Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Congratulations! Our Future Game Engine Talents

s %O o +~3 C/'\/Y\\C)

students submitted their homework

G HHIERS S BRI GllMEs
Graphics And Mixed Environment Seminar

CERTIFICATE

students are qualified for graduation certification

-

of them scored full points in all homework

OF G ES104 «? MER W fn BT &5 FHil SR
. 9 [N A
Wang31ton («a Y A REE P SER REFE
Has successfully completed and received a good grade in y % zE.'sﬂﬂ F= ,-:52@1‘7'(EUSE ﬂifl;ﬁ JE%EE
GAMES104 - Modern Game Engine: From Theory To Practice. C

BER BE BeE Rkh BE HEE
itk KET BT mE BEF BRE

Miles Wang
Lecturer of GAMES104

Certificate No. 45786972543 Date: September 8th, 2022

ke XIigX BHWE ST LEfF s
TR HIXRE WEE| WE R

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Set sail for the endless ocean of knowledge

SAMES1045C% | %3156 - (1) s m
GAMES104 C
[t AaEHXTR]

BINF BRI GAMES 104X NSRBI EMFRA LTSRS, hEEEEENEFSX
ARG G,

SRANFERNEMHAR? BIAHRGS SN ST, KSR ARSM? BRI
SRR, REEEE, BMEFNZEEERE. RSN —EE— " gamelJEi,
IEfEIHaNrRER, XE—MER 7 ==20Fa Tk,

Follow us on WeChat
Reply [A#f] to join our community

°Picco|ofﬁ§iﬁ2€|§§ h 2> @
202 139 215

Text version of lectures will be released soon Videos & Streaming are coming

ETXRIEHObject-based tick

iR EERESHImEIE

o B SEpRExnEN GamePlayt8X 0% T5 i 2DE&=E ngij\:;lﬂ "
EFAAME Component-based tick Immediate Mode Rendering s AR T s kivezD # & Skeleton Masked Blending i
~ Wi e Tile Based Renderin 5. EAPCREENEE R SUCPUBERT AR, - . X R sweep
SN (EAES) BN{EL e i R AN AR S L = 9 EACESTAREmEN T 1 BT 2D Skinned Animation BEhE&Additive Blending R overlap
. Tile Based Deferred Renderin, AnEE &3 .
EE&}E%‘@ I " " mr;?;;zi | Z AR, X FHEENES gﬂi%% MEﬁlmu myiﬁﬂ?@
GameObjecti 3R GPUZH BETR, R T-pose R AR RSN B AR
B ¥ Game Object nE A-pose o BFERS
25*4;]*% Se:ip MABHRFEER GPU #, @i SEREn HERS Bt
E Zeis Ak ompile = A Y,
mﬁ? GameObjectm wWRLE “ i@‘zgﬁgg:m Resources 10 Passes LERP i iR
=2 R R AR o A RRRRER RRATB R GPU A BARERIE wmm ETIE
i Boe - RARDR RIPEELR
BTR GameObjectiEJAIK X R AR R R pP AR HEEENS
k523 0t T 9 = RS TR BB
wmnnons . Emame F B A B
S o 2 = _ N
o OB EHE AN i REBHBELT
HHAEHE anfartaE Rt R = = —_——
i B GPUERESL Frame Graph wBistatc
HEE FARIAdynamic BHERX-NEHER 47N =ED
cUiD T REEME TR RREER 8 (rigger) i o
HRE R RRBTER ITEEE EiRfknematic n e
BEITHEREE St RI4EPhysics Actor e
BRXHERS R
Handle . BREEGH R
Hia
FRREST BFME RRER
RAIKERAE Qi R GRS e

GameTickiZHlE R R ABIEEH
R R O Th AR
ERELERNES

TERBIEFHTHESR

WENA
4 G raph

jberfiJob System

aggs of

FiberlR$HESHITHI LT
Work Thread R 3CIR#A{THIE T

JobiBEE
Jobikz

2RI
SRR
B

s
s

Jobfcrs

Job Stealing

padil £ 5CPUZIKILAS

Stih-A{f- R ECS

Bl : EFAMGRIRT

.00

BRAERGIHTS
HRESERE
“RRH E TSR

Mm%
17 S
1=
eS| SE4K Entity [i:1] I'I':'.l &;E _fﬁ *E SFEESE
481 Component FFRE
FY System PEEE
Unity DOTS .
Unity ECS 50 o355
LA Unreal MasstE22 Hithmizse= N
e SLAREntity SSH HEERERE LRUSERE
e #8#ComponentsZHl HEEXREE #7747 Cache line
Unity CHES &% B Fragment EEIERnEaE ETFERS% Cache miss
[FRYESystemseH
ZRMRG HER BERIE
s
Bursti%a8 7 SIMD R - IERETE
T REBUREIEHER R BAE
R RTFRH B EEIR
AOS vs. SOA fEStHRERE m i
IR SEIRE N F P RISRE
HEREBURRIZ

{ L
uigE=t

EPEFIRE (M
RE#L (RMA

iR
MvC
MVP
MVVM

BrEg
A (Text)
Z3H) (Binary)
=y M i i
HIBEN (Schema) Vlachine Learning
B BT . ML)
FHIR S REFFML K
KRAsEE Ell:]
FRIgH A
ﬁ?%wi&i"’ $h3Z#9schemar® X
P REBABEX N
ol KB
RSl R RT3 2R R (AST)
e D
e Runtime Clang
Storage
Toos REHERHRE
Tags
= RBER
Comfnandﬁz A
Mustache
uib Stand-aloneZ244
IS REFIH

In GameZz2is BT REHER T

ame En

(o)

Ackermann#!

— ‘R

gine

ET AR
YRR vs. BRRUE

TR
g
BHRSRERIRE

AEXATH

z=Days devote

B

EA-TRE

g AN NeESEEEE : O
BAR \ EREERBAFENRERDE RE T
R SEMERER

EHRAPERNREREN

3 BEEAE
sy SHEREBER ARG foials
ks HREBDIREBRSRE o 5= BRFE
FTEEFS AN HSEIIA Y RIS 56 o
\ PR EE MR ER ST EMEFH
YEEPS — WAERE XSS % " LEYEE] S
- TMHE 3 BNE]
B2 ey B g FREK
DRARRES R HES P i
e SWDKEAWT]I& / T
Zg RE®
RS WESR=EL :iii"
Al Planning LN . wEAEE iy
(] F Al Fla ng \
MR A - - sl
RS . SRR FRAR
RERESHER
KEREESFIIER EREESSS e
EfsEsR B
£y
BIEER *
ease Ooliow us OI’ U version
Mprasi Monte Carlo Tree Search

OpenalFive

I & — REHAPREFENRESR

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Q&A

Q1: How does ECS handle destruction of entities?

Q2: How can we measure Cache miss?

Q3: How should we provide tools for designers to design functions under DOP architecture?

Q4: How does Lumen handle emissive materials?

X
€c

Modern Game Engine - Theory and Practice BOQMING %5 GAMES104

Lecture 22

GPU-Driven Geometry Pipeline - Nanite

Advanced Topics

WANG XI GAMES 104 2022

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

“Long” Pipeline of Traditional Rendering 4th ERA

Southern Islands

: GCN
. . . d - Command Hnifiord Chador tibh @aalar @ Morkar
« Compute unit works with graphics Processor (Fold by)

GEOM PIXEL

processor and rasterizer PIPES PIPES
Rasterizer

« It's a series of data processing units

arranged in a chain like manner

Render

+ Difficult to fully fill the GPU Backend

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Jungle of Direct Draw Graphics API

Explosion of DrawCalls: Draw Calls visualized (cont’d) ,f,%n
« Meshes x RenderStates x LoDs x Materials x Animations

M| | [N [{ee(mm [|
O N EECECE T
I]

'

Read down, then right

Black—no change

what if CPU don't know
but GPU knows

¢ [[] Render Target [Texture [C] Uniform Updates

Assign value on CPU | Index Count | Instance Count |Index Offset| Vertex Offset | Instance Offset M Program W'uBeEnng W Brew
Il RrOP B Vertex Format

Problem 1:A traditional DrawlndexedInstanced command Problem 2: Driver state switching overhead between
requires 5 arguments assigned on CPU amount of draw commands

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Bottleneck of Traditional Rendering Pipeline

When rendering complicated scene with Traditional CPU Driven Render Loop

dense geometries and many materials
° H|gh CPU overload Pravious frame Current frame
* Frustum/Occlusion Culling

Frustum
* Prepare drawcall o e _

 GPU idle time
« CPU can not follow up GPU
« High driver overhead F :
« GPU state exchange overhead when System G ilider data annd e

memory

solving large amount of drawcalls

I

Command buffer

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Compute Shader - General Computation on GPU

« High-speed general purpose Command ' Command
buffers Processor

computing and takes advantage of
the large numbers of parallel
processors on the GPU

» Less overhead to graphics pipeline

« Just one stage in pipeline

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Draw-Indirect Graphics API

Advantage:
Allow you to specify parameters to draw commands from a GPU buffer, or via GPU compute program
"Draw-Indirect" command can merge a lot of draw calls into one single draw call, even with different mesh topology

Notice:

The actual name of "Draw-Indirect" is different in each graphics platform, but they act as the same role. (e.g.
vkCmdDrawlIndexedIndirect(Vulkan), Executelndirect(D3D12), ...)

Multi-Draw-Indirect Arguments on GPU

sub-draw 0

sub-draw 1

Index Count

Instance Count

Index Offset

Vertex Offset

Instance Offset

Index Count

Instance Count

Index Offset

Vertex Offset

Instance Offset

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

GPU Driven Render Pipeline — DrawPrimitive vs. DrawScene

. GPU controls what objects are actually Frees up the CPU to be used on other things, ie. Al

GPU Driven Render Loop

rendered

» Lod selection, visibility culling on

Current frame

GPU
Compute pass Render pass Compute pass Compute pass Render pass
* No CPU/GPU roundtrip Py [EREST e Render Ge"f’;‘f Frustum! LOD | OcclusioniEncode Render
oc‘::ctllulggrs Eogcr:aL\lwse " occluders ocgaL:ae culling gselectioné culling draws scene
« CPU do not touch any GPU data ’ ' ' '
* N viewports/frustums l I l [l l I

Occluder draw Occluder data Scene draw
System commands commands
memory
Scene data

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

GPU Driven Pipeline in Assassins Creed

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

GPU Driven Pipeline in Assassins Creed

Motivation ~—
« Massive amounts of geometry: architecture,

seamless interiors, crowds

Use mesh cluster rendering to
« Allow much more aggressive batching and
culling granularity

* Render different meshes efficiently with a

single indirect draw command

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Mesh Cluster Rendering

 Require
» Fixed cluster topology (E.g. 64 triangles in Assassin Creed or 128 triangles in Nanite)
« Split & rearrange all meshes to fit fixed topology(insert degenerate triangles)
* Fetch vertices manually in VS

 Key Implementation
* Cull clusters by their bounding on GPU (usually by compute shader)
 GPU outputs culled cluster list & drawcall args
» Draw arbitrary number of visible clusters in single drawcall

:!\i[ll:llll'll 1]

i gl A

Clusters (64 triangles) Culled by cluster bouding box

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

GPU Driven Pipeline in Assassins Creed

 Overview
» Offload more work from CPU to GPU
« But not perfectly "draw scene" command, can only draw objects with the same material together

INSTANCE CULLING (FRUSTUM/OCCLUSION)
e
CLUSTER CHUNK EXPANSION

CLUSTER CULLING jed objects
(FRUSTUM/OCCLUSION/TRIANGLE BACKFACE)

INDEX BUFFER COMPACTION

MULTI-DRAW

Modern Game Engine - Theory and Practice

BOOMING
@TECH & GAMES104

Works on CPU side

» Perform very coarse frustum culling and then batch all un-
culled objects together by material
« CPU quad tree culling
« Drawcalls merged based on hash that build on non-
instanced data:(e.g. material, renderstate, ...).
« Update per instance data(e.g. transform, LOD factor...),static

instances are persistent

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

GPU Instance Culling

« Output cluster chunks after instance culling
« Use the cluster chunk expansion (64 cluster in a chunk) to balance GPU threads within a wavefront.

INSTANCE CULLING (FRUSTUM/OCCLUSION) INSTANCE CULLING (FRUSTUM/OCCLUSION)

h‘:.uu UEU InNsldalnce | nowalicco m" s ‘m

Tolal Loy Ttolallluc oL I " o Lo L&l ol'®

This stream of instances contains a list of " P ' ~—
offsets into a GPU-buffer per instance that Chunk1_0 Chunk2_0 Chunk2_1 Chunk2_2
allows the GPU to access information like ot o
transform, instance bounds etc. Chunk ldx

CLUSTER CHUNK EXPANSION

CLUSTER CHUNK EXPANSION

CLUSTER CULLING
'FRUSTUM/OCCLUSION/TRIANGLE BACKFACE)

CLUSTER CULLING
FRUSTUM/OCCLUSION/TRIANGLE BACKFACE

INDEX BUFFER COMPACTION INDEX BUFFER COMPACTION

MULTI-DRAW | MULTI - DRAW

Initial State Step 1

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

GPU Cluster Culling

» Cluster culling by cluster bounding box
» output cluster list
« Triangle backface culling
» output triangle visibility result and write offsets in new index buffer

INSTANCE CULLING (FRUSTUM/OCCLUSION) INSTANCE CULLING (FRUSTUM/OCCLUSION)
CLUSTER CHUNK EXPANSION

CLUSTER CHUNK EXPANSION

CLUSTER CULLING
FRUSTUM/OCCLUSION/TRIANGLE BACKFACE

| Chunk1_0 Chunk2_0 Chunk2_1""Chunk2_2

CLUSTER CULLING ;";'j;f,,_,; 4/Write
FRUSTUM/OCCLUSION/TRIANGLE BACKFACE S
INDEX BUFFER COMPACTION INDEX BUFFER COMPACTION

MULTI-DRAW MULTI-DRAW

Step 2 Step 3

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Index Buffer Compaction

* Prepare a empty index buffer(8Mb) and per-assign space for each mesh instance
« Parallel copy the visible triangles index into the new index buffer
» Index buffer compaction and multi-draw rendering can be interleaved because of fixed size of new index

buffer(8Mb)

INSTANCE CULLING (FRUSTUM/OCCLUSION)

INSTANCE CULLING (FRUSTUM/OCCLUSION)

<< Fri L
|
CLUSTER CHUNK EXPANSION CLUSTER CHUNK EXPANSION

CLUSTER CULLING CLUSTER CULLING
FRUSTUM/OCCLUSION/TRIANGLE BACKFACE FRUSTUM/OCCLUSTION/TRIANGLE BACKFACE)

INDEX BUFFER COMPACTION

INDEX BUFFER COMPACTION

Drawcall 0 Drawcall 1 " Drawcall 2

MULTI-DRAW MULTI-DRAW

Step 4 Step 5

Modern Game Engine - Theory and Practice

BOOMING
[REon GAMES104

Codec Triangle Visibility in Cube : Backface Culling

« Bake triangle visibility for pixel frustums of cluster

centered cubemap

« Cubemap lookup based on camera

» Fetch 64 bits for visibility of all triangles in cluster

Triangle Visible Results

Cluster 0
A

4

64bit

=y

Cube face pixel 0

H’J

Cube face pixel N

—
-
—
-
T
-
-
-
-
-
-

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Occlusion Culling for Camera and Shadow

Modern Game Engine - Theory and Practice

BOOMING -
[REon GAMES104

Occlusion Depth Generation

Depth pre-pass with best occluders in full resolution
» Choose best occluders by artist or heuristic (e.g. 300 occluders)
» Holes can be from rejected occluder(bad occluder selection or
alpha-tested geometry)
 Downsampled best occluders depth to 512x256
« Then combined with reprojection of 1/16 low resolution version of last
frame’s depth
« Last frame’s depth can helped to filled with holes.
» False occlusion is possible from large moving objects in the last
frame’s depth, but works in most cases.

» Generate hierarchy-Z buffer for GPU culling

i,

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Two-Phase Occlusion Culling

—_— e

Down- Second

sample phase

==]

(= B

1st phase

Cull objects & clusters using last frame’s depth pyramid
Render visible objects

Occluded |,
Ob_] ects Obj. occlusion

culling

(= B

o e

e

2nd phase

Refresh depth pyramid

Test culled objects & clusters
Render false negatives

Occluded

cla sters Clu. occlusion

==]

culling

(== B

(=B

Depth sort

¥
-

- -

e

Draw

9:'gj—o(m-o—c:-—ocw-o—c:-—acln-o—c:—acm-o—c:—ocm-o—c:-—ocm-o—c:-

L=]

PR = e = e -

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Crazy Stressing Cases

« “Torture” unit test scene 250,000 separate moving
objects

1 GB of mesh data (10k+ meshes)

« 8k2 texture cache atlas

» DirectX 11 code path

» 64 vertex clusters (strips)

* No Executelndirect / MultiDrawlIndirect

* Only two DrawlInstancedIndirect calls

Xbox One, 1080p

Object culling + LOD 0.28 ms 0.26 ms
Cluster culling 0.09 ms 0.04 ms
Draw (G-buffer) 1.60 ms <0.01 ms
Pyramid generation 0.06 ms

Total 23 ms

CPU time: 0.2 milliseconds (single Jaguar CPU core)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Fast Occlusion for Shadow

« For each cascade
» Generate camera depth reprojection (64x64 pixel)
« Then combine with last frame's shadow depth reprojection

» Generate hierarchy-Z buffer for GPU culling

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Camera Depth Reprojection for Shadow Culling

Motivation

« |tis essential to cull objects in light view, which does not cast a visible shadow

Implementation

» (Get camera visible areas that may appear shadow
* For each 1616 screen tile, construct a cube(each yellow frustum)
according to min/max depth in this tile.
* Render max depth of these cubes in the light view

. All objects that far from depth can be culled because they certainlydo not

contribute to visible shadow

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Best Cases of Camera Depth Reprojection

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Visibility Buffer

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Recap - Deferred Shading, G-Buffer

» Forward rendering shades all fragments in triangle- submission order

» Wastes rendering power on pixels that don’t contribute to the final image
» Deferred shading solves this problem in 2 steps:

» First, surface attributes are stored in screen buffers -> G-Buffer

« Second, shading is computed for visible fragments only

TECH GAMES104

B BOOMING

Lighting

Geometry

©
3]
“
3]
©
S
(a
ge
c
S
-
o
4]
<
T
1
o
—
=)
c
Ll
o
S
S
O
c
1 &
@
o
O
=

Multiple
passes

Deferred Shading

A 4

r

A 4

S S 0 0 0 A Y A5 AP
o s = =
T A A (O 0 T
S 7 T 1 O T T U
EEEE SIS ERNSSE

HEaSRREEEESS

 frEmsmssssmssz
VAT 7T 77 77777

Depth
Normal
Albedo
Roughness

System
memory

Modern Game Engine - Theory and Practice BOOMING

TECH

GAMES104

Fat G-Buffer of Deferred Shading

« However, deferred shading increases memory bandwidth consumption:
» Screen buffers for: normal, depth, albedo, material ID,...

« G-Buffer size becomes challenging at high resolutions

« ..

Normal (10:10) Smoothness Materialld (2)
BaseColor MatData(5) /Normal (3)
--------- ‘ MetalMask | Reflectance AQ
Radiosity/Emissive

GBuffer layout for Disney deferred material (Ref. Frostbite Engine)

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Challenges of Complex Scene

Modern Game Engine - Theory and Practice

BOOMING
[BooN _ GAMES104

Jowrnal of Computer Graphics Technigues Vol. 2, No. 2, 2013
The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading http:/fjcgt.org

The Visibility Buffer: A Cache-Friendly
Approach to Deferred Shading

Christopher A. Burns Warren A. Hunt
Intel Labs Intel Labs
120 %
| Intel Iris Pro 5200
100 %
Imtel HD 4000
80 %
Nvidia GeForce 560 Ti
B0 %
B AMD Radeon 5750
40 %
20 %

0 % —p————— -
B0 % ' 1 2 4

Figure 1. Compared to a conventional g-buffer pipeline, our technique demonstrates out-
performance with large sample counts, especially on micro-architectures with deep cache

hierarchies.

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Visibility Buffer - Filling

 Visibility Buffer generation step
* For each pixel in screen:
» Pack (alpha masked bit, drawlD, primitivelD) into one 32-bit UINT
« Write that into a screen-sized buffer
» The tuple (alpha masked bit, drawlD, primitivelD) will allow a shader to access the triangle data in
the shading step

— e

| -

(Object/Triangle) o O

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Visibility Buffer - Shading

« For each pixel in screen-space we do:
» Get drawlD/trianglelD at pixel pos
* Load data for the 3 vertices from the VB
« Compute triangle gradients
* Interpolate vertex attributes at pixel pos using gradients
» Attribs use w from position to compute perspective correct interpolation
 MVP matrix is applied to position

» We have all data ready: shade and calculate final color

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Pipeline of Visibility Buffer

Barycentrics

Geometry Primitive ID Geometry Material
reconstruction shading

Lighting

Geometry Lit scene

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Visibility
(Object/Triangle)
Visibility Buffer
+
GBuffer

Deferred Shading

Final

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Correct Texture Mipmap with Gradient

L . M
- '

B M

ouou Ov ov
<) (=)
OX 0y O0x o0y

Without SampleGrad SampleGrad(sample state,uv,(

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Results Visibility Buffer

GPU 1080p 1440p

Total AMD RADEON R9

8 Million Triangles 380

. 5 Million Vertices No MSAA 8.57 10.72 15.19
No MSAA — No Culling 14.52 15.86 20.45
2x MSAA 11.44 16.38 25.87
4x MSAA 15.27 20.82 37.86
Deferred Shading
GPU 1080p 1440p
AMD RADEON R9
380
No MSAA 9.75 12.30 20.19
No MSAA — No Culling 14.16 16.66 24.06
2x MSAA 16.16 23.09 42.68

4x MSAA 24.90 36.37 69.64

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Virtual Geometry - Nanite

—

o
— et s

»

alistic Rendering”

% P g
y 1\ ~

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite Overview

« Qverview

« Geometry Representation
Cluster-based LoD
BVH and runtime LoD

* Rendering
« Software and Hardware Rasterization
 Visibility Buffer
» Deferred Materials
» Tile-based Acceleration
* Virtual Shadow Map

« Streaming and Compression

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Virtual Texture

« Build a virtual indexed texture to represent all
blended terrain materials for whole scene

* Only load materials data of tiles based on view-
depend LOD

* Pre-bake materials blending into tile and store
them into physical textures

virtual texture mipmap

physical

cxture
g I
(

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

The Dream

* Virtualize geometry like we did textures
« No more budgets
* Poly count
* Draw calls
 Memory
» Directly use film quality source art
« No manual optimization required

* No loss in quality

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Reality

* MUCH harder than virtual texturing
* Not just memory management
» Geometry detail directly impacts rendering cost

« Geometry is not trivially filterable (SDF, Voxels, Point Clouds)

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Voxels?

« Spatially uniform data distribution
« Big memory consumption

« Attribute leaking

2M poly bust resampled to 13M voxels

* Not interested in completely changing all CG workflow
« Support importing meshes authored anywhere
« Still have UVs and tiling detail maps
« Only replacing meshes, not textures, not materials, not tools

* Never ending list of hard problems

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Subdivision Surfaces?

« Subdivision by definition is amplification only
» Great for up close but doesn't get simpler than base mesh

« Sometimes produces an excessive number of triangles

L ETT
/L7
.i’nn{'.‘ 4

EEgEng

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Maps-based Method?

« Works well for organic surfaces that

already are uniformly sampled
« Difficult to control hard surface features

« Sometimes object surface is not

connected

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Point Cloud?

« Massive amounts of overdraw

* Requires hole filling

Texture details

Case Study:Candi
- 529 million/color
- GPU:RTX‘3090, &%

o ¥ < | S Fe Point cloud details
.90 [colorfilteri 4 3 2 B,
!‘:'i?oi:‘ntC\I_oud>:r‘tewsx;‘of 1:1U'Wien'_; ht»,_ p S . £ - % o v s & A

https://highperformancegraphics.org/slides22/Software Rasterization of 2 Billion Points in Real Time.pptx

https://highperformancegraphics.org/slides22/Software_Rasterization_of_2_Billion_Points_in_Real_Time.pptx

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Foundation of Computer Graphics

» The most elemental, atomic unit of surface area in 3D space

Every surface can be turned into triangles

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite Geometry Representation

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Screen Pixels and Triangles

* Linear scaling in instances can be ok

« Linear scaling in triangles is not ok

Why should we draw more triangles

than screen pixels?

GAMES104

BBOONIHG
TECH

LAy
S SIS SN
N
pac =g

Modern Game Engine - Theory and Practice

Represent Geometry

by Clusters

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

View Dependent LOD Transitions — Better than AC Solutions

4 LOD 0, 1, ..., 10 transition LOD 0

24M triangles 721M triangles

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Similar Visual Apperance with 1/30 Rendering Cost!

721M triangles 24M triangles

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Naive Solution - Cluster LoD Hierarchy

« Decide LOD on a cluster basis

LOD2
« Build a hierarchy of LODs

« Simplest is tree of clusters / \

» Parents are the simplified versions of their children LoD1

YT

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Naive Solution - Decide Cluster LOD Run-time

* Find cut of the tree for desired LOD

LOD2

* View dependent based on perceptual difference

/0

°

LOD1

LODO

e

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Naive Solution — Simple Streaming Idea

« Entire tree doesn't need to be in memory at once

LOD2

« Can mark any cut of the tree as leaves and toss the rest

* Request data on demand during rendering
LOD1

» Like virtual texturing

Modern Game Engine - Theory and Practice

BOOMING
[RBEOMING . GAMES104

But, How to Handle LOD Cracks

» If each cluster decides LOD independent from neighbors, cracks!

« Naive solution:
» Lock shared boundary edges during simplification

* Independent clusters will always match at boundaries

|
N
VAN
[N/
\/

AVAYANA

OO
0
W,

e
iy

—

=

TR Z 7
= e g

WA |
U

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Locked Boundaries? Bad Results

* Collects dense cruft LOD2

» Especially between deep subtrees

LOD1

LODO

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Nanite Solution - Cluster Group

« Can detect these cases during build
» Group clusters
» Force them to make the same LOD decision

* Now free to unlock shared edges and collapse them

il

|
I8

\

N

AN

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Build Operations

Here is an illustration of the process

group Merge Split

* Pick grouped these 4 adjacent clusters

* Merge and Simplify the clusters to half the
number of triangles

« Split simplified triangle list back into 2 new
clusters

ol X I

 We now have reduced 4 4-triangle clusters to
2 4-triangle clusters

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Build Operations

Boundary unchanged

» Cluster original triangles
* While NumClusters > 1

« Group clusters to clean their shared boundary

group Merge Split

« Merge triangles from group into shared list

« Simplify to 50% the number of triangles

« Split simplified triangle list into clusters (128 tris)

000 C&

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Build Clusters

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Simplification on Cluster Group

cluste\A;rvgmjfaap
18 clusters (LOD_0) (LOD_0)

Modern Game Engine - Theory and Practice

BOOMING
[REon _ GAMES104

Vierge and Simplify

clusté‘}véfaﬁp
18 clusters (LOD_0) (LOD_0)

into N/2 clusters

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Alternate Group Boundaries between Levels

» The key idea is to alternate group boundaries from level

to level by grouping different clusters.

« Aboundary in one level becomes the interior in the next "".'~
level i..'..s

 Locked one level, unlocked the next o Na®

| I

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Cluster group boundaries for LoDO

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

_|

Cluster group boundaries for LoD1

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Cluster group boundaries for LoD2

Modern Game Engine - Theory and Practice

B BOOMING
TECH

GAMES104

DAG for Cluster Groups

and split makes this a DAG instead of a tree

« This is a good thing in that you can’t draw a line from
LODO all the way to the root without crossing an edge

* Meaning there can’t be locked edges that stay locked
and collect cruft

LOD3

LOD2

LOD1

LODO

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Why DAG, not Tree (Trap!)

Jungle of clusters, group and their links

@
@

o/

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Let’s Chop the Lovely Bunny

LOD n

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Detail of Simplification - QEM

We need to consider geometry, normal, color and UV

n'v+d=0

LODError T
1 v=[xyz]

DP’=m'v+d)?=wn+d)(n'v+d)=v (nn")v+2dn"v+d°.

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

QEM

18 clusters (I;OD_O)

METIS 1

METIS

cluster gr‘dabﬂdz_/OD_O)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Runtime LoD Selection

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

View-Dependent LoD Selection on DAG?

Group is faster than cluster, but DAG is still very complicated

@
@

o/

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

LOD Selection for Cluster Group

« Two submeshes with same boundary, but different LOD 16 triangles
» Choose between them based on screen-space error

» Error calculated by simplifier projected to screen

» Corrected for distance and angle distortion at worst-case point in sphere

bounds

. . 8 triangl
 All clusters in group must make same LOD decision riangles

 How? Communicate? No!
« Same input => same output

Modern Game Engine - Theory and Practice

BOOMING -
[REon . GAMES104

3

LOD Selection in Parallel

LOD selection corresponds to cutting the DAG
* How to compute in parallel?
* Don’t want to traverse the DAG at run-time

What defines the cut?
» Difference between parent and child

Draw a cluster when:
» Parent error is too high && Our error is small enough
« Can be evaluated in parallel!

View dependent cut

LOD2

LOD1

LODO

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

LOD Selection in Parallel

* Only if there is one unique cut
* Force error to be monotonic

LOD2
» Parent view error >= child view error
» Careful implementation to make sure runtime correction is also
monotonic
LOD1
LODO

View dependent cut

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Core Equation of Parallel LoD Selection for Cluster Groups

« When can we LOD cull a cluster?
 Render: ParentError > threshold && ClusterError <= threshold
« Cull: ParentError <= threshold || ClusterError > threshold

« Parent is already precise enough. No need to check child
» ParentError <= threshold
 Tree based on ParentError, not ClusterError!

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104
Isolated LoD Selection for Each Cluster Group (1/3)
« Render: ParentError > threshold && ClusterError <= threshold
* Cull ParentError <= threshold || ClusterError > threshold
LOD3
threshold=1.0 / \
LOD2
ParentError = 1.2 ‘ ‘ ParentError = 1.4 LoD1
‘@/‘ LODO

ParentError = 1.1

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104
Isolated LoD Selection for Each Cluster Group (2/3)
 Render: ParentError > threshold && ClusterError <= threshold
* Cull ParentError <= threshold || ClusterError > threshold
LOD3
threshold=1.0 / \
LOD2
ParentError = 1.2 ‘ ‘ ParentError = 1.4 LoD1
‘@/‘O LODO

ParentError = 1.1

\d

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Isolated LoD Selection for Each Cluster Group (3/3)

Render: ParentError > threshold && ClusterError <= threshold
Cull: ParentError <= threshold || ClusterError > threshold

LOD3

threshold=1.0 / \

Vv Vv

LOD2

ParentError = 1.2 ‘ m} rm ‘ | |ParentError=1.4 LOD1
L ®0 0]

ParentError = 1.1

\d

LODO

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

BVH Acceleration for LoD Selection

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Really Bad Explanation of Why and How about BVH

- BVH4
Max of children’s ParentError
Internal node: 4 children nodes
Leaf node: List of clusters in group

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Build BVH for Acceleration of LoD Selection

e 7,000,000 triangles will create 110,000 clusters
* |terating all cluster/cluster groups is too slow

* Let's build BVH for each LoD cluster groups

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Balance BVH for 4 Nodes
= (Node
CONCOIRCHICS

(DEEEL @ @ G
B CICHIC

Clustergroups

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Detail of BVH Acceleration

6,400,000 tris -> 260,000 tris

e total 110437 clusters,

* check bvh node = 107/, check
cluster = 4240,

* select cluster = 2175

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Hierarchical Culling - Naive Approach

Dependent Dispatchindirects
* One per level
Global synchronization
between every level

Dispatch 1

Dispatch 2

Worst case # of levels
* Empty dispatches at the end

Dispatch 3

Dispatch 4

Dispatch 5

Can be mitigated by higher fanout Dispatch 6
« Wasteful for small/distant objects

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Persistent Threads

* I|deally
« Start on child as soon as parent finished
* Spawn child threads directly from compute

» Persistent threads model instead
* Can't spawn new threads. Reuse them instead!
* Manage our own job queue
« Single dispatch with enough worker threads to fill GPU
* Use simple multi-producer multi-consumer (MPMC) job-queue to
communicate between threads

Produce Nodes/Leafs StoreCandidates
NodeAndQusterCull Grab candidates from queue Write into group shared memory

ProcessNodeBatch
Consume Nodes/Leafs Parallel : parallel | ProcessClusterBatch
with TestHZB

Load from group shared memory Write into device memory

Every thread test one candidate

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite Rasterization

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Pixel Scale Detail

« Can we hit pixel scale detail with triangles > 1 pixel?
» Depends how smooth
* In general no

* Need to draw pixel sized triangles

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Hardware Rasterization

 HW Rasterization unit is quad(2x2 pixels) for ddx and ddy
* Need help pixels(yellow) to form quads

p,
y """"T:A\“"“‘\(m’g)
......./.\.......
,xoooooo/ooo\\oooooo
Q) P AT e e N - 1
0505 [Nt [[N -

0,00~ P, D,

Figure 23.1. A triangle, with three two-dimensional vertices pg, p1, and p2 in screen space. The
size of the screen is 16 x 8 pixels. Notice that the center of a pixel (z,y) is (z + 0.5,y + 0.5). The
normal vector (scaled in length by 0.25) for the bottom edge is shown in red. Only the green pixels
are inside the triangle. Helper pixels, in yellow, belong to quads (2 X 2 pixels) where at least one
pixel is considered inside, and where the helper pixel’s sample point (center) is outside the triangle.
Helper pixels are needed to compute derivatives using finite differences.

From Real-time rendering Chapter 23 Graphics Hardware

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Hardware Rasterization

 Use 4x4 tiled traversal to accelerate

Figure 23.3. A possible traversal order when using tiled traversal with 4 x 4 pixel tiles. Traversal
starts at the top left in this example, and continues to the right. Each of the top tiles overlap
with the triangle, though the top right tile has no pixels it. Traversal continues to the tile directly
below, which is completely outside, and so no per-pixel inside tests are needed there. Traversal then
continues to the left, and the following two tiles are found to overlap the triangle, while the bottom

left tile does not.

From Real-time rendering Chapter 23 Graphics Hardware

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Hardware Rasterization

A lot of wasting for small triangle
tiled traversal stage is useless

quad generate 4x pixels than its really covered

=

JAN

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Software Rasterization for Tiny Triangles

« Terrible for typical rasterizer

« Typical rasterizer:
* Macro tile binning
* Micro tile 4x4
» Output 2x2 pixel quads
« Highly parallel in pixels not triangles

 Modern GPUs setup 4 tris/clock max
* OQutputting SV_PrimitivelD makes it even worse

« (Can we beat the HW rasterizer in SW?

3x faster!

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite — Rasterization

* Only rasterize 1 pixel when the triangle size smaller than 1 pixel in
Shader function

« We will save 3 pixels compute resources if the triangle only covered }
in 1 pixel

» Reconstruct derivatives for ddx/ddy

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Scanline Software Rasterizer

Per-cluster based rasterization selection

« All edges of cluster <18 pixels are SW rasterized
» lterate over the rect tests a lot of pixels
» Best case half are covered
» Worst case none are

« Scanline method is a choice

ﬂ"‘
[x [x[x]x|x|x]x]|

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

How To Do Depth Test?

» Don't have ROP or depth test hardware
* Need Z-buffering

Can't serialize at tiles

Many tris may be in parallel for single tile or even single pixel

« Use 64 bit atomics! 32 25 7

« InterlockedMax Depth Visible cluster index Triangle index

Visibility buffer shows its true power

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

anite Visibility Buffer

NumberBits 32 25 7
Type Depth Visible cluster index Triangle index

Trianglés

Modern Game Engine - Theory and Practice

BOOMING
E;TECH GAMES104

Nanite Visibility Buffer

Write geometry data to screen

32

Depth : InstancelD : TrianglelD
P J Depth

Material shader per pixel:

Load VisBuffer

Load instance transform

Load 3 vert indexes

Load 3 positions

Transform positions to screen

Derive barycentric coordinates for pixel

Load and lerp attributes

25 7
Visible cluster index Triangle index

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Nanite Visibility Buffer

« Sounds crazy? Not as slow as it seems

* Lots of cache hits

* No overdraw or pixel quad inefficiencies

» Material pass writes GBuffer

* Integrates with rest of our deferred shading renderer

« Draw all opaque geometry with 1 draw
« Completely GPU driven
* Not just depth prepass

» Rasterize triangles once per view

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Hardware Rasterization

« What about big triangles?

« Use HW rasterizer

 Choose SW or HW per cluster

» Also uses 64b atomic writes to UAV

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Imposters for Tiny Instances

12 x 12 view directions in atlas
« XY atlas location octahedral mapped to view direction
» Dithered direction quantization
« 12 x 12 pixels per direction
« Orthogonal projection
« Minimal extents fit to mesh AABB
» 8:8 Depth, TrianglelD
« 40.5KB per mesh always resident
* Ray march to adjust parallax between directions
* Few steps needed due to small parallax
« Drawn directly from instance culling pass
« Bypassing visible instances list
* Would like to replace with something better

Modern Game Engine - Theory and Practice

BBOOMIHG 1
TECH

o

GAMES104

Rasterizer Overdraw

* No per triangle culling
* No hardware HiZ culling pixels
* Our software HZB is from previous frame
« Culls clusters not pixels
« Resolution based on cluster screen size
« Excessive overdraw from:
« Large clusters
« Overlapping clusters
« Aggregates
« Fast motion
« Overdraw expense
« Small tris: Vertex transform and triangle setup bound
* Medium tris: Pixel coverage test bound
« Large tris: Atomic bound

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite Deferred Material

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Deferred Material

« Nanite want to support full artist created pixel shaders
 In theory, all materials could be applied in a single pass, but there are complexities and inefficiencies

there

Different color blocks indicate different materials

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Material Shading

« Common method
» Draw a full screen quad per unique material

« Skip pixels not matching this material

« Disadvantages
« CPU unaware if some materials have no visible pixels (unfortunate side effect of GPU driven)

* So unnecessary drawing instructions will be committed

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Shading Efficiency

 Hardware depth test!

« Convert material ID to depth value

at ” al Dépth’* TART

s._ l-m*

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Shading

 Then draw a full screen quad and set depth test function to "equal”, so unmatched pixels will be

discarded

« But full screen quad is not necessary and can be improved!

Modern Game Engine - Theory and Practice BOOMING

TECH

GAMES104

Material Sorting with Tile-Based Rendering

« \We can do a screen tile material classification

* For a certain material, exclude tiles that do not contain this material

b
v

N

Specific material tiles and depth test result (green: pass depth test, red: failed in depth test)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Material Classify

For each material, use 32 bits to indicate the
presence in a tile group

32 tiles in 1 tile group

16x16 threads for
1 tile

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Material Classify - Material Tile Remap Table

Finally forms a material and tile remap table

» Get the number of tiles based on the screen resolution and pack 32 tiles into a group

» 'MaterialRemapCount' means the number of groups

* Record the tiles in which a material is located by marking it by bit

* This table can be used to calculate the tile position to render to

Material Tile Remap Table

Material Slot
\Tile Group

0

1

2

Count-1

MaterialRemap

0

<32 bits>

1

MaterialSlotCou

nt-1

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Deferred Material Overall Process

Generate material | resolve texture _':~

A\ 4

Generate material depth texture

Classify screen tile materials

Generate G-Buffer

« This will be output to the g-buffer to match with

void UnpackMaterialResolve(

the rest of the pipeline ulfit Packed,
. _ _ out bool IsManitePixel,
« Commit drawing commands per material out bool IsDecalReceiver,

out uint MaterialSlot)

{
IsNanitePixel = BitFieldExtractU32(Packed, 1, @) !=0
MaterialSlot = BitFieldExtractU32(Packed, 14, 1);
IsDecalReceiver = BitFieldExtractU32(Packed, 1, 15) != 0

}

MaterialSlot is the material index in material id array

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Micropoly Level Detail for Shadows

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Nanite Shadows - Ray Trace?

Image

* Raytrace? Camera / Light Source
« There are more shadow rays than primary since there are on @ 8
§

average more than 1 light per pixel View Ray

- Custom triangle encoding C -

* No partial BVH updates

« HW triangle formats + BLAS (bottom level acceleration

structure) currently are 3-7x the size of Nanite data Scene Object

RTX 40XX, 50XX? Radeon RX 70XX...? @

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Recap Cascaded Shadow Map

* Relatively coarse LOD control
* If better shadow detail is desired, there is still

significant memory consumption

~
- 8 & g
)% —l\‘\"'-_
- — \
- -~ S N 4
7\ P -
v e~ P 5 N\ -~
o \ A= o e
A St \ ¢
N\ Y Y ‘-..*
\ et \ N\
P e A
P M\
- AN \ N
—— \ L
S i "k‘ \
X ” 3N
o P \
——) -
S e \ \/
. N Ty
\ ‘ __"'-‘,__
~ e
9

Cascade 0 Cascade 2
Cascade 1 Cascade 3

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Sample Distribution Shadow Maps

« Gives a better cascaded map coverage by analysing the range of screen pixel depths

* An optimized cascaded shadow map but still has coarse LOD control

Cascaded
shadow ranges

Sample distribution
shadow ranges

White wireframe:camera frustum, red/yellow regions: where shadow samples are required

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Sample Distribution Shadow Maps

Cascaded Shadow Maps Sample Distribution Shadow Maps

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Virtual Shadow Map - A Cached Shadow System!

* Most lights don't move, should be cached as much as possible

— f_’:’ s} . ; : % L)

=

: : -4 =
- F n : |
. - o 1 et i =-:-.‘,_-,. [
- . 4 — [T KB
T ; : ’ e g boadi . Ny,
: "-'--._,____,____‘_H_ .) ._I 5 e — > f ‘;' i) - tl I | i 5 . i

Directional Light Clipmap Visualization Virtual Shadow Map Pages Visualization

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Virtual Shadow Maps

« 16k x 16k virtual shadow map for each light (exception, point light with 6 VSMs)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

leferent Light Type Shadow Maps

2. Spot light shadow pages (1 projection map) 3. Point light shadow pages (6 cube face maps)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Shadow Page Allocation

* Only visible shadow pixels need to be cached
« For each pixel on screen
* For all lights affecting this pixel
* Project the position into shadow map space
* Pick the mip level where 1 texel matches the size of 1 screen pixel
« Mark the page as needed

» Allocate physical page space for uncached pages

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Shadow Page Table and Physical Pages Pool

PageTable Buffer VSM_0 VSM_1 VSM_2 PageTab1EEntry bitS/Value
[0:9] PageAddress.x
[10:19] PageAddress.y
[20:25] LODOffset

128*128 64+64 ‘32*32‘ m = 21845 pages for 1 VSM [26:30] (cur‘r‘ently UhUSEd)

[31] bAnyLODValid
int2 LevelPos = UV_shadowmap * LevelDim

int LevelOffset = GetLevelOffset(MipLevel)

Pagelndex = VSM_ID * PageTableSize + LevelOffset + LevelPos.x + LevelPos.y * LevelDim I nd exi ng

Physical shadow
pages cache

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Shadow Page Cache Invalidation

« Camera movement, if the movement is relatively smooth, there will not be many pages to update

* Any light movement or rotation will invalidate all cached pages for that light

« Geometry that casts shadows moving, or being added or removed from the scene will invalidate any
pages that overlap its bounding box from the light's perspective

« Geometry using materials that may modify mesh positions

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Shadow Demo

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Conclusions

« Number of shadow pages proportional to screen pixels

 Shadow cost scales with resolution and number of

lights per pixel

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Streaming and Compression

Modern Game Engine - Theory and Practice

BBOOMIHG '
TECH

GAMES104

Streaming

« \Virtualized geometry

* Unlimited geometry at fixed memory budget

» Conceptually similar to virtual texturing
* GPU requests needed data then CPU fulfills them.

« Unique challenges: must no cracks in the geometry

« Cut DAG at runtime to only loaded geometry
* Needs to always be a valid cut of full DAG

« Similar to LOD cutting. No cracks

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Paging

 Fill fixed-sized pages with groups

« Based on spatial locality to minimize pages needed at
Group page assignment

runtime
. ' i i ‘Group @ of Mesh @ | Page 0 A
Sort groups by mip and spatial locality erou @ of Mech 11—) \
* Root page(64k) R < J
)) Group 1 of Mesh @ -
» First page contains top lod level(s) of DAG
» Always resident on GPU so we always have something to

render

] Group are sorted
* Streamlng Page(128k) by mip level and

« Other lod levels of cluster groups spatial locality

» Life time is managed by LRU on CPU
« Page contents:
* Index data,Vertex data, Bounds, LOD info, Material tables, etc.

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Memory representation

Vertex quantization and encoding

» Global quantization
« A combination of artist control and heuristics
« Clusters store values in local coordinates that is relative to value min/max range

* Per-cluster custom vertex format

« Uses minimum number of bits per component: ceil(log2(range))
« Just a string of bits, not even byte aligned

» Decoded using GPU bit-stream reader because of divergent encode format
between clusters

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Disk Representation

 Hardware LZ decompression
* In consoles now and on its way to PC with DirectStorage
« Unbeatably fast, but general purpose

« String deduplication and entropy coding

* For better compression
« Domain-specific transforms
* Focus on redundancies not already captured by LZ and massaging the

data to better fit how LZ compression

« Transcode on the GPU
« High throughput for parallel transforms, currently runs at ~50GB/s with
fairly unoptimized code on PS5
« Powerful in combination with hardware LZ

» Eventually stream data directly to GPU memory

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Results: Lumen in the Land of Nanite

* 433M Input triangles, 882M Nanite triangles

« Raw data: 25.90GB Memory format: 7.67GB

« Compressed: 6.77GB Compressed disk format: 4.61GB

« ~20% improvement since Early Access

« 5.6 bytes per Nanite triangle, 11.4 bytes per input
triangle

* 1M triangles = ~10.9MB on disk

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Welcome to Billions of Triangles
World

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Jungle of Nanite Geometries

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

References

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

References

 The Nanite 2021:
https://advances.realtimerendering.com/s2021/Karis Nanite SIGGRAPH Advances 2021 final

« Journey to Nanite: https://www.highperformancegraphics.org/slides22/Journey to Nanite

« GPU-Driven Rendering Pipelines:
https://advances.realtimerendering.com/s2015/aaltonenhaar siggraph2015 combined final

« The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading
https://jcgt.org/published/0002/02/04/

« The filtered and culled Visibility Buffer: http://www.conffx.com/Visibility Buffer GDCE

» Optimizing the Graphics Pipeline with Compute: https://frostbite-wp-prd.s3.amazonaws.com/wp-
content/uploads/2016/03/

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf
https://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://jcgt.org/published/0002/02/04/paper.pdf
http://www.conffx.com/Visibility_Buffer_GDCE.pdf
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Lecture 22 Contributors

- P - IG5 - EF - 1

Modern Game Engine - Theory and Practice [RBOOMING GAMES104

Q&A

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Course Wechat

Please follow us for
further information

