Modern Game Engine - Theory and Practice

BOOMING -
BooM . GAMES104

Our Best Wishes to Every Explorer

SN ERIISRT UL
E®T (B)

AFEHSIS
{omg}

‘ 4,231 RA RN RFEFE, BGABE.
AR? BRES—!

— yurhe

Hello, %ﬂj&
ABEREHSEHES

BFINE 104 B9RERN ! RI2ABEE KRS
INT !

FTEIMEMBE, EEth25T7104, B
HORHRE 48 104 B0/\3| 48 T pr, BATE
EPHRENTRECHLES

PR -

EERABRETT, BERHEST
> <]
B R E MR

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Piccolo Engine v0.0.8 Released — 12 September

« GPU-based Particle System!

* Piccolo Code Explained - 10 October

KERKRS, BE [ABE] | IABMNOHK

) piccoLo

| Game engine

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Homework Showcase (1/2)

STRDIRILARIINEES

1. Added color type reflection Ul Added camera mode change function

2. Added changing mesh base color function

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Homework Showcase (2/2)
A mini game!

® Piccolo - 441 FPS

¥ Game Engine
Trans | Rotate Scale Editor

y_hp

WWithDaar
WallwithDoor
Ja LLW1 thDoor

Black bear attack heart
ool down

m_use 23

wWallBlock

Stair m skill

G round Lightning five
m skill 3 cool

Fer

File Content

w P €C.@9 o dm>0 ABOe B B D 0

®

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Q&A

* Q1: How does ECS handle destroy of entities?

* Q2: How can we measure Cache miss?

* Q3: How should we provide tools for designers to design functions under DOP architecture?

Modern Game Engine - Theory and Practice

BOOMING
TECH

(&2) GAMES104

Lecture 21

Dynamic Global lllumination and Lumen

Advanced Topics

WANG XI

GAMES 104

2022

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Global lllumination(Gl)

The Rendering Equation

James Kajiya,"The Rendering Equation.”
SIGGRAPH 1986.

Energy equilibrium:

L(x,w)=L,(x, a)O)JrIH2 f(x,0, ,0)L(x,0)cos0dw,

\ \ \

Radiance and Irradiance

outgoing emitted reflected

The Rendering Equation

outgoing/observed radiance emitted radiance (e.g., light source)
\ / angle between incoming
incoming radiance direction and normal

L(xw)=L(xw)+ F j
f(x,0,,0,)L(x,0,)cos0dno, >

; incoming direction

R direction of inter

all directions in hemisphere scattering function

Global lllumination: Billions of Light Source

\\1

.
M

Pl
=l
p |

<0

indirect

illumination direct

illumination

indirect i\\umination

Direct vs. Indirect lllumination Global Illumination (Gl)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Global lllumination is Matter for Gaming

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Monte Carlo Integration

JACIN |

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
a

* How to solve an integral, when it's too hard to solve it analytically?

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Monte Carlo Integration

JACIN | f(x)

a Xy X5 X3 Xy b

Approximate integral with the average of randomly sample values

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Monte Carlo Ray Tracing (Offline)

© www.scratchapixel.com

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Sampling is the Key

* Noise decreases as the number of
samples per pixel increases. The top left
shows 1 sample per pixel, and doubles
from left to right each square.

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Sampling : Uniform Sampling

fx)t .
1 n
; fe) dz = lim — Zl f(z:) (b~ a)
i | L]- = f(aji)
i ; = Zl 1
i i b—a
: : . Probability Density Function
a b

« We are doing uniform random sample, so we have factor here

b—a

Modern Game Engine - Theory and Practice

BOOMING
BooM GAMES104

Probability Distribution Function

@)

b n
/ flapda 20 = %Z PIJ;(I;X;’;)(I@)

k=1

Probability Distribution Function
» Describes the relative likehood for

this random variable to take on a

given value
« Higher means more possible to be

chosen

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Importance Sampling

The PDF can be arbitrary, but which is the best?

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Importance Sampling : Best PDF for Rendering?

 Rendering equation: L, (p,w,) = / L; (p,w;) fr (P, wi,wo) (n - w;) dw;
Qt
. 1 2 Lz (pawz)fr (pawi7wo) (nwz)
* Monte Carlo Integration: L, (p,w,) ~ —
* What's our f(x) ? Li(p, w;) fr(p,wi,wo)(n - w;)
« What's our pdf ? * Unitorm: plws) = o2

« Other pdf ? (cosine-weight, GGX)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Importance Sampling : PDF is Matter

Render time: 00:55 Render time: 00:52

uniform sampling 256spp cosine weights importance sampling 256spp

p(w) p(w)

1
p(w) = — p(w) = cos 0

spp: samples per pixel

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Importance Sampling : Cosine and GGX PDF

()]
cos#f
Before p(cu) o
A
\p(M)
>
a? cos @

pw) = m((a? — 1) cos? 0 + 1)2

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Reflective Shadow Maps (RSM, 2005)
Let’s inject light in. (Photon Mapping?)

Modern Game Engine - Theory and Practice

BOOMING
TECH

_ . GAMES104

« Each pixel on the shadow map is a indirect light source

* How the RSM pixel X, illuminates position x?

max {0,{n,|x — xp)}max{0,{n|x, — x)}

EP(Xin) a d)P ”X — X “4
P

Modern Game Engine - Theory and Practice

BOOMING
TECH

" GAMESI104

The indirect irradiance at a surface point x can be approximated by

summing up the illumination due to all pixel lights.

Do not consider occlusion.

E(x,n) = Z E,(x,n)

pixelsp

>

. B EE HIL IR .

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Cone Tracing with RSM

« Gathering Indirect lllumination
* random sampling RSM pixels
» precompute such a sampling pattern and reuse it for all

indirect light computations

» 400 samples were sufficient

» use Poisson sampling to obtain a more even

sample distribution

Figure 4: Sampling pattern example. The sample density decreases
and the sample weights (visualized by the disk radius) increases
with the distance to the center.

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Acceleration with Low-Res Indirect lllumination

« Compute the indirect illumination for a low resolution
Image
« For each pixel on full resolution:

« getits four surrounding low-res samples

« validate by comparing normal and world space position

* bi-linear interpolation

« Recompute the left (red pixels)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Gears of War 4, Uncharted 4, The Last of US, etc

Flashlight Bounce Lighting

Modern Game Engine - Theory and Practice

BOOMING -
TECH -

Thanks, RSM

Cool Ideas

cons

Easy to be implemented
Photon Injection with RSM
Cone sampling in mipmap

Low-res Indirect illumination with error check

Single bounce

No visibility check for indirect illumination

Reflective Shadow Maps

Carsten Dachsbacher®
University of Erlangen-Nuremberg

Marc Stamminger’
University of Erlangen-Nuremberg

Figure 1: This figure shows the components of the reflective shadow map (depth, world space coordinates, normal, flux) and the resulting

image rendered with
Abstract

In this paper we present "reflective shadow maps”. an algorithm for
interactive rendering of plausible indirect illumination. A reflective
shadow map is an extension to a standard shadow map, where every
pixel is considered as an indirect light source. The illumination due
to these indirect lights is evaluated on-the-fly using adaptive sam-
pling in a fragment shader. By using screen-space interpolation of
the indirect lighting, we achieve interactive rates, even for complex
scenes. Since we mainly work in screen space, the additional effort
is largely independent of scene complexity. The resulting indirect
light is approximate, but leads to plausible results and is suited for
dynamic scenes. We describe an implementation on current graph-
ics hardware and show results achieved with our approach.

CR Categories: 1.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color. shading, shadowing, and tex-
trel.3.3 [Computer Graphics]: Hardware Architecture—Graphics
processors

Keywords: indirect illumination, hardware-assisted rendering

1 Introduction

Interactive computer graphics has developed enormously over the
last years, mainly driven by the advance of graphics acceleration
hardware. Scenes of millions of polygons can be rendered in real-
time on cons level PC cards days. Programmability al-
lows the inclusion of sophisticated lighting effects. However. these
effects are only simple subcases of global illumination, reflec-
tions of distant objects or shadows of point lights. Real global illu-

*c-mail: dachsbacher@cs.fau.de
*e-mail: stamminger@cs.fau.de

Copyright © 2005 by the Association for Computing Mackinery, Inc
Permission 1o make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made of distributed
for commercial advantage and that copies bear this nolice and the full Gtation on the
Srst page. Copirights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitied. To copy otherwise, to republish, to post on
servers, o lo redstribule o lists, requires prior specific permission andior 3 fee
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869.0481 or enail

pemezors@acm ceg
© 2005 ACM 1.50583-013-2/05/0004 $5.00

rect illumination from the RSM. Note that the angular decrease of flux is shown exaggerated for

203

sualization.

mination, however, generates subtle, but also important effects that
are mandatory to achieve realism.

Unfortunately, due to their global nature, full global illumina-
tion and interactivity are usually incompatible. Ray Tracing and
Radiosity—just to mention the two main classes of global illumi-
nation algorithms—require minutes or hours to generate a single
image with full global illumination. Recently, there has been re-
markable effort to make ray tracing interactive (e.g. [Wald et al.
2003]). Compute clusters are necessary to achieve interactivity at
good image resolution and dynamic scenes are difficult to handle,
because they require to update the ray casting acceleration struc-
tures for every frame. Radiosity computation times are even further
from interactive. Anyhow, a once computed radiosity solution can
be rendered from arbitrary view points quickly, but. as soons
objects move, the update of the solution becomes very expensive
agan.

It has been observed that for many purposes, global illumination so-
lutions do not need to be precise, but only plausible. In this paper,
we describe a method to compute a rough approximation for the
one-bounce indirect light in a scene. Our method is based on the
idea of the shadow map. In a first pass, we render the scene from
the view of the light source (for now, we assume that we have only
one spot or parallel light source in our scene). The resulting depth
buffer is called shadow map, and can be used to generate shadows.
In a reflective shadow map, with every pixel, we additionally store
the light reflected off the hit surface. We interpret each of the pixels
as a small area light source that illuminates the scene. In this pa-
per, we describe how the illumination due to this large set of light
sources can be computed efficiently and coherently, resulting in ap-
proximate, yet plausible and coherent indirect light.

2 Previous Work

Shadow maps [Williams 1978: Reeves et al. 1987] and shadow vol-
umes [Crow 1977] are the standard shadowing algorithms for inter-
active applications. Recently, there have been extensions of both
approaches to area lights [Assarsson and Akenine-Moller 2003:
Chan and Durand 2003; Wyman and Hansen 2003]. Sometimes,
such soft shadows are already referred to as ‘global illumination’.
In this paper. we concentrate on indirect illumination from point
lights, but our approach can easily be combined with any of these
soft shadow techniques.

GAMES104

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Light Propagation Volumes (LPV)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

First introduced in CryEngine 3 (SIGGRAPH 2009)

SR ey

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

 Key ldea

« Use a 3D grid to propagate radiance from directly illuminated surfaces to anywhere else

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Steps Reflective shadow
1. Generation of radiance point set scene representation map Qeceration
2. Injection of point cloud of virtual light sources into radiance Radiance injection
volume +
Radiance
3. Volumetric radiance propagation propagation

4. Scene lighting with final light propagation volume Scene |ighting

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

“Freeze” the Radiance in Voxel

Light Injection
* Pre-subdivide the scene into a 3D grid
» For each grid cell, find enclosed virtual light sources

« Sum up their directional radiance distribution

* Project to first 2 orders of SHs (4 in total)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Radiance Propagation
« For each grid cell, collect the radiance received from o %)

each of its 6 faces

« Sum up, and again use SH to represent

« Repeat this propagation several times till the volume

becomes stable

I(®w)

&

source cell

propagation along
axial directions

I
'

/ Face f .-~

Viw) |

source cell

destination cell

reprojection of the flux
nto a point light

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Light with “Limit Speed”?

Initial
distribution
Iteration 1
Iteration 2

Iteration 3

Iteration 4

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Sparse Voxel Octree for Real-time Global
lllumination (SVOGI)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voxelization Pass

ﬁ Geometry Shader] Fragment Shader

Triangle
Dominant

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Collect Surface Voxels

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

* Inject Irradiance into voxels from light

* Filter irradiance inside the octree

Y

N |
% ~ Q u

LN

-

Step 1: Render from light sources. Step 2: Filter irradiance values and
Bake incoming radiance and light light directions inside the octree
direction into the octree

1.

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
2

Shading with Cone Tracing in Voxel Tree

Pass 2 from the camera
« Emit some cones based on diffuse+specular BRDF

« Query in octree based on the (growing) size of the cone

-

Ray cone
footprint

Diffuse cones

Quadrilinearly
interpolated

samples e
Sparse MipMap pyramid
Voxel-Based cone of pre-integrated values

(stored in the octree) J

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voxelization Based Global lllumination (VXGI)

Modern Game Engine - Theory and Practice

Store the voxel data in clipmaps
* Multi-resolution texture
« Regions near the center have higher spatial resolution
« Seems to map naturally to cone tracing needs

A clipmap is easier to build than SVO
« No nodes, pointers etc., handled by hardware

A clipmap is easier to read from

Clipmap size is (64...256)"3 with 3...5 levels of detalil
« 16...32 bytes per voxel => 12 MB ... 2.5 GB of video

memory required

BOOMING
TECH

CLIPMAP VS. MIPMAP

4096 elements

LOD 0
64 elements

MIP-map

LOD 1 LOD 2
512 elements 64 elements

H#H

LOD 1 LOD 2
64 elements 64 elements

Clipmap

{:g.

GAMES104

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voxel Update and Toroidal Addressing

« Afixed point in space always maps to the same address in the clipmap

« The background shows texture addresses: frac(worldPos.xy / clipmapSize.xy)

New extent

Texture extent

Objects don’t move

world-space X world-space X world-space X world-space X

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

W e |

BRSNS

?:_‘: !
)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Voxelization for Opacity

 We have a triangle and a voxel

« Select the projection plane that yields the biggest projection area

» Rasterize the triangle using MSAA to compute one coverage mask per pixel
« Take the MSAA samples and reproject them onto other planes

» Repeat that process for all covered samples

. Thlcken the result by blurrlng all the reprojected samples

| Opacity = (number f the covered MSAA samples) / MSAA Resolution”2

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voxelization: Directional Coverage

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Light Injection

« Calculate emittance of voxels that contain surfaces lit by direct lights

« Take information from reflective shadow maps (RSM)

RSM texels

JI---._._|__ J

Shadow map rays Affected voxels

Modern Game Engine - Theory and Practice BOOMING * GAMESI04

TECH

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Shading with Cone Tracing

« generate several cones based on BRDF

e

B
;

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Accumulate Voxel Radiance and Opacity along the Path

Cdst — Cclst + (1 - Ir"]'{cls;.t)C.ﬂ:.]"«c
Ndst < Kdst + (1 o ﬂdst)ﬁsrc

CONE TRACING

Cone — a group of light striking a point

“Big picture view”

“Detailed view”

GAMES104

)
&
—
&)
©
S
al
[®)
-
©
>
| -
@)
()
L
_I
()
=
(@)
c
LL
()
e
®
Q@
-
| -
()
[®)
O
=

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Problems in VXGI

Incorrect Occlusion(opacity)

* naively combine the opacity with alpha blending.

Light Leaking

 when occlusion wall is much smaller than voxel size

Indirect lighting receiver

’ B Unilt samples
]

Lit sample

Lit surfaces

A coarse voxel

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Space Global lllumination (SSGI)

IGGRAPH2015
roads of Discovery

FROSTBITE

empowers game creators fo shape the future of gaming

SIGGRAPH 2015: Advances in Real-Time Rendering course

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

General Idea

« Reuse screen-space data

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Radiance Sampling in Screen Space

For each fragment:

« Step 1: compute many reflection
rays

« Step 2: march along ray direction
(in depth gbuffer)

« Step3: use color of hit point as

indirect lighting

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Linear Raymarching

 General Steps
« Step forward at a fixed step size

» At each step, check depth value

e Features
e Fast

« May skip thin objects

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Hierachical Tracing

» Generate min-depth mipmap (pyramid)

« Stackless ray walk of min-depth mipmap

level = 0;
while (level > -1)
{
stepCurrentCell();

if (above Z plane) level++;
if (below Z plane) level--;

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Ray Reuse among Neighbor Pixels

« Store hitpoint data

e Assume visibility is the same
between neighbors

* Regard ray to neighbor's hitpoint

as valid

Modern Game Engine - Theory and Practice

TECH

BOOMING - _ GAMES104

Cone Tracing with Mipmap Filtering

Estimate footprint of a cone at hit point
* roughness
« distance to hit

Sample the color mipmap
* mip level is determined by footprint

Pre-filter color mipmap (pyramid)

Level 4
Blur and L1/16 resolution

subsample | Level 3
Blur and 1/8 resolution
subsample ' g’ Level 2
1/4 resolution
Blur and |
subsample
Level 1
1/2 resolution
Blur and
subsample

Level 0
Original

image

Modern Game Engine - Theory and Practice BOOMING

TECH '@ GAMES104

SSGI Summary

 Pros:
« Fast for glossy and specular reflections
« Good quality

« No occlusion issues

« Cons:
* Missing information outside screen

» Affects of incorrect visibility of neighbor ray reuse

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Unique Advantages of SSGI

Easy to handle close contact shadow

Precise hit point calculation

Decouple from scene complexity

Handle dynamic objects

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Ray Traces are slow

* Can only afford 1/2 ray per pixel g

\ | Indoors:
] 500+ rays per pixel

« But quality Gl needs hundreds

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Sam p I | N g |S h ard Near bright window Far bright window

Previous real-time work: Irradiance Fields
* Problems:
« Leaking and over-occlusion
* Probe placement
« Slow lighting update
* Distinctive flat look

Previous real-time work: Screen Space
Denoiser
* Problems:
« Too noisy in many difficult indoor
cases
» Noise is not constant.

GAMES104

>

BBOOHIHG P
TECH

Modern Game Engine - Theory and Practice

S

t full pixe

Low-res filtered scene space probes |

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Phase 1 : Fast Ray Trace in Any Hardware

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Signed Distance Field (SDF)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

What is SDF

* The distance to the nearest surface at every point

* Inside regions store negative distance (signed)

 Distance =0 is the surface

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Per-Mesh SDF

Store SDF of the whole scene is expensive

Generated for each mesh
 Resolution based on mesh size
« Embree point query

« Trace rays and count triangle back faces for sign (more than 25% hit back is negative)

Original Mesh Resolution is too low, Resolution has been increased,
important features are lost important features represented

Modern Game Engine - Theory and Practice

BOOMING __ GAMES104

TECH

SDF for Thin meshes

Half voxel expand to fix leaking

Lost contact shadows due to surface bias

* Over occlusion better than leaking

SDF with expand

Modern Game Engine - Theory and Practice BOOMING -

TECH

GAMES104

Ray Tracing with SDF

Ray intersection skips through empty space based on distance to surface
« Safe and fast

« Each time at p, just travel SDF(p) distance

Fixed steps tracing Sphere tracing

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Cone Tracing with SDF(ie. Soft Shadow)

SDF(p)
I — ol

k - SDF
(pl_l_ﬂ}
llp — oll

6 = arcsin

Cone intersection

min & = min{

Modern Game Engine - Theory and Practice

BOOMING
TECH

" GAMESI104

Sparse Mesh SDF

Divides the Mesh SDF into bricks
« Define a max_encode_distance
« Invalid if v sdf(brick) > max_encode_distance

* IndirectionTable store the index of each brick

Modern Game Engine - Theory and Practice

BOOMING -
TECH GAMES104

Sparse Mesh SDF

Divides the Mesh SDF into bricks

« Define a max_encode_distance
« Invalid if v sdf(brick) > max_encode_distance

* IndirectionTable store the index of each brick

Example:

IndirectionTable:

BrickData:

0 1 2

3 4 5

6 7 8

Ol1 X2]| x]3 | X]|4]5

Brick O | Brick 1 | Brick 3 | Brick5 | Brick 7 | Brick 8

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Mesh SDF LoD

« Every frame GPU gathers requests
« CPU download requests and streams pages in/out

« 3 mips are generated

» Lowest resolution always loaded and the other 2 streamed

Modern Game Engine - Theory and Practice BOQMING | GAMES104

Sparse Mesh SDF model size = 6.35m x 7.57m x 5.77m
vaild Invaild

mipO brick:2310/6336
126x154x112 1.15MB/3.09MB
5cm
mipl brick:532/792
63X77x56 0.26MB/0.39MB
10cm
mip2 brick:112/120
35x42x28

56.5KB/60.0KB
20cm

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Ray Tracing Cost in Real Scene

Trace camera rays and visualize the number of steps

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Many Objects along Each Ray

Number of hit objects along each ray

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Global SDF

 Global SDF is inaccurate near surface

« Sample object SDFs near start of cone, global SDF for the rest

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Ray Tracing with Global SDF

Massively reduces tracing cost on overlapping objects

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Cache Global SDF around Camera

« 4 clipmaps centered around camera
« Clipmaps are scrolled with movement
« Distant clipmaps updated less frequently

» Also sparsely stored (~16x memory saving)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Phase 2 : Radiance Injection and Caching

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Mesh card — orthogonal camera on 6-Axis Aligned directions

class- - FLumenCard

{

«+ - FLumenCardOBB - LocalOBB;
++«+FLumenCardOBB-WorldOBRB;
«++ruint8-AxisAlignedDirectionIndex;

}r
-Y direction All 6 directions

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Modern Game Engine - Theory and Practice

BOOMING -
BooM GAMES104

Generate Surface Cache

Two Passes

Pass 1. Card capture

* Fix texel budget per frame (512x512)

» Sort by distance to camera and GPU feedback

« Capture resultion depends on card projection on screen

Albedo Normal

e L[

512x512 RGBAS8 512x512 R8G8

Depth

i

512x512 D32S8

Emissive

512x512 R11G11B10

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Generate Surface Cache

Two Passes

Pass 1. Card capture

Pass 2. Copy cards to surface cache
and compress

4096x4096

512x512

Lumen.CardCaptureAlbedoAltas Lumens.SceneAlbedo

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Generate Surface Cache

TWO Pas ses 4096x4096 Surface Cache Atlas
Albedo RGBS BC7 16mb

. Opacit R8 BC4 8mb
Pass 1. Card capture 2 |

. Depth R16 - 32mb
Pass 2. Copy cards to surface cache

Normal Hemisphere RG8 .BC4 16mb
and compress | |

Emissive RGB Float16 BC6H 16mb

compress from 320mb to 88mb

FLumenSurfacelayerConfig Configs[(uint32)ELumenSurfaceCachelayer:: =

Modern Game Engine - Theory and Practice BOOMING

GAMES104

View Dependent Per-Object Card Resolution

128x128 physical pages in a 4096x4096 atlas Sutface Cache Atlas

[I I

Card capture res >= 128x128
 Split into multiple 128x128 physical pages page

Card capture res < 128x128
« Sub-allocate from a 128x128 physical page @~ T T e

________________ Mipmap

Card

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

How can we “freeze” lighting on Surface Cache

How to compute lighting on hit?

* Is the pixel under the shadow
« How can we handle multi-bounce

Modern Game Engine - Theory and Practice

BOOMING -
TECH e GAMES104

Lighting Cache Pipeline

Surface Cache
Albldo/Normal/...

1

Surface Cache
DirectLighting

|

Surface Cache

FinalLighting

Frame N

Surface Cache
InDirectLighting

World Space
Voxel Lighting

Frame N-1

\ World Space
Voxel Lighting

Modern Game Engine - Theory and Practice

BOOMING -
BOOMING . GAMES104

Direct Lighting

Divide 128x128 page into 8x8 tiles
Cull lights with 8x8 tile

Select first 8 lights per tile

1 bit shadow mask

Tiles

Select tiles to
update

Samp|e ShadOW maSk
d Shadow map

‘ Trace Offscreen
f Shadows by SDF

Shadow mask

Apply Lights

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

One tile can be lited by multi lights, the result will be accumlated

h o AR 20 . Y M Y i 0 X D
Immmn..n“! NN Y Y Y YN N

" S W P
L LT

HBF..:::"‘!EEHBHHEHEHEE
i Femuini i L L P

_ 15!nnnnnnnnnnun
: i : ' 0 el ool OO

S . | | R
>Mininal Default Light Source '] ’"""Jumnnnnnnunnnnnunnnuun
»Minimal Default. PointLight

E
3
]
]
B
]
]
]
P O O A

P I I

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Global SDF can't sample surface cache
« no per mesh information, only hit position and normal

Use voxel lighting to sample

oy I A &)
y I i ‘U’r‘!,w”.u}w ’ .
AN NN :
(e) W \\\ A\ {8
e S - » / o]
H TS T i e Yo%
1 i 3 5 ., " A] -

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Voxel Clipmap for Radiance Caching of the Whole Scene
4 level clipmaps of 64x64x64 voxels -
« Radiance per 6 directions per voxel N
« Sample and interpolate 3 directions by normal
« Clipmap0 cover 50m”3, voxel size is 0.78m "l =
 Store in 3D texture i i

. Y
Clipmap update frequency rules

- Clipmap Cllpmap Cllpmap Clipmap3 Voxel Lighting

Start_Frame <«——6 Directions—>

Update interval 2 4 8

XN\

A

4 Clipmaps

Sa 4 § SRLAST FTVINR NS AA

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Build Voxel Faces by Short Ray cast

Trace mesh DF on 6 directions per voxel

Hit mesh id and hit distance
RayStart=VoxelCenter — AxisDir *VoxelRaidus
RayEnd=VoxelCenter + AxisDir *VoxelRaidus

store hit infro into visibilty buffer

. 4’ —
uint32 [Hit distance| Hit object id]

Tile (4x4x4 voxels)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

~1lter Most Object Out by 4x4x4 Tiles

[Hit distance| Hit object |
[Hit distance| Hit object id] \

T

InterlockdMin

Tile (4x4x4 voxels)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Inject light into clipmap

« Clear all voxel lighting in entire Clipmap
« Compact all valid VisBuffer in Clipmap

« Sampling FinalLighting from VisBuffer and inject lighting

Modern Game Engine - Theory and Practice BOOMING * | GAMES104
Indirect Lighting Tile(8x8)
» Place 2x2 probes on each tile - each probe cover 4x4 texels
« Trace 16 rays from heimisphere per probe
« Jitter probe placement and ray directions
probe

16 rays

" GAMESI104

B BOOMING
TECH

Modern Game Engine - Theory and Practice

ProbeSHGreen ProbeSHBIue

ProbeSHRed

4x4 radiance altas per probe

Convert to TwoBandSH(store in half4)

Spatial filtering between probes

Indirect Lighting

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Per-Pixel Indirect Lighting with 4 Probe Interpolation

» Integrate on pixel - bilinear interpolation of 4 neighbor probes

IndirectLighting DirectLighting Albedo FinalLighting

L - [T
n o I - []

Modern Game Engine - Theory and Practice

BOOMING i
TECH GAMES104

Combine Lighting

FinalLighting = (DirectLighting + IndirectLighting) * Diffuse_Lambert(Albedo)
+ Emissive;

| o F=

!‘&\a’:\\‘:
DirectLighting IndirectLighting
(HDR) (LDR)

Albedo

FinalLighting

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Ligting Update Strategy

Fix budget

« 1024x1024 texels for direct lighting

« 512x512 texels for indirect lighting

« Select pages to update based on Priority = LastUsed - LastUpdated

Priority queue using bucket sort
« 128 buckets
« Update buckets with priority until reaching budget

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Phase 3 : Build a lot of Probes with Different Kinds

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Space Probe

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Screen Probe structure

Octahedral atlas with border

« Typically 8x8 per probe

« Uniformly distributed world space directions
* Neighbors have matching directions

Radiance and HitDistance in 2d atlas

Hit Distance

8x8

Radiance Altas

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Octahedron mapping

float2 unitVectorToOctahedron(fLoat3 N)
{

N.xy /= dot(1, abs(N));
if (N.z <= 9)
{
x_factor = N.x >= 0? 1.0 : -1.0;
y_factor = N.y >=0 ? 1.0 : -1.0;
N.xy = (1 - abs(N.yx)) * float2(x_factor, y factor);

}
return float2(N.xy);

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Probe Placement

« Adaptive placement with Hierarchical Refinement

 lteratively place where interpolation fails

16x16 8x8 4x4

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Plane distance weighting of Probe Interpolation

1 T~ = T
/ g N
r N ™
N N
[\| /[\
»
) /
\ J /
Ay
N / ’
N) V|
~ 7 If ~ 7
\Y £
= gy 7T~ ~
Za N 7) N
[\ y) yd N
AN |7 /’
/ [,,H\r l \\ \
=l T
o /]
\ \ /
\ / k. / .
. / N ~ PlaneDistance
N o > 7

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Detect Non-Interpolatable Cases

‘float4-PlaneDistances;

‘PlaneDistances. x-=-abs (dot (float4 (Position00, -—1), *ScenePlane)) ;
‘PlaneDistances. y-=-abs (dot (float4 (Positionl0, --1), -ScenePlane)) ;
‘PlaneDistances. z-=-abs (dot (float4 (Position01, -—1), -ScenePlane)) :
‘PlaneDistances. w-=-abs (dot (float4 (Positionll, -—1), -ScenePlane))

‘float4-RelativeDepthDifference-=-PlaneDistances‘/-SceneDepth;
‘DepthWeights-=:-CornerDepths->-0-?-exp2 (-10000. 0f -*- (RelativeDepthDifference-*-RelativeDepthDifference)) -:-0;

InterpolationWeights-=-float4(
++++(1-—+BilinearWeights. y) -*- (1-—-BilinearWeights. x),
++++(1-—-BilinearWeights. y) -*-BilinearWeights. x,

-+ --BilinearWeights. v-*%- (1-—-BilinearWeights. x),
-+-+BilinearWeights. y-*-BilinearWeights. x) :

InterpolationWeights-%=-DepthWeights:

float-Epsilon-=-. 01f;
ScreenProbeSample. Weights /=-max (dot (ScreenProbeSample. Weights, -1), *Epsilon) ;

float-LightingIsValid-=- (dot (ScreenProbeSample. Weights, *1) +<:1.0f-—+Epsilon) - ?-0. 0f-: - 1. Of;

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Probe Atlas

« Atlas have upper limit for real-time

« Place adaptive probes at the bottom of the atlas

16x16 8x8 4x4

Modern Game Engine - Theory and Practice BOOMING * GAMESI04

TECH

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Screen Probe Jitter

» Place probe directly on pixels

« Temporally jitter placement and direction |
L e ~
« Use Hammersley points in [0, 15] ; L -
| A . sy
[N | & .' --------- -
i ' b |'| " ','I -
. 1 v | E
T $ v Frame O
[n
° |
? I . r i ’-’ R f X
" l:: """ B 3 A -»>
P s [4
A v
Hammersley Points in [0-15] Frame Frame

1 2 Temporal accumulation

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Importance Sampling

Modern Game Engine - Theory and Practice BOOMING = | GAMES104

But too much noise at Y2 ray per pixel

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Better sampling - importance sample incoming lighting and BRDF

h I /‘I
i #
>
F
L >
1 \.-""-,:"'.-
'\ —
1Il " y
-
| A
|
| N
AR 4
!,,JF,-—"-'
NN TRy
b =
LS
1Sy
! \\
\ -~
/J : \‘
4 b J
B I //‘r
] (/‘f"
1,‘3,;1,-'
1.4%
| A
.o I,
LN
1 ~
\ * .
b

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Importance Sampling

1 i L.(D[fo(T= v)cos(8])
N P,
k=1

lim

N— o0

We would like to distribute rays proportional to the integrand
How can we estimate these?

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Approximate Radiance Importance from Last Frame Probes

1< L;(I)fs(l = v)cos(8l)
N2

lim
N— oo

Py

Incoming Radiance:

» Reproject to last frame and average the four neighboring Screen
Probes Radiance

 No need to do an expensive search, as rays already indexed in
octahedral atlas

» Fallback to World Space Probe Radiance if neighboring probes
are occluded

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Accumulate Normal Distribution Nearby

o %i L.(D[f-(T= v)cos (81
k=1

N->oo Pk
BRDF:

« [For a probe that's placed on a flat wall, about half of its
sphere having a zero BRDF

« Accumulate from pixels that will use this Screen Probe

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Nearby Normal Accumulation

(DepthWeight > .1f || [bCenterSample)

]] o if
« Gathter 64 neighbor pixels around current probe's ¢
. . . uint Index;
p|Xe| INn a 32)(32 plxel l’ange InterlockedAdd(NumSphericalHarmonics, 1, Index);
* Accept pixel If its depth weight > 0.1 RS P S
« Accumulate these pixels' world normal into SH 7 e e

// Avoid culling directions that the shading models will sample
BRDF = (FThreeBandSHVector)e;
BRDF.V@.x = 1.0f;

}
Sample slien
. Plane {
o BRDF = CalcDiffuseTransferSH3(Material.WorldNormal, 1.0f);
- ‘. }
\ 3:*... WriteGroupSharedSH(BRDF, Index);
.0 O. }
R Sample
G-Buffer .-

Probe
float3 PixelPosition = GetWorldPositionFromScreenUV(PixelScreenUV, Material.SceneDepth);

float4 PixelPlane = float4(Material.WorldNormal, dot(Material.WorldNormal, PixelPosition));
float3 ProbeWorldPosition = GetWorldPositionFromScreenUV(ScreenUV, ProbeSceneDepth);

float PlaneDistance = abs(dot(float4(ProbeWorldPosition, -1), PixelPlane));
float RelativeDepthDifference = PlaneDistance / ProbeSceneDepth;
float [DepthWeight = exp2(-10000.0f * (RelativeDepthDifference * RelativeDepthDifference));

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Structured Importance Sampling

» Assigns a small number of samples to hierarchically structured
areas of the Probability Density Function (PDF)

» Achieves good global stratification

« Sample placement requires offline algorithm

PDF Subdivided Octahedral texels

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Fix Budget Importance Sampling based on Lighting and BRDF

« Start with uniformly distributed probe ray directions

» Fixed probe tracing ray count=64

« Calculate BRDF PDF * Lighting PDF for each Octahedral texel

« Sort rays by PDF from low to high

* For every 3 rays with PDF below cull threshold, supersample the matching highest PDF ray

Culled directions

Supersampled
directions

BRDF PDF Lighting PDF

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

TECH

uniform ray directions ray directions after importance sampling

Modern Game Engine - Theory and Practice BOOMING ~ = GAMES104

TECH -

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

TECH

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Denoising and Spatial Probe Filtering

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Denoise: Spatial filtering for Probe

Large spatial filter for cheap
« Each probe cover 16x16 pixels, 3x3 filtering kernel in probe space
equals 48x48 in screen space

Can ignore normal differences between spatial neighbors
* Only depth weighting

float GetFilterPositionWeight(float ProbeDepth, float SceneDepth)
{
float DepthDifference = abs(ProbeDepth - SceneDepth);

float RelativeDepthDifference = DepthDifference / SceneDepth;
return ProbeDepth >= @ ? exp2(-SpatialFilterPositionWeightScale * (RelativeDepthDifference * RelativeDepthDifference)) : 0;

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Denoise: Gather Radiance from neighbors
Gather radiance from matching Octahedral cell in neighbor probes

Error weighting:
« Angle error from reprojected neighbor ray hits (less than 10 degree)

 Filters distant lighting, preserves local shadowing

Neighbor
Probe

Current
Probe

i #
.. .
o
.

l .
¥ oa
-

o
E
e X

§ \ F/ ‘-m.m
- Angle error

Modern Game Engine - Theory and Practice BOOMING = | GAMES104

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Clamp Distance Mismatching
Angle error biases toward distant light = leaking
» Distant light has no parallax and never gets rejected
Solution: clamp neighbor hit distance to our own before reprojection
b
current - : 4
probe o TR f%ye
n /70@
R
neighbor L
probe |

clamp

Modern Game Engine - Theory and Practice BOOMING = | GAMES104

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Final filtering compare

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

World Space Probes and Ray Connecting

Modern Game Engine - Theory and Practice

BOOMING
TECH GAMES104

" 4
World Space Radiance Cache Pl
Problem: distant lighting I .
v
* Noise from small bright feature increases with distance .
4 -
« Long incoherent traces are slow | IR

« Distant lighting is changing slowly - opportunity to cache

* Redundant operations for nearby Screen Probes

Solution: separate sampling for distant Radiance

« World space Radiance Caching for distant lighting

« Stable error since world space - easy to hide v
Screen Radiance Cache

World Radiance Cache

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

World Space Radiance Cache

CEED 0 © D GD @D &6
‘ «

Placement caamo
* 4 level clipmaps around camera
« default resolution is 48”3

« clipmap 0 size is 50m”3

Radiance
« 32x32 atlas a per probe

Modern Game Engine - Theory and Practice

BOOMING
TECH

_ . GAMES104

Connecting rays

 How to connect Screen Probe ray and World Probe ray

Screen Probe

Fa
ray ’ World Probe ray

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Connecting rays

« World Probe ray must skip the interpolation footprint

Interpolation footprint
Interpolation

World Probe / /
Screen Probe ® 'l/
L

World Probe ray

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Connecting rays

« Screen Probe ray must cover interpolation footprint + skipped distance

World Probe ray

Screen Pyobe

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
2

* Problem: leaking!

« World probe radiance should have been occluded

« But wasn’t due to incorrect parallax

World Prebe ray

Screen Probe ray

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

|

Solution: simple sphere parallax

Reproject Screen Probe ray intersection with World Probe

sphere
Corrected World Probe ray

Screen Probe ray

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Placement and caching

« Mark any position that we will interpolate from later in

clipmap indirections

« For each marked world probe: Reuse existing probe traces

* Reuse traces from last frame, or allocate new probe index

* Re-trace a subset of cache hits to propagate lighting changes Generate rays

Marked World Probes

4

Screen Probe »

N

Probe space filtering

Modern Game Engine - Theory and Practice BOQMING | GAMES104

» Without World Space Probes

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Radiance Cache for the first 2
meters

World Radiance Cache for any lighting
further than that.

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Phase 4 : Shading Full Pixels with Screen Space Probes

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
2

Convert Probe Radiance to 3rd order Spherical Harmonic:
 SH s calculated per Screen Probe
* Full res pixels load SH coherently

« SH Diffuse integration cheap and high quality Spherical Harmonic

importance sample the BRDF
to get ray directions, and then

sample the Radiance Cache.

GAMES104

>

BBOOHIHG P
TECH

Modern Game Engine - Theory and Practice

lon with SH

Final integrat

“h e A AN A A saaas

“w e s . oa

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Overall, Performance and Result

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Speed of Different Tracing Methods

HW + Surface Cache
HZB Screen

Mesh SDF
Global SDF | | Linear Screen

Accuracy

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Red — Screen Space Trace

fail to hit ‘

Green — Mesh SDF Trace

fail to hit ‘

Blue — Global SDF Trace

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Trace Method Trace Parameter Hit Infromation | Sampling

Screen Space Trace

HZB
Max Step=50

Hit Screen UV

Previous Frame
SceneColorTexture

Fail to hit §

Mesh SDF Trace

Max Trace Distance= 1.8m
Position in 40m Radius of Camera

Mesh ID
Hit World Position
Normal

Final Lighting

Fail to hit

Global SDF Trace

Max Trace Distance = 200m

Hit World Position
Normal

Voxel Lighting

Fail to hit ‘

Cubemap

Infinite

N/A

Sky Cube Color

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

L

SSGI OFF A

n
k|

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Performance

Place Probes - .13ms

Playstation 5

World Radiance
Cache

1080p internal resolution

Temporal Super Resolution to 4k Generate rays - 35ms 53ms

Trace - 1.07ms

Y% ray per pixel
Total: 3.74ms

Probe space filtering - .24ms

Screen Bent Normal - .39ms

Interpolate and Integrate - .62ms

Temporal filter - .32ms

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Screen Space

Radiance Cache World Radiance
Cache

1/32nd resolution

Ys ray per pixel
Total: 2.15ms

1/128th resolution

Interpolate and Integrate

Temporal filter

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

g

Y8 ray per pixel %
2.15ms Final Gather

BOOMING
BooM GAMES104

Y5 ray per pixel
3.74ms Final Gather

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

I | Sy

T -

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Conclusion

Complexity of Real Rendering

Indirect
light

Scattering ¢

L(x,w)=L(x,0)+ IH2 /. (x,0,0)L(x,0)cos0dw,

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

References

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Monte Carlo Integration

« Importace Sampling: https://patapom.com/blog/Math/ImportanceSampling/

* Notes on importance sampling: https://www.tobias-

franke.eu/log/2014/03/30/notes on importance sampling.html
 Chinagraph 20202B1EE

3:https://www.bilibili.com/video/BV1my4y1z76s?p=3&vd source=5e38e5c84aabffocff3b802
b3eech8hc

« Probability density function: https://en.wikipedia.org/wiki/Probability density function

« Microfacet Models for Refraction through Rough Surfaces:

https://www.cs.cornell.edu/~srm/publications/EGSRO07-btdf.pdf

https://patapom.com/blog/Math/ImportanceSampling/
https://www.tobias-franke.eu/log/2014/03/30/notes_on_importance_sampling.html
https://www.bilibili.com/video/BV1my4y1z76s?p=3&vd_source=5e38e5c84aa6ff6cff3b802b3eecb8bc
https://en.wikipedia.org/wiki/Probability_density_function
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.pdf

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Gl

SSGI: https://Iwww.ea.com/frostbite/news/stochastic-screen-space-reflections

DDGI: https://zhuanlan.zhihu.com/p/404520592

DDGI:
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9900-

iIrradiance-fields-rix-diffuse-qglobal-illumination-for-local-and-cloud-graphics.pdf

DDGI: https://www.jcgt.org/published/0008/02/01/paper-lowres.pdf

https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
https://zhuanlan.zhihu.com/p/404520592
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9900-irradiance-fields-rtx-diffuse-global-illumination-for-local-and-cloud-graphics.pdf
https://www.jcgt.org/published/0008/02/01/paper-lowres.pdf

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Gl

* Reflective Shadow Maps:

https://users.soe.ucsc.edu/~pang/160/s13/proposal/mijallen/proposal/media/p203-

dachsbacher.pdf

 Light Propagation Volumes: https://ericpolman.com/

o VXGI: https://on-demand.gputechconf.com/gtc/2014/presentations/S4552-rt-voxel-based-

global-illumination-gpus.pdf

e Lumen:
https://advances.realtimerendering.com/s2021/Radiance%20Caching%20for%20real-
time%20Global%201llumination%20(SIGGRAPH%202021).pptx

https://users.soe.ucsc.edu/~pang/160/s13/proposal/mijallen/proposal/media/p203-dachsbacher.pdf
https://ericpolman.com/
https://on-demand.gputechconf.com/gtc/2014/presentations/S4552-rt-voxel-based-global-illumination-gpus.pdf
https://advances.realtimerendering.com/s2021/Radiance Caching for real-time Global Illumination (SIGGRAPH 2021).pptx

Modern Game Engine - Theory and Practice BOQMING | GAMES104

TECH

Hardware Ray Tracing

Ray Tracing Gems II: https://link.springer.com/content/pdf/10.1007/978-1-4842-7185-8.pdf

The six levels of ray tracing acceleration:

https://f. hubspotusercontent10.net/hubfs/2426966/Gated%20Files/imagination-raytracing-

primer-sept2020.pdf

Hybrid Rendering for Real-Time Ray Tracing:
https://link.springer.com/content/pdf/10.1007/978-1-4842-4427-2 25.pdf

Ray Traced Reflections in 'Wolfenstein: Youngblood'

https://www.qgdcvault.com/play/1026723/Ray-Traced-Reflections-in-Wolfenstein

DirectX Raytracing (DXR) Functional Spec: https://microsoft.github.io/DirectX-

Specs/d3d/Raytracing.html

VulkanRayTracingFinalSpecificationRelease

https://link.springer.com/content/pdf/10.1007/978-1-4842-7185-8.pdf
https://f.hubspotusercontent10.net/hubfs/2426966/Gated Files/imagination-raytracing-primer-sept2020.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-4427-2_25.pdf
https://www.gdcvault.com/play/1026723/Ray-Traced-Reflections-in-Wolfenstein
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Signed Distance Field

Dynamic Occlusion With Signed Distance Fields:

http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields.pdf

Lectrue5 Real-time Environment Mapping:
https://www.bilibili.com/video/BV1YKA4y1T7yY?p=5&vd_source=5e38e5c84aab6ff6¢cff3b802b3eech8bc
DX12i8RE4(5) - 1817 : #1%: https://zhuanlan.zhihu.com/p/89701518?utm _id=0

GPU Gems 2 - Chapter 8.Per-Pixel Displacement Mapping with Distance Functions:

https://developer.nvidia.com/gpugems/gpugems?2/part-i-geometric-complexity/chapter-8-pixel-

displacement-mapping-distance-functions

Unreal Engine 5.0 Documentation: https://docs.unrealengine.com/5.0/en-US/mesh-distance-fields-in-

unreal-engine/

Advances in Real-Time Rendering in Games: Part | - SIGGRAPH 2022:

https://advances.realtimerendering.com/s2022/index.htmilf

https://link.springer.com/content/pdf/10.1007/978-1-4842-7185-8.pdf
https://www.bilibili.com/video/BV1YK4y1T7yY?p=5&vd_source=5e38e5c84aa6ff6cff3b802b3eecb8bc
https://zhuanlan.zhihu.com/p/89701518?utm_id=0
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-8-pixel-displacement-mapping-distance-functions
https://docs.unrealengine.com/5.0/en-US/mesh-distance-fields-in-unreal-engine/
https://advances.realtimerendering.com/s2022/index.html
https://f.hubspotusercontent10.net/hubfs/2426966/Gated Files/imagination-raytracing-primer-sept2020.pdf

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Lecture 20 Contributors

- W - I - INEER - I35k

Modern Game Engine - Theory and Practice BOOMING GAMES1I04

&A

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Enjoy;)
Coding

Course Wechat

Please follow us for
further information

