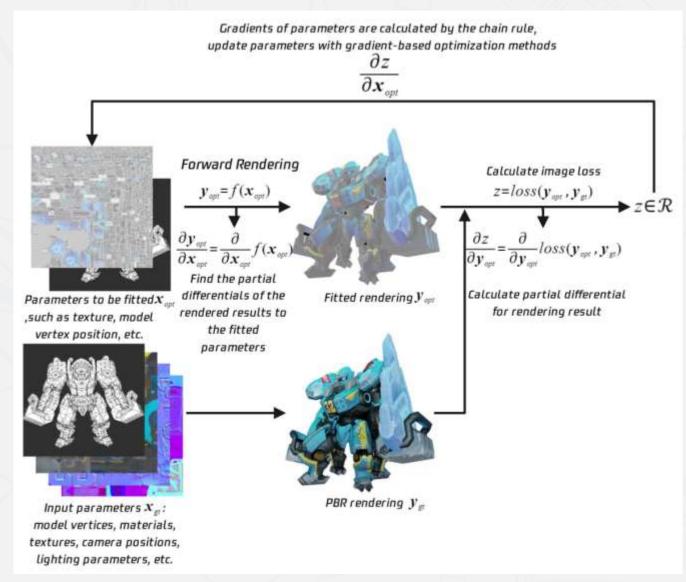
可微资产优化

可微绘制流水线

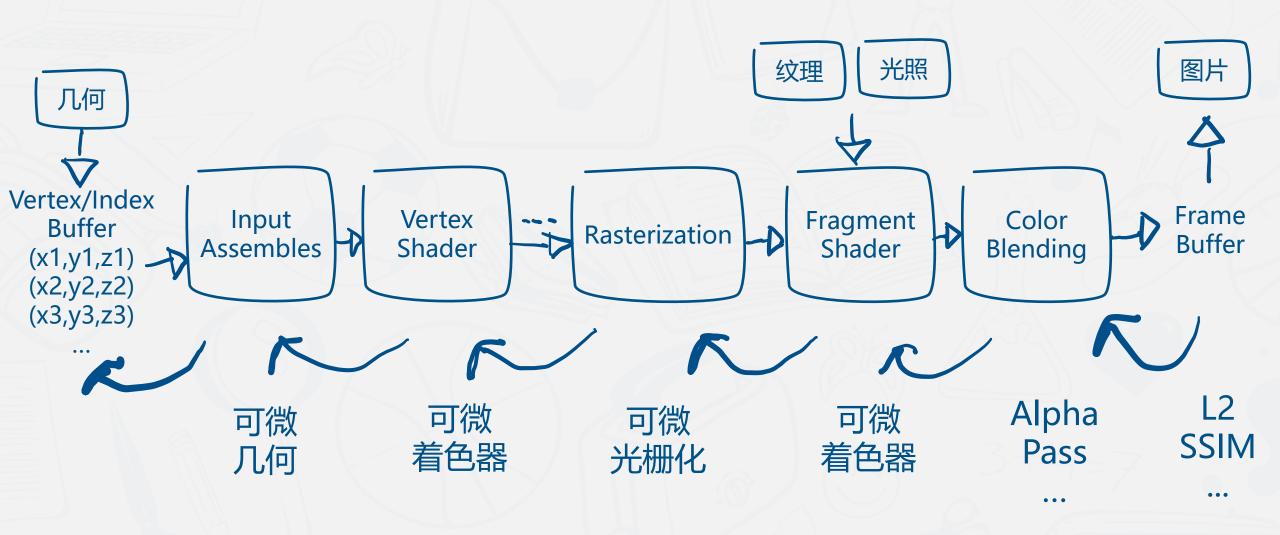
- 通过可微绘制流水优化
 - · 纹理
 - 几何
 - •

· 在给定的压缩率下最小 化绘制误差

· 生成LOD资产

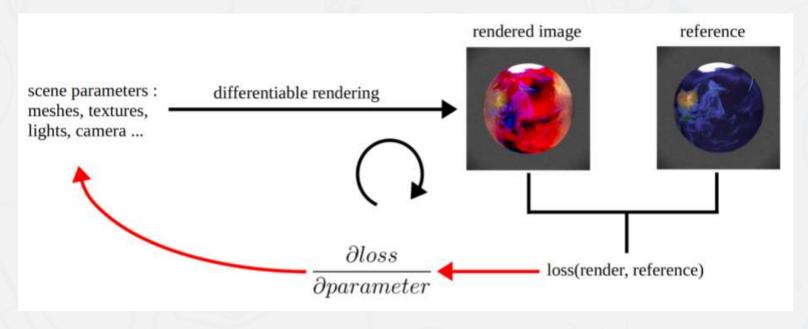


可微绘制流水线



可微绘制流水线

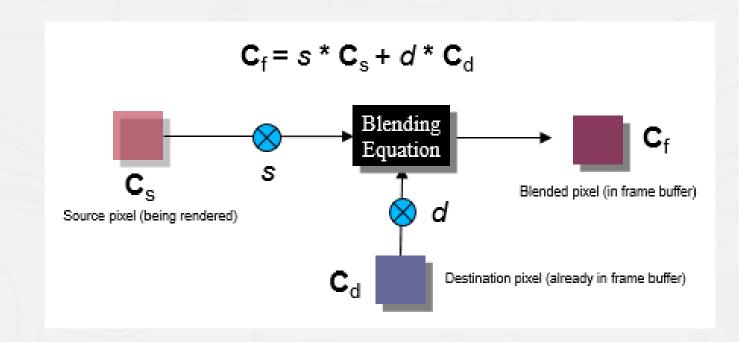
- ・监督信息
- · 用原始素材绘制GT
- ・ 用简化素材绘制OP
- · 计算Loss(GT-OP)
 - L1
 - L2
 - SSIM



[@Ariane Robineau]

· 用Loss优化素材...

- 可微混合
- · 计算各Pass的混合系 数 (s, d)
- · 根据混合系数将Loss 加权(s, d),逆向传 播到对应Pass

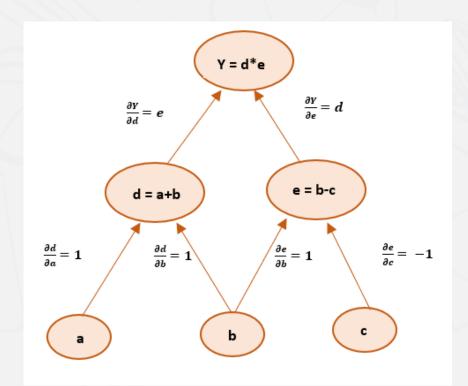


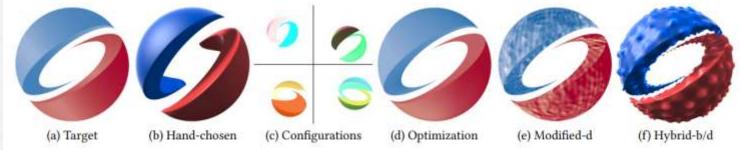
可微绘制流水线

・可微着色器

· 自动微分: 简单低效

· 手动微分:复杂高效





A δ : Autodiff for Discontinuous Programs – Applied to Shaders

Yuting Yang, Connelly Barnes, Andrew Adams, Adam Finkelstein

ACM SIGGRAPH 2022

可微绘制流水线

Taxonomy	Αδ	AD	FD	TEG	DVG	DPT
Discontinuities	✓	×	✓	✓	√	✓
Reduce to AD	✓	√	×	✓	√	✓
Time Complexity	O(1)	O(1)	O(n)	O(1)	O(1)	O(1)
Generality	DSL	All	All	Diff	VG	PT

x: variable

H: Heaviside step function

DSL:
$$e_d := C | x | \theta | e_d + e_d | e_d \cdot e_d | H(e_d) | f(e_d)$$

C: constant

 θ : parameter to diff

f: atomic function (sin, cos, exp, log, pow)

可微绘制流水线

x: sampling axis

$$\frac{\partial}{\partial \theta} \int H(x'+\theta)\phi(x-x')dx' = \int \delta(x'+\theta)\phi(x-x')dx' = \phi(x+\theta)$$

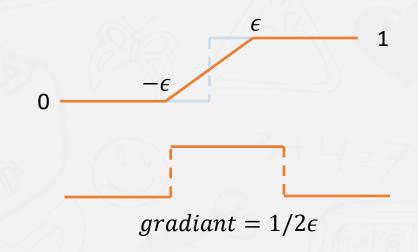
 θ : parameter

 ϕ : kernel

Heaviside

value $_{0}$ gradient gradiant = Diract(x)

Pre-filtering over a 1D box kernel



可微绘制流水线

Taxonomy	Αδ	AD	FD	TEG	DVG	DPT
Discontinuities	✓	×	✓	✓	√	✓
Reduce to AD	✓	√	×	✓	√	✓
Time Complexity	O(1)	O(1)	O(n)	O(1)	O(1)	O(1)
Generality	DSL	All	All	Diff	VG	PT

x: variable

H: Heaviside step function

DSL:
$$e_d := C | x | \theta | e_d + e_d | e_d \cdot e_d | H(e_d) | f(e_d)$$

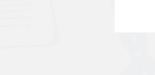
C: constant

 θ : parameter to diff

f: atomic function (sin, cos, exp, log, pow)

Op	Ours (k = O)	AD (k = AD)
$\frac{\partial_k H(g)}{\partial \theta}$	$\begin{cases} \frac{\frac{\partial_k g}{\partial \theta}}{ g^+ - g^- } & \text{if } H(g^+) \neq H(g^-) \\ 0 & \text{else} \end{cases}$	0
$\frac{\partial_k(g+h)}{\partial\theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k (g \cdot h)}{\partial \theta}$	$\frac{1}{2}(h^{+} + h^{-})\frac{\partial_{k}g}{\partial\theta} + \frac{1}{2}(g^{+} + g^{-})\frac{\partial_{k}h}{\partial\theta}$	$h\frac{\partial_k g}{\partial \theta} + g\frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k h(g)}{\partial \theta}$	$\begin{cases} h' \frac{\partial_k g}{\partial \theta} & \text{if } h(g) \text{ is statically differentiable} \\ \frac{h(g^+) - h(g^-)}{g^+ - g^-} & \frac{\partial_k g}{\partial \theta} & \text{otherwise}^* \end{cases}$	$h' \frac{\partial_k g}{\partial \theta}$

Op	Ours $(k = O)$	AD (k = AD)
$\frac{\partial_k H(g)}{\partial \theta}$	$\begin{cases} \frac{\frac{\partial_k g}{\partial \theta}}{ g^+ - g^- } & \text{if } H(g^+) \neq H(g^-) \\ 0 & \text{else} \end{cases}$	0
$\frac{\partial_k (g+h)}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k(g \cdot h)}{\partial \theta}$	$\frac{1}{2}(h^{+} + h^{-})\frac{\partial_{k}g}{\partial\theta} + \frac{1}{2}(g^{+} + g^{-})\frac{\partial_{k}h}{\partial\theta}$	$h\frac{\partial_k g}{\partial \theta} + g\frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k h(g)}{\partial \theta}$	$\begin{cases} h' \frac{\partial_k g}{\partial \theta} & \text{if } h(g) \text{ is statically differentiable} \\ \frac{h(g^+) - h(g^-)}{g^+ - g^-} & \frac{\partial_k g}{\partial \theta} & \text{otherwise}^* \end{cases}$	$h'\frac{\partial_k g}{\partial \theta}$

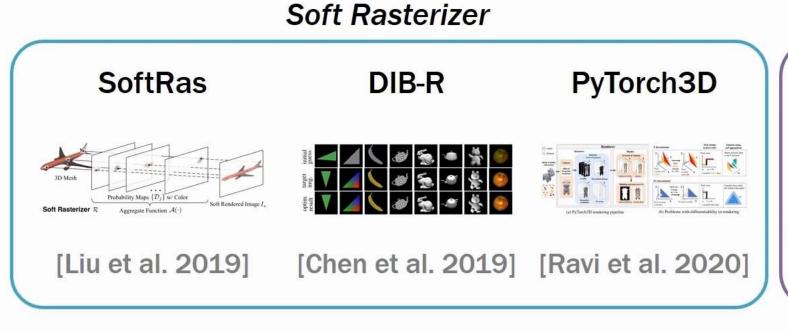


Op	Ours (k = O)	AD (k = AD)
$\frac{\partial_k H(g)}{\partial \theta}$	$\begin{cases} \frac{\frac{\partial_k g}{\partial \theta}}{ g^+ - g^- } & \text{if } H(g^+) \neq H(g^-) \\ 0 & \text{else} \end{cases}$	0
$\frac{\partial_k (g+h)}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k (g \cdot h)}{\partial \theta}$	$\frac{1}{2}(h^{+} + h^{-})\frac{\frac{\partial_{k}g}{\partial \theta} + \frac{1}{2}(g^{+} + g^{-})\frac{\partial_{k}h}{\partial \theta}}{\frac{\partial^{2}g}{\partial \theta}}$	$h \frac{\partial_k g}{\partial \theta} + g \frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k h(g)}{\partial \theta}$	$\begin{cases} h' \frac{\partial_k g}{\partial \theta} & \text{if } h(g) \text{ is statically differentiable} \\ \frac{h(g^+) - h(g^-)}{g^+ - g^-} & \frac{\partial_k g}{\partial \theta} & \text{otherwise}^* \end{cases}$	$h' \frac{\partial_k g}{\partial \theta}$

Op	Ours (k = O)	AD (k = AD)
$\frac{\partial_k H(g)}{\partial \theta}$	$\begin{cases} \frac{\frac{\partial_k g}{\partial \theta}}{ g^+ - g^- } & \text{if } H(g^+) \neq H(g^-) \\ 0 & \text{else} \end{cases}$	0
$\frac{\partial_k (g+h)}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$	$\frac{\partial_k g}{\partial \theta} + \frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k (g \cdot h)}{\partial \theta}$	$\frac{1}{2}(h^{+} + h^{-})\frac{\partial_{k}g}{\partial\theta} + \frac{1}{2}(g^{+} + g^{-})\frac{\partial_{k}h}{\partial\theta}$	$h\frac{\partial_k g}{\partial \theta} + g\frac{\partial_k h}{\partial \theta}$
$\frac{\partial_k h(g)}{\partial \theta}$	$\begin{cases} h' \frac{\partial_k g}{\partial \theta} & \text{if } h(g) \text{ is statically differentiable} \\ \frac{h(g^+) - h(g^-)}{g^+ - g^-} & \frac{\partial_k g}{\partial \theta} & \text{otherwise}^* \end{cases}$	$h'\frac{\partial_k g}{\partial \theta}$

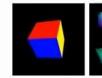
可微绘制流水线

• 可微光栅化



Anti-Aliasing (AA)

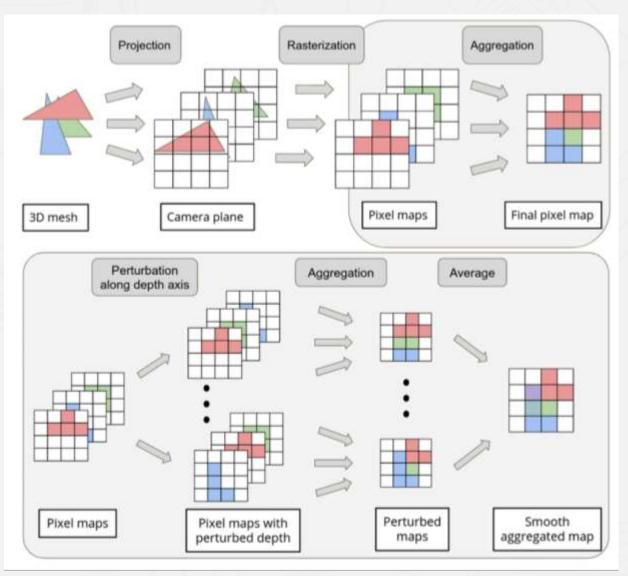
Nvdiffrast



[Laine et al. 2020]

可微绘制流水线

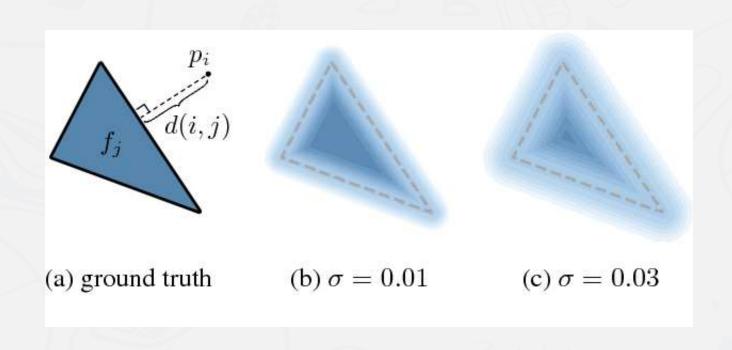
- 可微光栅化
 - ・ 把面片投影到屏幕 空间
 - ・根据深度混合
 - · 得到frame buffer
 - · 深度变化会产生不同frame buffer



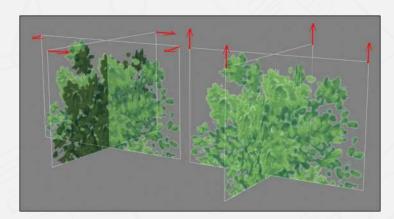
[@Lidec et al.]

• 可微几何

- ・ 像素 -> 顶点
- · 从可微光栅得到投 影后的Loss
- · 根据Loss改变几何 的边和顶点位置

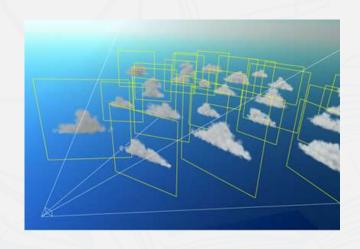


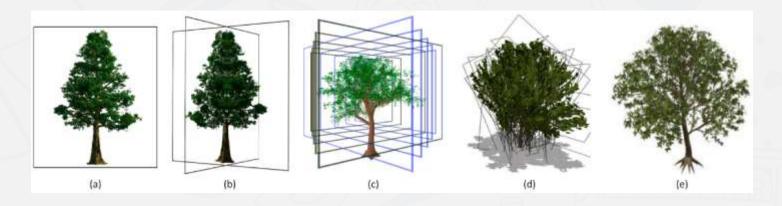
- · 用图像代替几何+着色,是一种极端的LOD方式
- Runtime IBS, Offline IBS,
 - Billboard Clouds
 - Image Cache [Shade96][Schaufler96], Geo Warping [Aliaga98]
 - Imposter [Sillion97], Multi-Layered Imposter
- Primitive
 - Texture Maps
 - Textured Depth Mesh (TDM), Incremental TDM
 - Depth Images,
 - Hybrid: Env. Map/Textured Polygon/Textured Height Field/LDI/Geometry



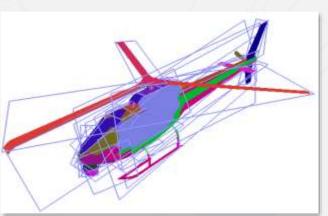
Billboards

- ・适用于室外场景
- ・手工生成
- ・自动生成
 - 绘制模型并存成图片
- ・单个多边形表示
 - ・总是朝向观察者
- 多个多边形表示
 - 多边形越多,效果越好
 - ・随视角变化
 - ・视角之间插值



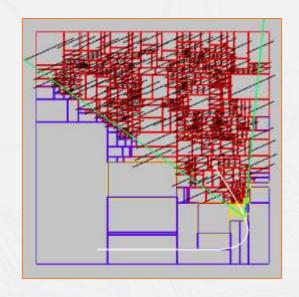


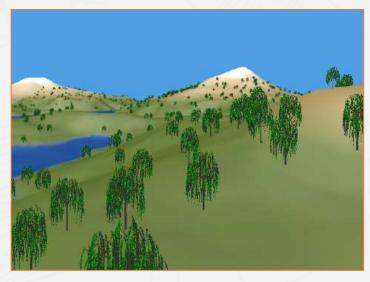
- 把一个静态的复杂三维网格模型简化为一些简单的平面加纹理。
- · 保持了良好的视觉重现精度——包括合适的视差和侧影轮廓。



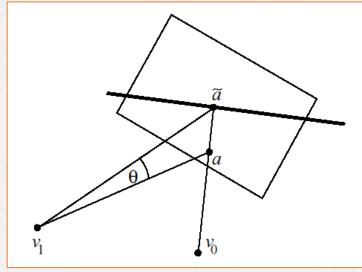
L11 2023/7/12

Image Cache

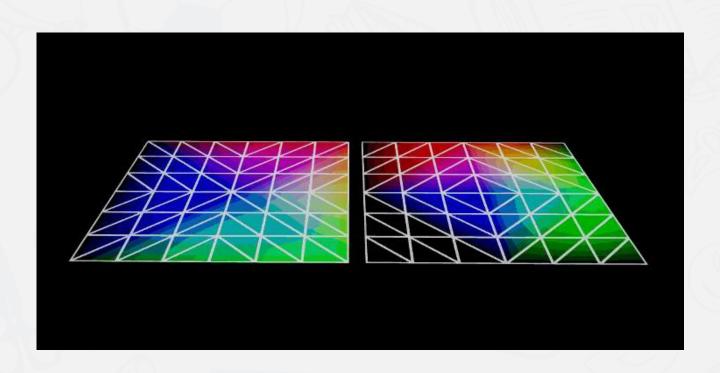


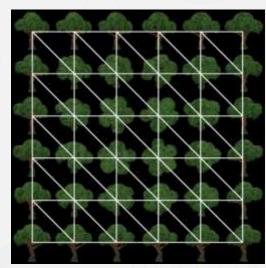


- · 预计算场景BSP树
- 绘制可视点
 - · 近距离节点使用几何 (黄色)
 - · 远距离节点使用RGBA图片替代(红色)
- 随镜头移动更新图片缓冲



- 在每个观测点上绘制一张图片, 存为对应端点的纹理。
- 在绘制时取出对应端点的纹理并混合,代替真实物体。





Textured Depth Map

