
Modern Game Engine - Theory and Practice

林宇杰 柳 航 贺文宁 蔡经浩 李方钏 管康诚

李进文 周一帆 梁嘉辉 涂 强 马晟杰 於怿丰

肖 翱 王鑫 彭盛林 庄鸣真 朱江涛 周宇东

冉高成 路程 陆俊壕 吴永力 鲁瀚洋 孙蒙蒙

张皓 朱威远 郑宇光 龙虎 胡浩宇 席圣渠

郇迪 刘浩天 胡树彦 翁开宇 方超伟 侯瑞涛

丁雨航 杨汶昊 祁志铭 林辉 潘安

300+ students submitted their homework

40 students are qualified for graduation certification

10 of them scored full points in all homework

Congratulations! Our Future Game Engine Talents

Modern Game Engine - Theory and Practice

 Set sail for the endless ocean of knowledge
We will continue to share everything we know about game engine

Videos & Streaming are coming Text version of lectures will be released soon

Follow us on WeChat
Reply【入群】to join our community

1,500+
Learning points

10,000+
Pages of Materials

200+
Days devoted

*Please follow us for full version

Modern Game Engine - Theory and Practice

• Q1: How does ECS handle destruction of entities?

• Q2: How can we measure Cache miss?

• Q3: How should we provide tools for designers to design functions under DOP architecture?

• Q4: How does Lumen handle emissive materials?

Q&A

WANG XI GAMES 104 2022

Advanced Topics

Modern Game Engine - Theory and Practice

Lecture 22

GPU-Driven Geometry Pipeline - Nanite

Modern Game Engine - Theory and Practice

“Long” Pipeline of Traditional Rendering

• Compute unit works with graphics

processor and rasterizer

• It's a series of data processing units

arranged in a chain like manner

• Difficult to fully fill the GPU

Modern Game Engine - Theory and Practice

Jungle of Direct Draw Graphics API

Explosion of DrawCalls:
• Meshes x RenderStates x LoDs x Materials x Animations

Problem 2: Driver state switching overhead between
amount of draw commands

Problem 1:A traditional DrawIndexedInstanced command
requires 5 arguments assigned on CPU

Modern Game Engine - Theory and Practice

Bottleneck of Traditional Rendering Pipeline

When rendering complicated scene with
dense geometries and many materials
• High CPU overload

• Frustum/Occlusion Culling
• Prepare drawcall

• GPU idle time
• CPU can not follow up GPU

• High driver overhead
• GPU state exchange overhead when

solving large amount of drawcalls

Modern Game Engine - Theory and Practice

Compute Shader - General Computation on GPU

• High-speed general purpose

computing and takes advantage of

the large numbers of parallel

processors on the GPU

• Less overhead to graphics pipeline

• Just one stage in pipeline

Modern Game Engine - Theory and Practice

Draw-Indirect Graphics API
Advantage:
• Allow you to specify parameters to draw commands from a GPU buffer, or via GPU compute program
• "Draw-Indirect" command can merge a lot of draw calls into one single draw call, even with different mesh topology

Notice:
• The actual name of "Draw-Indirect" is different in each graphics platform, but they act as the same role. (e.g.

vkCmdDrawIndexedIndirect(Vulkan), ExecuteIndirect(D3D12), ...)

Modern Game Engine - Theory and Practice

GPU Driven Render Pipeline – DrawPrimitive vs. DrawScene

• GPU controls what objects are actually

rendered

• Lod selection, visibility culling on

GPU

• No CPU/GPU roundtrip

• CPU do not touch any GPU data

• N viewports/frustums

Frees up the CPU to be used on other things, ie. AI

Modern Game Engine - Theory and Practice

GPU Driven Pipeline in Assassins Creed

Modern Game Engine - Theory and Practice

GPU Driven Pipeline in Assassins Creed

Motivation
• Massive amounts of geometry: architecture,

seamless interiors, crowds

Use mesh cluster rendering to
• Allow much more aggressive batching and

culling granularity

• Render different meshes efficiently with a

single indirect draw command

Modern Game Engine - Theory and Practice

• Require
• Fixed cluster topology (E.g. 64 triangles in Assassin Creed or 128 triangles in Nanite)
• Split & rearrange all meshes to fit fixed topology(insert degenerate triangles)
• Fetch vertices manually in VS

• Key Implementation
• Cull clusters by their bounding on GPU (usually by compute shader)
• GPU outputs culled cluster list & drawcall args
• Draw arbitrary number of visible clusters in single drawcall

Mesh Cluster Rendering

Clusters (64 triangles) Culled by cluster bouding box

Modern Game Engine - Theory and Practice

GPU Driven Pipeline in Assassins Creed
• Overview

• Offload more work from CPU to GPU
• But not perfectly "draw scene" command, can only draw objects with the same material together

Modern Game Engine - Theory and Practice

• Perform very coarse frustum culling and then batch all un-

culled objects together by material

• CPU quad tree culling

• Drawcalls merged based on hash that build on non-

instanced data:(e.g. material, renderstate, …).

• Update per instance data(e.g. transform, LOD factor...),static

instances are persistent

Works on CPU side

Modern Game Engine - Theory and Practice

GPU Instance Culling

• Output cluster chunks after instance culling
• Use the cluster chunk expansion (64 cluster in a chunk) to balance GPU threads within a wavefront.

Step 1Initial State

Modern Game Engine - Theory and Practice

GPU Cluster Culling

Step 2 Step 3

• Cluster culling by cluster bounding box
• output cluster list

• Triangle backface culling
• output triangle visibility result and write offsets in new index buffer

Modern Game Engine - Theory and Practice

Step 4 Step 5

Index Buffer Compaction

• Prepare a empty index buffer(8Mb) and per-assign space for each mesh instance
• Parallel copy the visible triangles index into the new index buffer
• Index buffer compaction and multi-draw rendering can be interleaved because of fixed size of new index

buffer(8Mb)

Modern Game Engine - Theory and Practice

• Bake triangle visibility for pixel frustums of cluster

centered cubemap

• Cubemap lookup based on camera

• Fetch 64 bits for visibility of all triangles in cluster

Codec Triangle Visibility in Cube : Backface Culling

Modern Game Engine - Theory and Practice

Occlusion Culling for Camera and Shadow

Modern Game Engine - Theory and Practice

• Depth pre-pass with best occluders in full resolution

• Choose best occluders by artist or heuristic (e.g. 300 occluders)

• Holes can be from rejected occluder(bad occluder selection or

alpha-tested geometry)

• Downsampled best occluders depth to 512x256

• Then combined with reprojection of 1/16 low resolution version of last

frame’s depth

• Last frame’s depth can helped to filled with holes.

• False occlusion is possible from large moving objects in the last

frame’s depth, but works in most cases.

• Generate hierarchy-Z buffer for GPU culling

Occlusion Depth Generation

Modern Game Engine - Theory and Practice

Two-Phase Occlusion Culling

1st phase
Cull objects & clusters using last frame’s depth pyramid
Render visible objects

2nd phase
Refresh depth pyramid
Test culled objects & clusters
Render false negatives

Modern Game Engine - Theory and Practice

Crazy Stressing Cases
• “Torture” unit test scene 250,000 separate moving

objects
• 1 GB of mesh data (10k+ meshes)
• 8k2 texture cache atlas
• DirectX 11 code path
• 64 vertex clusters (strips)
• No ExecuteIndirect / MultiDrawIndirect
• Only two DrawInstancedIndirect calls

Modern Game Engine - Theory and Practice

• For each cascade

• Generate camera depth reprojection (64x64 pixel)

• Then combine with last frame's shadow depth reprojection

• Generate hierarchy-Z buffer for GPU culling

Fast Occlusion for Shadow

Modern Game Engine - Theory and Practice

Motivation
• It is essential to cull objects in light view, which does not cast a visible shadow

Implementation
• Get camera visible areas that may appear shadow

• For each 16*16 screen tile, construct a cube(each yellow frustum)

according to min/max depth in this tile.

• Render max depth of these cubes in the light view

• All objects that far from depth can be culled because they certainly do not

contribute to visible shadow

Camera Depth Reprojection for Shadow Culling

Modern Game Engine - Theory and Practice

Best Cases of Camera Depth Reprojection

Modern Game Engine - Theory and Practice

Visibility Buffer

Modern Game Engine - Theory and Practice

Recap - Deferred Shading, G-Buffer

• Forward rendering shades all fragments in triangle- submission order

• Wastes rendering power on pixels that don’t contribute to the final image

• Deferred shading solves this problem in 2 steps:

• First, surface attributes are stored in screen buffers -> G-Buffer

• Second, shading is computed for visible fragments only

Modern Game Engine - Theory and Practice

Deferred Shading

Modern Game Engine - Theory and Practice

• However, deferred shading increases memory bandwidth consumption:

• Screen buffers for: normal, depth, albedo, material ID,…

• G-Buffer size becomes challenging at high resolutions

Fat G-Buffer of Deferred Shading

GBuffer layout for Disney deferred material (Ref. Frostbite Engine)

Modern Game Engine - Theory and Practice

Challenges of Complex Scene

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Visibility Buffer - Filling

• Visibility Buffer generation step

• For each pixel in screen:

• Pack (alpha masked bit, drawID, primitiveID) into one 32-bit UINT

• Write that into a screen-sized buffer

• The tuple (alpha masked bit, drawID, primitiveID) will allow a shader to access the triangle data in

the shading step

Modern Game Engine - Theory and Practice

Visibility Buffer - Shading

• For each pixel in screen-space we do:

• Get drawID/triangleID at pixel pos

• Load data for the 3 vertices from the VB

• Compute triangle gradients

• Interpolate vertex attributes at pixel pos using gradients

• Attribs use w from position to compute perspective correct interpolation

• MVP matrix is applied to position

• We have all data ready: shade and calculate final color

Modern Game Engine - Theory and Practice

Pipeline of Visibility Buffer

Modern Game Engine - Theory and Practice

Visibility Buffer
+
Deferred Shading

Modern Game Engine - Theory and Practice

Correct Texture Mipmap with Gradient

Without SampleGrad

Modern Game Engine - Theory and Practice

Results

GPU
AMD RADEON R9
380

1080p 1440p 2160p

No MSAA 9.75 12.30 20.19
No MSAA – No Culling 14.16 16.66 24.06
2x MSAA 16.16 23.09 42.68
4x MSAA 24.90 36.37 69.64

GPU
AMD RADEON R9
380

1080p 1440p 2160p

No MSAA 8.57 10.72 15.19
No MSAA – No Culling 14.52 15.86 20.45
2x MSAA 11.44 16.38 25.87
4x MSAA 15.27 20.82 37.86

Visibility Buffer

Deferred Shading

Total
• 8 Million Triangles
• 5 Million Vertices

Modern Game Engine - Theory and Practice

Virtual Geometry - Nanite

Modern Game Engine - Theory and Practice

Challenges of Realistic Rendering

Modern Game Engine - Theory and Practice

Challenges of Realistic Rendering

Modern Game Engine - Theory and Practice

• Overview

• Geometry Representation

• Cluster-based LoD

• BVH and runtime LoD

• Rendering

• Software and Hardware Rasterization

• Visibility Buffer

• Deferred Materials

• Tile-based Acceleration

• Virtual Shadow Map

• Streaming and Compression

Nanite Overview

Modern Game Engine - Theory and Practice

Virtual Texture
• Build a virtual indexed texture to represent all

blended terrain materials for whole scene
• Only load materials data of tiles based on view-

depend LOD
• Pre-bake materials blending into tile and store

them into physical textures
Baked Terrain Tile

Modern Game Engine - Theory and Practice

The Dream

• Virtualize geometry like we did textures

• No more budgets

• Poly count

• Draw calls

• Memory

• Directly use film quality source art

• No manual optimization required

• No loss in quality

Modern Game Engine - Theory and Practice

Reality

• MUCH harder than virtual texturing

• Not just memory management

• Geometry detail directly impacts rendering cost

• Geometry is not trivially filterable (SDF, Voxels, Point Clouds)

Modern Game Engine - Theory and Practice

Voxels?

2M poly bust resampled to 13M voxels

• Spatially uniform data distribution

• Big memory consumption

• Attribute leaking

• Not interested in completely changing all CG workflow

• Support importing meshes authored anywhere

• Still have UVs and tiling detail maps

• Only replacing meshes, not textures, not materials, not tools

• Never ending list of hard problems

Modern Game Engine - Theory and Practice

Subdivision Surfaces?

• Subdivision by definition is amplification only

• Great for up close but doesn't get simpler than base mesh

• Sometimes produces an excessive number of triangles

Modern Game Engine - Theory and Practice

• Works well for organic surfaces that

already are uniformly sampled

• Difficult to control hard surface features

• Sometimes object surface is not

connected

Maps-based Method?

Modern Game Engine - Theory and Practice

Point cloud details

Texture details

Point Cloud?

https://highperformancegraphics.org/slides22/Software_Rasterization_of_2_Billion_Points_in_Real_Time.pptx

• Massive amounts of overdraw

• Requires hole filling

https://highperformancegraphics.org/slides22/Software_Rasterization_of_2_Billion_Points_in_Real_Time.pptx

Modern Game Engine - Theory and Practice

Foundation of Computer Graphics

• The most elemental, atomic unit of surface area in 3D space

• Every surface can be turned into triangles

Modern Game Engine - Theory and Practice

Nanite Geometry Representation

Modern Game Engine - Theory and Practice

Screen Pixels and Triangles

• Linear scaling in instances can be ok

• Linear scaling in triangles is not ok

Why should we draw more triangles

than screen pixels?

Modern Game Engine - Theory and Practice

Represent Geometry
by Clusters

Modern Game Engine - Theory and Practice

LOD 0LOD 0, 1, ..., 10 transition

24M triangles 721M triangles

View Dependent LOD Transitions – Better than AC Solutions

Modern Game Engine - Theory and Practice

721M triangles 24M triangles

Similar Visual Apperance with 1/30 Rendering Cost!

Modern Game Engine - Theory and Practice

• Decide LOD on a cluster basis

• Build a hierarchy of LODs
• Simplest is tree of clusters

• Parents are the simplified versions of their children

LOD0

LOD1

LOD2

Naïve Solution - Cluster LoD Hierarchy

Modern Game Engine - Theory and Practice

View dependent cut
LOD0

LOD1

LOD2

Naïve Solution - Decide Cluster LOD Run-time

• Find cut of the tree for desired LOD

• View dependent based on perceptual difference

Modern Game Engine - Theory and Practice

View dependent cut
LOD0

LOD1

LOD2

Naïve Solution – Simple Streaming Idea

• Entire tree doesn't need to be in memory at once

• Can mark any cut of the tree as leaves and toss the rest

• Request data on demand during rendering
• Like virtual texturing

Modern Game Engine - Theory and Practice

• If each cluster decides LOD independent from neighbors, cracks!

• Naive solution:
• Lock shared boundary edges during simplification

• Independent clusters will always match at boundaries

But, How to Handle LOD Cracks

Modern Game Engine - Theory and Practice

LOD1

LOD2

LOD0

• Collects dense cruft

• Especially between deep subtrees

Locked Boundaries? Bad Results

Modern Game Engine - Theory and Practice

• Can detect these cases during build

• Group clusters

• Force them to make the same LOD decision

• Now free to unlock shared edges and collapse them

Nanite Solution - Cluster Group

Modern Game Engine - Theory and Practice

Pick group of N clusters Merge and Simplify Split into N/2 clusters

DAG

Boundary unchangedHere is an illustration of the process

• Pick grouped these 4 adjacent clusters

• Merge and Simplify the clusters to half the
number of triangles

• Split simplified triangle list back into 2 new
clusters

• We now have reduced 4 4-triangle clusters to
2 4-triangle clusters

Build Operations

Modern Game Engine - Theory and Practice

• Cluster original triangles

• While NumClusters > 1
• Group clusters to clean their shared boundary

• Merge triangles from group into shared list

• Simplify to 50% the number of triangles

• Split simplified triangle list into clusters (128 tris)

Build Operations

Pick group of N clusters Merge and Simplify Split into N/2 clusters

DAG

Boundary unchanged

Modern Game Engine - Theory and Practice

Build Clusters

Modern Game Engine - Theory and Practice

18 clusters (LOD_0)
cluster group
(LOD_0)

Simplification on Cluster Group

Modern Game Engine - Theory and Practice

18 clusters (LOD_0)
cluster group
(LOD_0)

Modern Game Engine - Theory and Practice

• The key idea is to alternate group boundaries from level

to level by grouping different clusters.

• A boundary in one level becomes the interior in the next

level

• Locked one level, unlocked the next

Alternate Group Boundaries between Levels

Modern Game Engine - Theory and Practice

Cluster group boundaries for LoD0

Modern Game Engine - Theory and Practice

Cluster group boundaries for LoD1

Modern Game Engine - Theory and Practice

Cluster group boundaries for LoD2

Modern Game Engine - Theory and Practice

DAG for Cluster Groups

• Merge and split makes this a DAG instead of a tree

• This is a good thing in that you can’t draw a line from
LOD0 all the way to the root without crossing an edge

• Meaning there can’t be locked edges that stay locked
and collect cruft

LOD0

LOD1

LOD2

LOD3

Modern Game Engine - Theory and Practice

Why DAG, not Tree (Trap!)

Jungle of clusters, group and their links

Modern Game Engine - Theory and Practice

Let’s Chop the Lovely Bunny

LOD 0 LOD 4LOD 2

LOD 6 LOD nLOD 8

Modern Game Engine - Theory and Practice

Detail of Simplification - QEM

LODError

We need to consider geometry, normal, color and UV

Modern Game Engine - Theory and Practice

QEM

METIS

18 clusters (LOD_0)

cluster group (LOD_0)

9 clusters (LOD_1)

METIS

Modern Game Engine - Theory and Practice

Runtime LoD Selection

Modern Game Engine - Theory and Practice

View-Dependent LoD Selection on DAG?

Group is faster than cluster, but DAG is still very complicated

Modern Game Engine - Theory and Practice

16 triangles

8 triangles

• Two submeshes with same boundary, but different LOD

• Choose between them based on screen-space error
• Error calculated by simplifier projected to screen
• Corrected for distance and angle distortion at worst-case point in sphere

bounds

• All clusters in group must make same LOD decision
• How? Communicate? No!
• Same input => same output

LOD Selection for Cluster Group

Modern Game Engine - Theory and Practice

View dependent cut
LOD0

LOD1

LOD2

• LOD selection corresponds to cutting the DAG
• How to compute in parallel?
• Don’t want to traverse the DAG at run-time

• What defines the cut?
• Difference between parent and child

• Draw a cluster when:
• Parent error is too high && Our error is small enough
• Can be evaluated in parallel!

LOD Selection in Parallel

Modern Game Engine - Theory and Practice

View dependent cut LOD0

LOD1

LOD2

• Only if there is one unique cut
• Force error to be monotonic

• Parent view error >= child view error

• Careful implementation to make sure runtime correction is also
monotonic

LOD Selection in Parallel

Modern Game Engine - Theory and Practice

• When can we LOD cull a cluster?
• Render: ParentError > threshold && ClusterError <= threshold
• Cull: ParentError <= threshold || ClusterError > threshold

• Parent is already precise enough. No need to check child
• ParentError <= threshold
• Tree based on ParentError, not ClusterError!

Core Equation of Parallel LoD Selection for Cluster Groups

Modern Game Engine - Theory and Practice

Isolated LoD Selection for Each Cluster Group (1/3)

LOD0

LOD1

LOD2

LOD3

ParentError = 1.1

ParentError = 1.4ParentError = 1.2
1.1 1.1

0 0 0 0

• Render: ParentError > threshold && ClusterError <= threshold
• Cull: ParentError <= threshold || ClusterError > threshold

threshold=1.0

… …1.2 1.4

Modern Game Engine - Theory and Practice

LOD0

LOD1

LOD2

LOD3

ParentError = 1.1

ParentError = 1.4ParentError = 1.2
1.1 1.1

0 0 0 0

• Render: ParentError > threshold && ClusterError <= threshold
• Cull: ParentError <= threshold || ClusterError > threshold

threshold=1.0

… …1.2 1.4

Isolated LoD Selection for Each Cluster Group (2/3)

Modern Game Engine - Theory and Practice

LOD0

LOD1

LOD2

LOD3

ParentError = 1.1

ParentError = 1.4ParentError = 1.2
1.1 1.1

0 0 0 0

• Render: ParentError > threshold && ClusterError <= threshold
• Cull: ParentError <= threshold || ClusterError > threshold

threshold=1.0

… …1.2 1.4

Isolated LoD Selection for Each Cluster Group (3/3)

Modern Game Engine - Theory and Practice

BVH Acceleration for LoD Selection

Modern Game Engine - Theory and Practice

• BVH4
• Max of children’s ParentError
• Internal node: 4 children nodes
• Leaf node: List of clusters in group

Really Bad Explanation of Why and How about BVH

Modern Game Engine - Theory and Practice

Build BVH for Acceleration of LoD Selection
• 7,000,000 triangles will create 110,000 clusters

• Iterating all cluster/cluster groups is too slow

• Let’s build BVH for each LoD cluster groups

Modern Game Engine - Theory and Practice

Balance BVH for 4 Nodes

Modern Game Engine - Theory and Practice

Detail of BVH Acceleration
6,400,000 tris -> 260,000 tris

• total 110437 clusters,

• check bvh node = 107, check
cluster = 4240，

• select cluster = 2175

Modern Game Engine - Theory and Practice

Dispatch 1 ← Sync

← Sync

← Sync

← Sync

← Sync

← Sync

Dispatch 2

Dispatch 3

Dispatch 4

Dispatch 5

Dispatch 6

• Dependent DispatchIndirects
• One per level

• Global synchronization
• Wait for idle between every level

• Worst case # of levels
• Empty dispatches at the end

• Can be mitigated by higher fanout
• Wasteful for small/distant objects

Hierarchical Culling - Naive Approach

Modern Game Engine - Theory and Practice

• Ideally
• Start on child as soon as parent finished
• Spawn child threads directly from compute

• Persistent threads model instead
• Can't spawn new threads. Reuse them instead!
• Manage our own job queue
• Single dispatch with enough worker threads to fill GPU
• Use simple multi-producer multi-consumer (MPMC) job-queue to

communicate between threads

Persistent Threads

Modern Game Engine - Theory and Practice

Nanite Rasterization

Modern Game Engine - Theory and Practice

Pixel Scale Detail

• Can we hit pixel scale detail with triangles > 1 pixel?

• Depends how smooth

• In general no

• Need to draw pixel sized triangles

Modern Game Engine - Theory and Practice

From Real-time rendering Chapter 23 Graphics Hardware

• HW Rasterization unit is quad(2x2 pixels) for ddx and ddy
• Need help pixels(yellow) to form quads

Hardware Rasterization

Modern Game Engine - Theory and Practice

• Use 4x4 tiled traversal to accelerate

Hardware Rasterization

From Real-time rendering Chapter 23 Graphics Hardware

Modern Game Engine - Theory and Practice

• A lot of wasting for small triangle
• tiled traversal stage is useless
• quad generate 4x pixels than its really covered

Hardware Rasterization

Modern Game Engine - Theory and Practice

Software Rasterization for Tiny Triangles

3x faster!

• Terrible for typical rasterizer

• Typical rasterizer:
• Macro tile binning
• Micro tile 4x4
• Output 2x2 pixel quads
• Highly parallel in pixels not triangles

• Modern GPUs setup 4 tris/clock max
• Outputting SV_PrimitiveID makes it even worse

• Can we beat the HW rasterizer in SW?

Modern Game Engine - Theory and Practice

Nanite – Rasterization
• Only rasterize 1 pixel when the triangle size smaller than 1 pixel in

Shader function

• We will save 3 pixels compute resources if the triangle only covered
in 1 pixel

• Reconstruct derivatives for ddx/ddy

Modern Game Engine - Theory and Practice

• Per-cluster based rasterization selection

• All edges of cluster <18 pixels are SW rasterized

• Iterate over the rect tests a lot of pixels

• Best case half are covered

• Worst case none are

• Scanline method is a choice

Scanline Software Rasterizer

Modern Game Engine - Theory and Practice

How To Do Depth Test?

32 25 7
Depth Visible cluster index Triangle index

• Don't have ROP or depth test hardware

• Need Z-buffering
• Can't serialize at tiles

• Many tris may be in parallel for single tile or even single pixel

• Use 64 bit atomics!

• InterlockedMax
• Visibility buffer shows its true power

Modern Game Engine - Theory and Practice

Nanite Visibility Buffer

NumberBits 32 25 7
Type Depth Visible cluster index Triangle index

Depth Clusters Triangles

Modern Game Engine - Theory and Practice

Nanite Visibility Buffer

• Write geometry data to screen
• Depth : InstanceID : TriangleID

• Material shader per pixel:
• Load VisBuffer

• Load instance transform

• Load 3 vert indexes

• Load 3 positions

• Transform positions to screen

• Derive barycentric coordinates for pixel

• Load and lerp attributes

32 25 7
Depth Visible cluster index Triangle index

Modern Game Engine - Theory and Practice

Nanite Visibility Buffer

• Sounds crazy? Not as slow as it seems
• Lots of cache hits

• No overdraw or pixel quad inefficiencies

• Material pass writes GBuffer
• Integrates with rest of our deferred shading renderer

• Draw all opaque geometry with 1 draw
• Completely GPU driven

• Not just depth prepass

• Rasterize triangles once per view

Modern Game Engine - Theory and Practice

Hardware Rasterization

Blue: software rasterized, Red: Hardware rasterized

• What about big triangles?
• Use HW rasterizer
• Choose SW or HW per cluster
• Also uses 64b atomic writes to UAV

Modern Game Engine - Theory and Practice

Imposters for Tiny Instances
• 12 x 12 view directions in atlas

• XY atlas location octahedral mapped to view direction
• Dithered direction quantization

• 12 x 12 pixels per direction
• Orthogonal projection
• Minimal extents fit to mesh AABB
• 8:8 Depth, TriangleID
• 40.5KB per mesh always resident

• Ray march to adjust parallax between directions
• Few steps needed due to small parallax

• Drawn directly from instance culling pass
• Bypassing visible instances list

• Would like to replace with something better

Modern Game Engine - Theory and Practice

Rasterizer Overdraw
• No per triangle culling
• No hardware HiZ culling pixels
• Our software HZB is from previous frame

• Culls clusters not pixels
• Resolution based on cluster screen size

• Excessive overdraw from:
• Large clusters
• Overlapping clusters
• Aggregates
• Fast motion

• Overdraw expense
• Small tris: Vertex transform and triangle setup bound
• Medium tris: Pixel coverage test bound
• Large tris: Atomic bound

Modern Game Engine - Theory and Practice

Nanite Deferred Material

Modern Game Engine - Theory and Practice

Different color blocks indicate different materials

Deferred Material

• Nanite want to support full artist created pixel shaders

• In theory, all materials could be applied in a single pass, but there are complexities and inefficiencies

there

Modern Game Engine - Theory and Practice

• Common method

• Draw a full screen quad per unique material

• Skip pixels not matching this material

• Disadvantages

• CPU unaware if some materials have no visible pixels (unfortunate side effect of GPU driven)

• So unnecessary drawing instructions will be committed

Material Shading

Modern Game Engine - Theory and Practice

• Hardware depth test!

• Convert material ID to depth value

Shading Efficiency

Modern Game Engine - Theory and Practice

• Then draw a full screen quad and set depth test function to "equal", so unmatched pixels will be

discarded

• But full screen quad is not necessary and can be improved!

Shading

Modern Game Engine - Theory and Practice

• We can do a screen tile material classification

• For a certain material, exclude tiles that do not contain this material

Specific material tiles and depth test result (green: pass depth test, red: failed in depth test)

Material Sorting with Tile-Based Rendering

Modern Game Engine - Theory and Practice

64x64 pixels 1 tile

32 tiles in 1 tile group

16x16 threads for
1 tile

For each material, use 32 bits to indicate the
presence in a tile group

Material Classify

Modern Game Engine - Theory and Practice

Material Slot
\Tile Group 0 1 2 3 ... MaterialRemap

Count-1

0 <32 bits>

1

...

MaterialSlotCou
nt-1

Material Tile Remap Table

• Finally forms a material and tile remap table
• Get the number of tiles based on the screen resolution and pack 32 tiles into a group

• 'MaterialRemapCount' means the number of groups

• Record the tiles in which a material is located by marking it by bit

• This table can be used to calculate the tile position to render to

Material Classify - Material Tile Remap Table

Modern Game Engine - Theory and Practice

• Generate material resolve texture

• Generate material depth texture

• Classify screen tile materials

• Generate G-Buffer

• This will be output to the g-buffer to match with

the rest of the pipeline

• Commit drawing commands per material

MaterialSlot is the material index in material id array

Deferred Material Overall Process

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Micropoly Level Detail for Shadows

Modern Game Engine - Theory and Practice

Nanite Shadows - Ray Trace?

• Ray trace?
• There are more shadow rays than primary since there are on

average more than 1 light per pixel

• Custom triangle encoding

• No partial BVH updates

• HW triangle formats + BLAS (bottom level acceleration

structure) currently are 3-7x the size of Nanite data

RTX 40XX，50XX? Radeon RX 70XX...?�

Modern Game Engine - Theory and Practice

Recap Cascaded Shadow Map

• Relatively coarse LOD control

• If better shadow detail is desired, there is still

significant memory consumption

Modern Game Engine - Theory and Practice

Sample Distribution Shadow Maps
• Gives a better cascaded map coverage by analysing the range of screen pixel depths

• An optimized cascaded shadow map but still has coarse LOD control

White wireframe:camera frustum, red/yellow regions: where shadow samples are required

Cascaded
shadow ranges

Sample distribution
shadow ranges

Modern Game Engine - Theory and Practice

Cascaded Shadow Maps Sample Distribution Shadow Maps

Sample Distribution Shadow Maps

Modern Game Engine - Theory and Practice

Virtual Shadow Map - A Cached Shadow System!

• Most lights don't move, should be cached as much as possible

Modern Game Engine - Theory and Practice

Virtual Shadow Maps

• 16k x 16k virtual shadow map for each light (exception, point light with 6 VSMs)

Modern Game Engine - Theory and Practice

Different Light Type Shadow Maps

Scene with 3 lights 1. Directional light shadow pages (N level clipmaps)

2. Spot light shadow pages (1 projection map) 3. Point light shadow pages (6 cube face maps)

Modern Game Engine - Theory and Practice

Shadow Page Allocation

• Only visible shadow pixels need to be cached

• For each pixel on screen

• For all lights affecting this pixel

• Project the position into shadow map space

• Pick the mip level where 1 texel matches the size of 1 screen pixel

• Mark the page as needed

• Allocate physical page space for uncached pages

Modern Game Engine - Theory and Practice

Shadow Page Table and Physical Pages Pool

Physical shadow
pages cache

PageTableEntry bits/value
[0:9] PageAddress.x
[10:19] PageAddress.y
[20:25] LODOffset
[26:30] (currently unused)
[31] bAnyLODValid

Indexing

Modern Game Engine - Theory and Practice

Shadow Page Cache Invalidation

• Camera movement, if the movement is relatively smooth, there will not be many pages to update

• Any light movement or rotation will invalidate all cached pages for that light

• Geometry that casts shadows moving, or being added or removed from the scene will invalidate any

pages that overlap its bounding box from the light's perspective

• Geometry using materials that may modify mesh positions

• ...

Modern Game Engine - Theory and Practice

Shadow Demo

Modern Game Engine - Theory and Practice

Conclusions
• Number of shadow pages proportional to screen pixels

• Shadow cost scales with resolution and number of

lights per pixel

Modern Game Engine - Theory and Practice

Streaming and Compression

Modern Game Engine - Theory and Practice

Streaming

• Virtualized geometry
• Unlimited geometry at fixed memory budget

• Conceptually similar to virtual texturing
• GPU requests needed data then CPU fulfills them.

• Unique challenges: must no cracks in the geometry

• Cut DAG at runtime to only loaded geometry
• Needs to always be a valid cut of full DAG

• Similar to LOD cutting. No cracks

Modern Game Engine - Theory and Practice

Paging
• Fill fixed-sized pages with groups
• Based on spatial locality to minimize pages needed at

runtime
• Sort groups by mip and spatial locality

• Root page(64k)
• First page contains top lod level(s) of DAG
• Always resident on GPU so we always have something to

render

• Streaming Page(128k)
• Other lod levels of cluster groups
• Life time is managed by LRU on CPU

• Page contents:
• Index data,Vertex data, Bounds, LOD info, Material tables, etc.

Modern Game Engine - Theory and Practice

Memory representation
Vertex quantization and encoding

• Global quantization
• A combination of artist control and heuristics
• Clusters store values in local coordinates that is relative to value min/max range

• Per-cluster custom vertex format
• Uses minimum number of bits per component: ceil(log2(range))
• Just a string of bits, not even byte aligned

• Decoded using GPU bit-stream reader because of divergent encode format
between clusters

Modern Game Engine - Theory and Practice

Disk Representation
• Hardware LZ decompression

• In consoles now and on its way to PC with DirectStorage

• Unbeatably fast, but general purpose

• String deduplication and entropy coding

• For better compression
• Domain-specific transforms

• Focus on redundancies not already captured by LZ and massaging the

data to better fit how LZ compression

• Transcode on the GPU
• High throughput for parallel transforms, currently runs at ~50GB/s with

fairly unoptimized code on PS5

• Powerful in combination with hardware LZ

• Eventually stream data directly to GPU memory

Modern Game Engine - Theory and Practice

Results: Lumen in the Land of Nanite

• 433M Input triangles, 882M Nanite triangles

• Raw data: 25.90GB Memory format: 7.67GB

• Compressed: 6.77GB Compressed disk format: 4.61GB

• ~20% improvement since Early Access

• 5.6 bytes per Nanite triangle, 11.4 bytes per input

triangle

• 1M triangles = ~10.9MB on disk

Modern Game Engine - Theory and Practice

Welcome to Billions of Triangles
World

Modern Game Engine - Theory and Practice

Jungle of Nanite Geometries

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

References
• The Nanite 2021:

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final
• Journey to Nanite: https://www.highperformancegraphics.org/slides22/Journey_to_Nanite
• GPU-Driven Rendering Pipelines:

https://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final
• The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading

https://jcgt.org/published/0002/02/04/
• The filtered and culled Visibility Buffer: http://www.conffx.com/Visibility_Buffer_GDCE
• Optimizing the Graphics Pipeline with Compute: https://frostbite-wp-prd.s3.amazonaws.com/wp-

content/uploads/2016/03/

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf
https://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://jcgt.org/published/0002/02/04/paper.pdf
http://www.conffx.com/Visibility_Buffer_GDCE.pdf
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf

Modern Game Engine - Theory and Practice

Lecture 22 Contributors

- 砚书

- 超裕

- 光哥 - 炯哥 - 坤

Q&A

Modern Game Engine - Theory and Practice

Enjoy ;)
Coding

Course Wechat

Please follow us for
further information

Modern Game Engine - Theory and Practice

