
Modern Game Engine - Theory and Practice

We’ll set three grading levels for Certificates

• Graduated: submitted all assignments in time with grading over 60 points

• Excellent: Passed and with 2 assignments achieving 100 points (HW1 not counted)

• Outstanding: Passed and with 3 assignments achieving 100 points (HW1 not counted)

Rewarding for Graduation:

• Piccolo T-Shirt

Submission Window: September 1st 2022 to October 31st 2022

Voices from Community – Certificate

Modern Game Engine - Theory and Practice

Voices from Community – WHAT'S THE NEXT

关注公众号，回复「入群」，加入Piccolo微信群

Future plan for Piccolo Community

• Code explained

• on 10th October

• details will be announced in our WeChat groups

• Various technical content

• Community activities

• releases of Piccolo versions

You can also send your fabulous advices about code explained via e-mail:

piccolo-gameengine@boomingtech.com

Modern Game Engine - Theory and Practice

• Q1: Many games are ruined by cheaters. Could we get rid of cheaters once and for all?

• Q2: What's the difference between micro-service and distributed server architecture?

• Q3: We're always wishing we could battle with friends around the world.

How could we implement a global server?

Q&A

WANG XI GAMES 104 2022

Advanced Topics

Modern Game Engine - Theory and Practice

Lecture 20

Data-Oriented Programming

and Job System

Modern Game Engine - Theory and Practice

Code Execution Is Not As Simple As It Looks

Code is executed on top of specific hardware and operating system

• Hardware and OS must be considered if we want to write a high performance program

Hardware

OS

Game Engine

Modern Game Engine - Theory and Practice

Basics of Parallel Programming

Modern Game Engine - Theory and Practice

Ceiling of Moore's Law and Multi-Cores

• The number of transistors in a dense integrated circuit (IC) doubles about every two years

• In these years, chip densities are no longer doubling every two years

• Multi-core processor becomes the new industry trend

M
IP

S

Modern Game Engine - Theory and Practice

Process and Thread

Process

• The instance of an application (or program)

• Has its own individual region of memory

Thread

• Preemptive multitasking

• The smallest unit of task that can be scheduled by OS

• Must reside in a process

• Threads in the same process share the same region of memory

Modern Game Engine - Theory and Practice

Types of Multitasking

Preemptive Multitasking

• Currently executing task can be interrupted at a time

decided by the scheduler

• Scheduler determines which task to be executed next

• Applied in most operating systems

Non-preemptive Multitasking

• Tasks must be explicitly programmed to yield control

• Tasks must cooperate for the scheduling scheme to work

• Currently many real-time operating systems (RTOS) also

support this kind of scheduling

scheduler

task1 task2

task1 task2

task 2 yield

task 1 yield

task 1 yield

interrupt and

switch

Modern Game Engine - Theory and Practice

Thread Context Switch

Store the state of a thread and resume the execution at a later point

• State including registers, stack and other OS required data

• Thread context switch implies extra user-kernel mode switch

• Cache invalidation after context switch has even more cost

user mode

kernel mode

Thread 1

Thread 2

user to kernel context switch kernel to user

+ 1,000~1,500 Cycles≈

≈ 2,000 Cycles

Cache invalidation may takes 10,000~1,000,000 cycles

Modern Game Engine - Theory and Practice

Parallel Problems in Parallel Computing

Embarrassingly Parallel Problem (or Perfectly Parallel)

• Little or no dependency or need for communication between parallel

tasks

Non-embarrassingly Parallel Problem

• Communication is needed between parallel tasks

Embarrassingly Parallel Non-embarrassingly Parallel

Monte Carlo algorithm is a typical

example of embarrassingly parallel

Modern Game Engine - Theory and Practice

Data Race in Parallel Programming

Multiple threads in a single process access the same memory location concurrently

• At least one of the accesses is for writing

• Read job_count
• Compute job_count + 1
• Write new job_count

while(job_count < 100)
{

doSomething();
job_count++;

}

2 thread expect job_count + 2, but actually +1

Modern Game Engine - Theory and Practice

Blocking Algorithm - Locking Primitives

Lock

• Only one thread can acquire the lock at a time

• Make a critical section for shared resource access

while (true)

{

mutex.lock();

doSomething1();

doSomething2();

// ...

mutex.unlock();

}

Only one thread can

do this part of code

in the same time

Entry section

Exit section

Critical section

Modern Game Engine - Theory and Practice

Other Issues with Locks

• Thread suspending and resuming will bring performance overhead

• Suspending threads never get resumed if the thread that acquires the lock exits abnormally

• Priority Inversion

• A higher priority task attempts to acquire the lock that is already acquired by a lower priority task

Priority InversionDeadlock Caused by Thread Crash

Modern Game Engine - Theory and Practice

Atomic Operation : Lock-free Programming
Atomic Loads and Stores

• Load: Load data from shared memory to either a

register or thread-specific memory

• Store: Move data into shared memory

Atomic Read-Modify-Write (RMW)

• Test and Set: Set 1 to shared memory and return

the previous value

• Compare and Swap (CAS): Update the data in

shared memory if it equals an expected value

• Fetch and Add: Add a value to the data in shared

memory and return the previous value

• ...
Parts of C++ atomic operations library

Modern Game Engine - Theory and Practice

Time

Wait FreeLock Free

Time

Lock Free vs. Wait Free

Modern Game Engine - Theory and Practice

Compiler Reordering Optimizations

void function1()
{

a = b + 1;
b = 0;

}

Turn off

optimization：

Turn on

optimization：

void function1()
{

a = b + 1;
b = 0;

}

void function1()
{

int temp = b;
b = 0;
a = temp + 1;

} Reordered！

Same order

Looks like:

Same as:

Modern Game Engine - Theory and Practice

Problem of Memory Reordering

void function1()
{

a = b + 1;
b = 0;

}

void function2()
{

while(b!=0)
{

continue;
}
assert(a==2);

}

int a = 0;
int b = 1;

Initialize:

Thread 1 Thread 2

Will the assertion fire?

• Compilers and CPUs often modify the execution order of instructions to optimize performance

• It's the hard part of parallel programming

Modern Game Engine - Theory and Practice

Out-of-order Execution by CPUs

For different CPU

• The optimization strategy are significantly different

• Provides different types of memory order guarantees

• Parallel programs require different processing

Modern Game Engine - Theory and Practice

Parallel Framework of Game Engine

Modern Game Engine - Theory and Practice

Fixed Multi-thread

One fixed thread for each part of the game engine logic

• Render, Simulation, Logic, Network, and etc.

• Easy to implement

Modern Game Engine - Theory and Practice

Issues with Fixed Multi-thread

• The workload is unbalanced among threads (cores)

• Unscalable while there are more processor cores

Modern Game Engine - Theory and Practice

Thread Fork-Join

Fork-join for data-parallelizable work (based on fixed multi-thread)

• Use a thread pool to prevent frequent thread creation/destruction

Fork Join

Fork Join

Modern Game Engine - Theory and Practice

Problems with Thread Fork-Join

• Not easy for logic programmers (work split, work threads count)

• Too many threads can bring performance overhead on context switch

• The workload is still unbalanced among threads (cores)

Modern Game Engine - Theory and Practice

Unreal Parallel framework

Named Thread

Game
Thread

Render
Thread

RHI
Thread

Audio
Thread

Stats
Threaad

Worker Thread

HP
Thread

NP
Thread

BP
Thread

Two types of threads

• Named Thread

• Created by other systems and attached to parallel framework

• Worker Thread

• Three priorities: high, middle and low

• The number is determined by the number of CPU cores

Similar to Thread Fork-Join

Modern Game Engine - Theory and Practice

Task graph

A directed acyclic graph

• Node→Task

• Edge→Dependency

Task1

Task2

Task3 Task4

Task5

Modern Game Engine - Theory and Practice

Building Task Graph by Links

Task1

Task2

Task3 Task4

Task5

Task1 Task2

Task5

Task3

Task4

Task1 Task3

Task3 Task4

Modern Game Engine - Theory and Practice

Job System

Modern Game Engine - Theory and Practice

Coroutine

Allows for multitasking by creating jobs that run inside of coroutines

• Coroutine is a lightweight execution context (include a user provided stack, registers...)

• Execution is collaborative, means a coroutine can switch to another interactively

Modern Game Engine - Theory and Practice

Coroutine vs. Thread

Coroutine

• Scheduled by programmers

• To be executed within a thread

• Context switch is faster without kernel switch

Thread

• Scheduled by operating system

• Resides in a process

• Context switch is costly with kernel switch

Modern Game Engine - Theory and Practice

Stackful Coroutine

Coroutine owns an independent runtime stack which is reserved after yield

• Enable to yield from within a nested stackframe

• Use local variables just like normal functions

void main()
{

doCoroutine(stackfulCO);
...

}

void subroutine()
{

int a = 3;
// OK, stack is reserved
yield();
// stack is restored

assert(a == 3); // never fire
}

void stackfulCO()
{

subroutine();
}

Modern Game Engine - Theory and Practice

Stackless Coroutine

Coroutine has no independent runtime stack to be reserved when yield

• Only the top-level routine may yield (subroutines have no idea where to return without stack)

• The data that is required to resume execution should be stored separately from the stack

void main()
{

doCoroutine(stacklessCO);
...

}

void subroutine()
{

// CAN'T
yield();

}

void stacklessCO()
{

subroutine();
int a = 3;
// OK
yield();
// resume with a different stack

// CAN'T, 'a' is not in the stack
assert(a == 3);

}
×

×

Modern Game Engine - Theory and Practice

Stackful vs. Stackless Coroutine

Stackful Coroutine

• More powerful with enable to yield from within a nested stackframe

• Needs more memory to reserve stacks for each coroutine

• Coroutine context switch takes more time

Stackless Coroutine

• Unable to yield from within a subroutine

• More difficult to use without a stack to reserve data

• No extra memory needed for coroutine's stack

• Faster context switch

Modern Game Engine - Theory and Practice

Fiber-based Job System

Allows for multitasking by creating jobs instead of threads

• Fiber is like coroutine except that fiber is scheduled by a scheduler

• Thread is the execution unit while fiber is the context

• One thread for each processor core to minimize the context switch overhead

• Job is executed within the context of a fiber

Fiber
Fiber

Fiber
Fiber

Fiber
Fiber

Fiber
Fiber

Thread
Thread

Thread
Thread

Jobs Fiber pool Work threads

Core
1 to 1

Cores

Modern Game Engine - Theory and Practice

One Work Thread for One Core

To minimize the overhead of thread context switch

• Multiple work threads for a single core still suffers from context switch

• One work thread for each core eliminates context switch

Core

Work

Thread

Work

Thread

Work

Thread

Work

Thread

Context Switch
Core Core Core Core

Work

Thread

Work

Thread

Work

Thread

Work

Thread

Modern Game Engine - Theory and Practice

Fiber-based Job System

• Thread is the execution unit while fiber is the context

• Job is executed within a fiber

Modern Game Engine - Theory and Practice

Job Scheduler - Global Job

Modern Game Engine - Theory and Practice

LIFO and FIFO Mode

• Schedule Model

• First In First Out (FIFO)

• Last In First Out (LIFO)

• LIFO Mode

• In most case, job dependency is tree like

• Some system add jobs occasionally but wait them immediately

Modern Game Engine - Theory and Practice

Job Scheduler - Job Dependency

Modern Game Engine - Theory and Practice

Job Scheduler - Job Stealing

Modern Game Engine - Theory and Practice

Pros and Cons of Job System

Pros

• Easy to implement task schedule

• Easy to handle task dependency

• Job stack is isolated

• Avoid frequency context switch

Cons

• C++ does not natively support fiber

• Implementation is different between OS

• Has some restrictions(thread_local invalid)

Modern Game Engine - Theory and Practice

Programming Paradigms
Procedure-oriented Programming

Object-oriented Programming

Modern Game Engine - Theory and Practice

Programming Paradigm of Game Engine

• There are many different programming paradigms

• In practice, some paradigms are widely used

• Programming languages aren't always tied to a specific paradigm

Programming Paradigms

Imperative Paradigm Declarative Paradigm

Procedural

Programming
Object Oriented

Programming

Structured

Programming

Functional

Programming
Logic

Programming

Object-Oriented

Eiffel

Java

Logic

Prolog
Datalog SQL

Declarative

C
Pascal

precedural

bash
C++

CLOS ML

LISP
Functional

Imperative

Modern Game Engine - Theory and Practice

Procedural Oriented Programming (POP)

• Follows a step-by-step approach to break down a task into a collection of variables and routines

(or subroutines) through a sequence of instructions

• Impossible to write a game engine in this way

• Data is not well maintained.

• A co-relation with real-world objects is difficult

Modern Game Engine - Theory and Practice

Object-Oriented Programming (OOP)

• Based on the concept of "objects", which can contain data and code

• It's natural for human to abstract from real world in an object-oriented way

An example of game object

GameObject

• Id

• Name

•
• Create()

• Destroy()

•

Vehicle

• Speed

• Capacity

•
• Move()

• Pickup()

•

Weapon

• Damage

• AmmoType

•

• Fire()

• Reload()

•

Modern Game Engine - Theory and Practice

Problems of OOP : Where to Put Codes?

"Attacker.doDamageTo()",

or "Victim.receiveDamage()"?

"Player.attachTo()",

or "Enemy.isAttached()"?

Modern Game Engine - Theory and Practice

Problems of OOP ：Method Scattering in Inheritance Tree

• Hard to know which parent class has the method implementation

What happend when player attacks a spider enemy?

Need check many different classes and

methods to find answer

GO base

....

BipedCreature

...

Enemy

...
player

...

Spider

...

MyriadsCreature

...

Modern Game Engine - Theory and Practice

Problems of OOP : Messy Based Class

Find some methods in common?

Put it to the base class!

We get a messy base class

Parts of methods of a "messy base class"

This is not the best OO design, and it

certainly is possible to make a better one.

But also, often code ends up being like this,

even if no one wanted it that way.

class ENGINE_API AActor : public UObject
{

...
const FTransform& GetTransform() const;
const FTransform& ActorToWorld() const;
FVector GetActorForwardVector() const;
FVector GetActorUpVector() const;
FVector GetActorRightVector() const;
virtual void GetActorBounds(...) const;
virtual FVector GetVelocity() const;
float GetDistanceTo(const AActor* OtherActor) const;
virtual void SetActorHiddenInGame(bool bNewHidden);
bool GetActorEnableCollision() const;
bool HasAuthority() const;
UActorComponent* AddComponent(...);
void AttachToActor(...);
void DetachFromActor(const FDetachmentTransformRules& DetachmentRules);
bool GetTickableWhenPaused();
bool IsActorInitialized() const;
void ReceiveAnyDamage(...);
void GetOverlappingActors(...) const;
virtual void SetLifeSpan(float InLifespan);
virtual void Serialize(FArchive& Ar) override;
virtual void PostLoad() override;
...

}

Modern Game Engine - Theory and Practice

Problems of OOP : Performance

• Memory scattering

• Jungle of virtual functions

Modern Game Engine - Theory and Practice

Problems of OOP : Testability

• Unit Testing

• OO designs often need a lot of setup to test

To test a

soldier.attack()

method

Setup several

soldier objects

Initalize game

object models

Load basic

attributes

Setup animation

tree

Setup motor

status

... ...

health

armorteam

jobs

Which

needs

Modern Game Engine - Theory and Practice

Data-Oriented Programming (DOP)

Modern Game Engine - Theory and Practice

Processor-Memory Performance Gap

• Performance of memory grows much slowly than processor

• The gap is even larger which make memory becomes the main bottleneck of

performance

CPU

内存条

Modern Game Engine - Theory and Practice

The Evolution of Memory - Cache
Add cache to speed up data reading

CPU Core 0

512KB L1 Instrument

Cache: ~1ns
512KB L1 Data

Cache: ~1ns

2MB L2 Cache: ~3ns

16MB L3 Cache: ~10ns

CPU Core 1

512KB L1 Instrument

Cache: ~1ns

512KB L1 Data

Cache: ~1ns

2MB L2 Cache: ~3ns

Memory: ~100ns

• L1: Ranges between 256KB to no more than 1MB, but even that is sufficient.

• L2: Usually a few megabytes and can go up to 10MB.

• L3: Larger than L1 and L2, varies from 16MB to 64MB, shared between all cores.

Modern Game Engine - Theory and Practice

Principle of Locality

Spatial Locality

• The use of data elements within relatively

close storage locations

the tendency of a processor to access the same set of memory locations

repetitively over a short period of time

CPU

Memory

X Y Z

Modern Game Engine - Theory and Practice

Single instruction multiple data (SIMD)

Modern Game Engine - Theory and Practice

LRU (Least Recently Used)
• When cache is full, discards the least recently used cache-line first.

• Record the "used time" of each cache line

• Discard the most "oldest used" cache line each time

• Update "used time" when access data of cache line

The data read sequence: A, B, C, D, E, D, F

Access E but cache

miss, replace A(0)

Access D and cache hit,

update "used time" to 5

Aceess F but cache

miss, replace B(1)

C(2)

Cache line

data name Last used time

sequence number

Modern Game Engine - Theory and Practice

Cache Line

• Data is transferred between memory and cache in blocks of fixed size (typically 64 bytes),

called cache lines or cache blocks.

• A cache can only hold a limited number of lines, determined by the cache size. For

example, a 64 kilobyte cache with 64-byte lines has 1024 cache lines.

• Every time you load any memory at all, you are loading in a full cache line of bytes

Modern Game Engine - Theory and Practice

Row-major order

Cache Miss

Two way of iteration

Column-major order
1

Assume L1 cache with 4 cache lines

Each cache line is 64 bytes (16 integers)

• When cahce is full (loaded 4 rows), new rows will replace the oldest one

• When a elements not in cache, a whole row will be loaded

16 cache miss

256 cache miss

Modern Game Engine - Theory and Practice

Data-Oriented Programming (DOP)

1. Data is all we have

Remain Ammo

Count

Type of Weapon

Distance of

Enemies

Mesh of Terrain

Static Object

Model

Alliance

Information

Combat Map

Particle Effect

Modern Game Engine - Theory and Practice

Instructions are Data Too

int test()
{

int a = 1;
int b = 2;
return a + b;

}

1100011100000110

0000000000000000

0000000000000010

0101010101011010

1010001111100001

1000100011111001

1110000110101011

0000111001010101

01010101010..........

Code

Data

Modern Game Engine - Theory and Practice

Keep Code and Data Tight in Memory

• Keep both code and data small and process in bursts when you can

CPU

Registers

Instruction

Cache

Data

Cache

Currently execute

instructions

Unload current instructions,

load new instructions of

other program

Reload instructions of

origin program

Instruction

Cache Memory

CPU may switch to other

program in runtime

Code may also have

cache miss problem!

Modern Game Engine - Theory and Practice

Performance-Sensitive Programming

Modern Game Engine - Theory and Practice

Reducing Order Dependency

• The work being done because of a misprediction will have to be undone

• Never modify variables once they are initially assigned

a = 2
b = a * 5
... ...
a = 4
b = a / 2
... ...

a = 2
b = a * 5
... ...
a2 = 4
b2 = a2 / 2
... ...

These 2 parts of

code will not be

excuted in parallel

because variables a

& b is used before

Compiler allow these

2 parts of code to

execute in parallel

Actually, compiler use static single-assignment (SSA)

to deal with simple situation like this

Modern Game Engine - Theory and Practice

False Sharing in Cache Line

• Ensuring any rapidly updated variables are kept local to the thread

• Cache contension

Modern Game Engine - Theory and Practice

Branch prediction (1/3)

• CPU will prefetch instructions and data ahead

• Use branch prediction technics to decide

what to prefetch

a = 4

b = 3

if a + b > 5 then

c = 6

Code
Instrument

(simplified for example)

Modern Game Engine - Theory and Practice

• To avoid branch mis-prediction

Branch prediction (2/3)

int a[10] = {2,5,8,11,3,12,9,22,5,13};
for (int i = 0; i < 10; i ++)
{

if (a[i] > 10)
{

doFunc1();
}
else
{

doFunc2();
}

}

2 5 8 11 3 12 9 22 5 13

When i = 2, CPU predict i = 3 is the same,

thus prefetch doFunc1() instructions and data

2 5 8 11 3 12 9 22 5 13

But actually it should do doFunc2() when i = 3,

it's a mis-prediction

2 5 8 11 3 12 9 22 5 13

Again, predict doFunc2() when i = 4,

but actually should do doFunc1()

current index 2

current index 3

current index 4

prefetched data:

doFunc1()

actually:

doFunc2()

prefetched data:

doFunc2()

actually:

doFunc1()

Modern Game Engine - Theory and Practice

Branch prediction (3/3)

int a[10] = {2,3,5,5,8,9,11,12,13,22};
for (int i = 0; i < 10; i ++)
{

if (a[i] > 10)
{

doFunc1();
}
else
{

doFunc2();
}

}

• To avoid branch mis-prediction

2 3 5 5 8 9 11 12 13 22

If it's a sorted array, only 1 mis-

prediction will occur

Modern Game Engine - Theory and Practice

Existential Processing

Only processing existing elements rather than deciding whether should be processed on the fly

for actor in actor_array do
if actor is alive then

aliveFunc(actor)
else

deadFunc(actor)
end

end

This code also faces branch

prediction problems

Unlike the example before,

actor_array changes every tick

for actor in alive_actor_array do
aliveFunc(actor)

end

for actor in dead_actor_array do
deadFunc(actor)

end

Completely avoid "if-else"

By maintaining 2 lists of different actors,

we could avoid branch mis-precondition

Modern Game Engine - Theory and Practice

Performance-Sensitive Data

Arrangements

Modern Game Engine - Theory and Practice

Reducing Memory Dependency

• (chained memory lookups/accesses by pointers)

• Load the first cache line 1

• Get the next node address

• Cache miss

• Unload the old one, and

load another cahce line 2

• Repeating1

2

Modern Game Engine - Theory and Practice

Array of Structure vs. Structure of Array

AOS SOA

If we want to read the

position of all particles, SOA

has better performance

struct Particle{
Vector3 position;
Vector3 velocity;
Color color;
float age;
//...

} Particle[N];

struct Particles{
Vector3 position[N];
Vector3 velocity[N];
Color color[N];
float age[N];
//...

} Particles;

position 1 velocity 1 color 1 age 1

position 2 color 2 age 2velocity 2

position 3 color 3 age 3velocity 3

position 4 color 4 age 4velocity 4

... ...

position 1 position 2 position 3

velocity 1 velocity 2 velocity 3

color 1 color 2 color 3

age 1 age 2 age 3

... ...

... ...

... ...

... ...

Modern Game Engine - Theory and Practice

Entity Component System (ECS)

Modern Game Engine - Theory and Practice

Recap: Component-based Design (1/2)

Modern Game Engine - Theory and Practice

Recap: Component-based Design (2/2)

Modern Game Engine - Theory and Practice

Entity Component System (ECS)

A pattern to structure game code in a data-oriented way for maximum performance

• Entity: an ID refer to a set of components

• Component: the data to be processed by systems, no logic at all

• System: where the logic happens, read/write component data

Modern Game Engine - Theory and Practice

Unity Data-Oriented Tech Stack (DOTS)

A combination of technologies that work together to

deliver a data-oriented approach to coding

• The Entity Component System (ECS) provides

data-oriented programming framework

• The C# Job System provides a simple method of

generating multithreaded code

• The Burst Compiler generates fast and optimized

native code

Modern Game Engine - Theory and Practice

Unity ECS – Archetype

A specific combination of components

• Entities are grouped into archetypes

Modern Game Engine - Theory and Practice

Unity ECS – Data Layout in Archetype

Same components in an archetype are packed tightly into chunks for cache friendliness

• A chunk is a block of memory with fixed size, i.e. 16KB

Translation Translation

Renderer Renderer

Chunk

Entity A Entity A

Modern Game Engine - Theory and Practice

Unity ECS – System

Translation Velocity

public class MoveSystem : SystemBase
{

protected override void OnUpdate()
{

// For each entity which has Translation and Velocity
Entities.ForEach(

// Write to Displacement (ref), read Velocity (in)
(ref Translation trans, in Velocity velocity) =>
{

//Execute for each selected entity
trans = new Translation()
{

// dT is a captured variable
Value = trans.Value + velocity.Value * dT

};
}

)
.ScheduleParallel(); // Schedule as a parallel job

}
}

Query result chunks

Archetype A

Archetype B

Archetype C

Modern Game Engine - Theory and Practice

Unity C# Job System

Make it easier for users to write correct multithreaded code

• A job is a small unit of work that performs a specific task

• Jobs can depend on other jobs to complete before they run

var first_job = new FirstJob();
var second_job = new SecondJob();

// execute first_job
var first_job_handle = first_job.Schedule();

// second_job depends on first_job to complete
second_job.Schedule(first_job_handle);

public struct FirstJob : IJob
{

public void Execute()
{

...
}

}

public struct SecondJob : IJob
{

public void Execute()
{

...
}

}

Modern Game Engine - Theory and Practice

Unity C# Job System – Native Container

A type of shared memory that can be accessed inside jobs

• Job cannot output result without native container (all data is a copy)

• Native containers support all safety checks

• Native containers need to be disposed manually

// Allocate one float with "TempJob" policy
// Allocator.Temp: Fastest allocation, lifespan is 1 frame or fewer
// Allocator.TempJob: Slower than Temp, lifespan is 4 frames
// Allocator.Persistent: Slowest allocation, can last as long as needed
NativeArray<float> a = new NativeArray<float>(1, Allocator.TempJob);

...

// Need to dispose manually for unmanaged memory
a.Dispose();

Modern Game Engine - Theory and Practice

Unity C# Job System – Safety System

Support safety checks (out of bounds checks, deallocation checks, race condition checks) for jobs

• Send each job a copy of data it needs to operate on to eliminate the race condition

• Job can only access blittable data types (reference is invalid)

public struct Job : IJob
{

public float a;
public float b;

public void Execute()
{

...
}

}

Job 0 Job 1

a b a b

Job 2 Job 3

a b a b

Schedule Job

Each job has a copy of data

Modern Game Engine - Theory and Practice

High-Performance C# and Burst Compiler

High-Performance C# (HPC#) is a subset of C#

• Give up on most of the standard library (StringFormatter, List, Dictionary, and etc.)

• Disallow allocations, reflection, the garbage collector and virtual calls

Burst Compiler translates from IL/.NET bytecode to highly optimized native code using LLVM

• Generate expected machine code for specific platforms

Modern Game Engine - Theory and Practice

Unreal Mass Framework

StructUtils

ZoneGraph

SmartObjects

ZoneGraphAnnotations

StateTree

Other Systems

Mass

MassEntity

MassEntity

MassEntityTestSuite

MassEntityEditor

MassGameplay

MassCommon

MassSignals

MassSmartObjects

MassLOD

MassReplication

MassGameplayDebug

MassActors

MassSpawner

MassSimulation

MassMovement

MassRepresentation

MassGameplayEditor

MassAI

MassAIMovement

MassAIMovementEditor

MassAIBehavior

MassAIDebug

MassAIReplication

MassAITestSuite

MassCrowd

MassCrowd

Modern Game Engine - Theory and Practice

• FMassEntityHandle is pure ID as ECS Entity

• Index indicates the index in Entities array in FMassEntityManager

• SerialNumber as salt to Index

• Release an old entity

• Create a new entity with the same Index

• SerialNumber is increased so the ID will be different

MassEntity – Entity

struct FMassEntityHand1e
{

...
int32 Index = 0;
int32 SerialNumber = 0;
...

}

struct MASSENTITY_API FMassEntityManager
{

...
TChunkedArray<FEntityData> Entities;
TArray<int32> EntityFreeIndexList;
...

}

Modern Game Engine - Theory and Practice

• Same as Unity, each type of entity has an Archetype

• Fragments and tags are components for entities

• Tags are constant Boolean components to filter

unnecessary processing

MassEntity – Component
struct FMassArchetypeCompositionDescriptor
{

...

FMassFragmentBitSet Fragments;
FMassTagBitSet Tags;
FMassChunkFragmentBitSet ChunkFragments;
FMassSharedFragmentBitSet SharedFragments;

}

Modern Game Engine - Theory and Practice

• ECS Systems in MassEntity are Processors derived from UMassProcessor

• Two important interface: ConfigureQueries() and Execute(...)

MassEntity – Systems

class MASSENTITY_API UMassProcessor : public UObject
{

...
protected:

virtual void ConfigureQueries() PURE_VIRTUAL(UMassProcessor::ConfigureQueries);
virtual void PostInitProperties() override;
virtual void Execute(

FMassEntityManager& EntityManager,
FMassExecutionContext& Context) PURE_VIRTUAL(UMassProcessor::Execute);

...
}

Modern Game Engine - Theory and Practice

• Interface ConfigureQueries() runs when the processor is initialized

• Use FMassEntityQuery to filter archetypes of entities meeting systems requirements

• FMassEntityQuery caches filtered archetypes to accelerate future executions

MassEntity – Fragment Query

void UMassApplyMovementProcessor::ConfigureQueries()
{

EntityQuery.AddRequirement<FMassVelocityFragment>(EMassFragmentAccess::ReadWrite);
EntityQuery.AddRequirement<FTransformFragment>(EMassFragmentAccess::ReadWrite);
EntityQuery.AddRequirement<FMassForceFragment>(EMassFragmentAccess::ReadWrite);
EntityQuery.AddTagRequirement<FMassOffLODTag>(EMassFragmentPresence::None);
EntityQuery.AddConstSharedRequirement<FMassMovementParameters>(EMassFragmentPresence::All);

}

Modern Game Engine - Theory and Practice

void UMassApplyMovementProcessor::Execute(FMassEntityManager& EntityManager,
FMassExecutionContext& Context)

{
// Clamp max delta time to avoid force explosion on large time steps (i.e. during initialization).
const float DeltaTime = FMath::Min(0.1f, Context.GetDeltaTimeSeconds());
EntityQuery.ForEachEntityChunk(EntityManager, Context, [this, DeltaTime](FMassExecutionContext& Context)
{

const int32 NumEntities = Context.GetNumEntities();
const TArrayView<FTransformFragment> LocationList = Context.GetMutableFragmentView<FTransformFragment>();
const TArrayView<FMassForceFragment> ForceList = Context.GetMutableFragmentView<FMassForceFragment>();
const TArrayView<FMassVelocityFragment> VelocityList = Context.GetMutableFragmentView<FMassVelocityFragment>();
for (int32 EntityIndex = 0; EntityIndex < NumEntities; ++EntityIndex)
{

FMassForceFragment& Force = ForceList[EntityIndex];
FMassVelocityFragment& Velocity = VelocityList[EntityIndex];
FTransform& CurrentTransform = LocationList[EntityIndex].GetMutableTransform();
// Update velocity from steering forces.
Velocity.Value += Force.Value * DeltaTime;
...
FVector CurrentLocation = CurrentTransform.GetLocation();
CurrentLocation += Velocity.Value * DeltaTime;
CurrentTransform.SetTranslation(CurrentLocation);

}
});

}

MassEntity – Execute

Modern Game Engine - Theory and Practice

Conclusions

Modern Game Engine - Theory and Practice

Everything You

Need Know About

Performance

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

Cache

• Entity Component Systems & Data Oriented Design, Unity Training Academy 2018-2019, #3

https://aras-p.info/texts/files/2018Academy%20-%20ECS-DoD.pdf

• Computer Architecture: A Quantitative Approach 5th Edition by John L. Hennessy , David A.

Patterson

• What is the bandwith speed of L1,L2 and L3 Cache

https://linustechtips.com/topic/34636-what-is-the-bandwith-speed-of-l1l2-and-l3-cache/

• Intel Core i9-9900K CPU Review: More Cores, Speed, and Higher Price

https://www.overclockers.com/intel-core-i9-9900k-cpu-review-more-cores-speed-and-

higher-price/

• Wikipedia - Cache replacement policies

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

EntityComponentSystems&DataOrientedDesign,UnityTrainingAcademy2018-2019,#3https://aras-p.info/texts/files/2018Academy%20-%20ECS-DoD.pdfComputerArchitecture:AQuantitativeApproach5thEditionbyJohnL.Hennessy,DavidA.Patterson
https://linustechtips.com/topic/34636-what-is-the-bandwith-speed-of-l1l2-and-l3-cache/
https://www.overclockers.com/intel-core-i9-9900k-cpu-review-more-cores-speed-and-higher-price/
https://en.wikipedia.org/wiki/Cache_replacement_policiesLeast_recently_used_(LRU)

Modern Game Engine - Theory and Practice

Parallel Programming (1/3)

• Operating System Basics (Brian Will)

https://linuxwheel.com/operating-system-basics-brian-will/

• Parallel computing via multicore computers allow high processing capacity

https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-

multicore-computers/

• Internals of a Thread Pool

https://salonegupta.wordpress.com/2017/12/28/internals-of-a-java-thread-pool/

• CPP Reference - Atomic https://en.cppreference.com/w/cpp/atomic

• TBB Tutorial https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf

https://linuxwheel.com/operating-system-basics-brian-will/
https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-multicore-computers/
https://salonegupta.wordpress.com/2017/12/28/internals-of-a-java-thread-pool/
https://en.cppreference.com/w/cpp/atomic
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf

Modern Game Engine - Theory and Practice

Parallel Programming (2/3)

• Parallel Programming Models and Paradigms

http://www.cse.hcmut.edu.vn/~hungnq/courses/pp/backup.2/thamkhao/Parallel%20Program

ming%20Paradigms.pdf

• Parallel Paradigms and Parallel Algorithms https://pdc-support.github.io/introduction-to-

mpi/05-parallel-paradigms/index.html

• Developing Parallel Programs - A Discussion of Popular Models

https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-

parallel-programs-170709.pdf

• Modern Fortran: Building efficient parallel applications MEAP V13

https://livebook.manning.com/book/modern-fortran/welcome/v-13/

http://www.cse.hcmut.edu.vn/~hungnq/courses/pp/backup.2/thamkhao/Parallel Programming Paradigms.pdf
https://pdc-support.github.io/introduction-to-mpi/05-parallel-paradigms/index.html
https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-parallel-programs-170709.pdf
https://livebook.manning.com/book/modern-fortran/welcome/v-13/

Modern Game Engine - Theory and Practice

Parallel Programming (3/3)

• Priority Inversion http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0101.html

• What is a Thread in OS and what are the differences between a Process and a Thread?

https://afteracademy.com/blog/what-is-a-thread-in-os-and-what-are-the-differences-

between-a-process-and-a-thread

• Understanding operating systems https://www.uow.edu.au/student/learning-co-

op/technology-and-software/operating-systems/

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0101.html
https://afteracademy.com/blog/what-is-a-thread-in-os-and-what-are-the-differences-between-a-process-and-a-thread
https://www.uow.edu.au/student/learning-co-op/technology-and-software/operating-systems/

Modern Game Engine - Theory and Practice

Parallel Frameworks in Game Engine (1/2)

• GDC2015 - Parallelizing the Naughty Dog Engine Using Fibers

https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine

• GCAP 2016: Parallel Game Engine Design - Brooke Hodgman

https://www.youtube.com/watch?v=JpmK0zu4Mts

• Java - Thread Pools https://www.logicbig.com/tutorials/core-java-tutorial/java-multi-

threading/thread-pools.html

• C++20: Building a Thread-Pool With Coroutines https://blog.eiler.eu/posts/20210512/

• Processes, threads, and coroutines

https://subscription.packtpub.com/book/programming/9781788627160/1/ch01lvl1sec02/proc

esses-threads-and-coroutines

https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine
https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/thread-pools.html
https://blog.eiler.eu/posts/20210512/
https://subscription.packtpub.com/book/programming/9781788627160/1/ch01lvl1sec02/processes-threads-and-coroutines

Modern Game Engine - Theory and Practice

Parallel Frameworks in Game Engine (2/2)

• UE并发-TaskGraph的实现和用法

https://zhuanlan.zhihu.com/p/398843895?utm_medium=social&utm_oi=1447486643037528

064&utm_psn=1546525648855732224&utm_source=ZHShareTargetIDMore

• Unreal Engine 5.0 Documentation - Tasks System https://docs.unrealengine.com/5.0/en-

US/tasks-systems-in-unreal-engine/

• UE4/UE5的TaskGraph https://cloud.tencent.com/developer/article/1897046

https://zhuanlan.zhihu.com/p/398843895?utm_medium=social&utm_oi=1447486643037528064&utm_psn=1546525648855732224&utm_source=ZHShareTargetIDMore
https://docs.unrealengine.com/5.0/en-US/tasks-systems-in-unreal-engine/
https://cloud.tencent.com/developer/article/1897046

Modern Game Engine - Theory and Practice

DOP (1/3)

• Programming Paradigms – Paradigm Examples for

Beginnershttps://www.freecodecamp.org/news/an-introduction-to-programming-

paradigms/#what-is-a-programming-paradigm

• GDC'cn 为实现极限性能的面向数据编程范式 叶劲峰https://ubm-

twvideo01.s3.amazonaws.com/o1/vault/gdcchina14/presentations/833779_MiloYip_ADataOrie

ntedCN.pdf

• Timeline of Computer History

https://www.computerhistory.org/timeline/computers/

• The Fetch and Execute Cycle: Machine Language

https://math.hws.edu/javanotes-swing/c1/s1.html

• Wikipedia-Single instruction, multiple data

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

https://www.freecodecamp.org/news/an-introduction-to-programming-paradigms/#what-is-a-programming-paradigm
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdcchina14/presentations/833779_MiloYip_ADataOrientedCN.pdf
https://www.computerhistory.org/timeline/computers/
https://math.hws.edu/javanotes-swing/c1/s1.html
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

Modern Game Engine - Theory and Practice

DOP (2/3)

• Linked List (Data Structure) https://devopedia.org/linked-list-data-structure

• Sekiro: Shadows Die Twice - All Bosses [No Damage]

https://www.youtube.com/watch?v=KPAvM2hcSH8

• Ori 2 - Boss - Mora (Giant Spider) - Hard Difficulty

https://www.youtube.com/watch?v=tuhrtBRLQPw

• The Greatest Frame Loss of All Time

https://www.youtube.com/watch?v=4efRYXuhVTA

• Monster Hunter World | Great Sword Tutorial

https://www.youtube.com/watch?v=X2vr8M3lQ88

https://devopedia.org/linked-list-data-structure
https://www.youtube.com/watch?v=KPAvM2hcSH8
https://www.youtube.com/watch?v=tuhrtBRLQPw
https://www.youtube.com/watch?v=4efRYXuhVTA
https://www.youtube.com/watch?v=X2vr8M3lQ88

Modern Game Engine - Theory and Practice

DOP (3/3)

• Data-Oriented Design, Fabian R, CRC Press, 2018.

https://www.dataorienteddesign.com/dodbook.pdf

• OOP Is Dead, Long Live Data-oriented Design. Nikolov S, Coherent Labs. CppCon 2018.

https://www.bilibili.com/video/BV1kW41117uw?p=66&vd_source=f12a5db552661d28e85078

75c37983cd

• Data-Oriented Design and C++, Acton M. Insomniac Games. CppCon 2014.

https://www.youtube.com/watch?v=rX0ItVEVjHc

• Data-Oriented Design Resources: https://github.com/dbartolini/data-oriented-design

https://www.dataorienteddesign.com/dodbook.pdf
https://www.bilibili.com/video/BV1kW41117uw?p=66&vd_source=f12a5db552661d28e8507875c37983cd
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://github.com/dbartolini/data-oriented-design

Modern Game Engine - Theory and Practice

Unity DOTS (1/2)

• Getting Started with Unity DOTS https://nikolayk.medium.com/getting-started-with-unity-

dots-part-1-ecs-7f963777db8e

• Unity Manual - ParallelFor Jobs

https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html

• Unity Learn - What is DOTS and why is it important https://learn.unity.com/tutorial/what-is-

dots-and-why-is-it-important#

• On DOTS: Entity Component System https://blog.unity.com/technology/on-dots-entity-

component-system

• Unite Los Angeles 2018 Keynote

https://www.youtube.com/watch?v=alZ6wmwvck0&t=6434s

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf
https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html
https://learn.unity.com/tutorial/what-is-dots-and-why-is-it-important
https://blog.unity.com/technology/on-dots-entity-component-system
https://www.youtube.com/watch?v=alZ6wmwvck0&t=6434s

Modern Game Engine - Theory and Practice

Unity DOTS (2/2)

• Building a Data-Oriented Future - Mike Acton

https://www.youtube.com/watch?v=u8B3j8rqYMw

• Getting started with Unity DOTS — Part 2: C# Job System

https://nikolayk.medium.com/getting-started-with-unity-dots-part-2-c-job-system-

6f316aa05437

https://www.youtube.com/watch?v=u8B3j8rqYMw
https://nikolayk.medium.com/getting-started-with-unity-dots-part-2-c-job-system-6f316aa05437

Modern Game Engine - Theory and Practice

Unreal Engine Mass Architecture

• UE5 MassEntity Documentation, https://docs.unrealengine.com/5.0/en-US/overview-of-

mass-entity-in-unreal-engine/

• UE5的ECS：MASS框架(一), quabqi, 2022, https://zhuanlan.zhihu.com/p/441773595

• UE5的ECS：MASS框架(二), quabqi, 2022, https://zhuanlan.zhihu.com/p/446937133

• UE5的ECS：MASS框架(三), quabqi, 2022, https://zhuanlan.zhihu.com/p/477803528

https://docs.unrealengine.com/5.0/en-US/overview-of-mass-entity-in-unreal-engine/
https://zhuanlan.zhihu.com/p/441773595
https://zhuanlan.zhihu.com/p/446937133
https://zhuanlan.zhihu.com/p/477803528

Modern Game Engine - Theory and Practice

Multimedia Material List

Modern Game Engine - Theory and Practice

• Sekiro: Shadows Die Twice - All Bosses [No Damage]

https://www.youtube.com/watch?v=KPAvM2hcSH8

• Ori 2 - Boss - Mora (Giant Spider) - Hard Difficulty

https://www.youtube.com/watch?v=tuhrtBRLQPw

• Monster Hunter World | Great Sword Tutorial

https://www.youtube.com/watch?v=X2vr8M3lQ88

• Review in Progress: Battlefield 2042 https://www.destructoid.com/review-in-progress-

battlefield-2042-ps5-version/

• Infographics: Operation Costs in CPU Clock Cycles, http://ithare.com/infographics-operation-

costs-in-cpu-clock-cycles/

https://www.youtube.com/watch?v=KPAvM2hcSH8
https://www.youtube.com/watch?v=tuhrtBRLQPw
https://www.youtube.com/watch?v=X2vr8M3lQ88
https://www.destructoid.com/review-in-progress-battlefield-2042-ps5-version/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Modern Game Engine - Theory and Practice

Lecture 20 Contributors

- 一将

- 蓑笠翁

- 大喷

- 果蝇

- Olorin

- 灰灰

- 喵小君

Q&A

Modern Game Engine - Theory and Practice

Enjoy;)

Coding

Course Wechat

Please follow us for

further information

Modern Game Engine - Theory and Practice

