

Voices from Community – Certificate

We'll set three grading levels for Certificates

- **Graduated**: submitted all assignments in time with grading over 60 points
- **Excellent**: Passed and with 2 assignments achieving 100 points (HW1 not counted)
- **Outstanding**: Passed and with 3 assignments achieving 100 points (HW1 not counted)

Rewarding for Graduation:

• Piccolo T-Shirt

Submission Window: September 1st 2022 to October 31st 2022

Voices from Community – WHAT'S THE NEXT

Future plan for Piccolo Community

- Code explained
 - on 10th October
 - details will be announced in our WeChat groups
- Various technical content
- Community activities
- releases of Piccolo versions

BOOMING

GAMES104

关注公众号,回复「入群」,加入Piccolo微信群

You can also send your fabulous advices about code explained via e-mail: piccolo-gameengine@boomingtech.com

Q&A

• Q1: Many games are ruined by cheaters. Could we get rid of cheaters once and for all?

• Q2: What's the difference between micro-service and distributed server architecture?

• Q3: We're always wishing we could battle with friends around the world. How could we implement a global server?

Lecture 20

Data-Oriented Programming and Job System

Advanced Topics

WANG XI

GAMES 104

Code Execution Is Not As Simple As It Looks

Code is executed on top of specific hardware and operating system

• Hardware and OS must be considered if we want to write a high performance program

Basics of Parallel Programming

Ceiling of Moore's Law and Multi-Cores

- The number of transistors in a dense integrated circuit (IC) doubles about every two years
- In these years, chip densities are **no longer** doubling every two years
- Multi-core processor becomes the new industry trend

Process

- The instance of an application (or program)
- Has its own individual region of memory

Thread

- Preemptive multitasking
- The smallest unit of task that can be scheduled by OS
- Must reside in a process
- Threads in the same process share the same region of memory

GAMES104

Multi-threaded process

Types of Multitasking

Preemptive Multitasking

- Currently executing task can be interrupted at a time decided by the scheduler
- Scheduler determines which task to be executed next
- Applied in most operating systems

Non-preemptive Multitasking

- Tasks must be explicitly programmed to yield control
- Tasks must cooperate for the scheduling scheme to work
- Currently many real-time operating systems (RTOS) also support this kind of scheduling

Thread Context Switch

Store the state of a thread and resume the execution at a later point

- State including registers, stack and other OS required data
- Thread context switch implies extra user-kernel mode switch
- Cache invalidation after context switch has even more cost

Embarrassingly Parallel Problem (or Perfectly Parallel)

Little or no dependency or need for communication between parallel tasks

Non-embarrassingly Parallel Problem

Embarrassingly Parallel

GAMES104

Monte Carlo algorithm is a typical example of embarrassingly parallel

Data Race in Parallel Programming

Multiple threads in a single process access the same memory location concurrently

At least one of the accesses is for writing

2 thread expect job_count + 2, but actually +1

Blocking Algorithm - Locking Primitives

Lock

- Only one thread can acquire the lock at a time
- Make a *critical section* for shared resource access

Other Issues with Locks

- Thread suspending and resuming will bring performance overhead
- Suspending threads never get resumed if the thread that acquires the lock exits abnormally
- Priority Inversion
 - A higher priority task attempts to acquire the lock that is already acquired by a lower priority task

Atomic Operation : Lock-free Programming

Atomic Loads and Stores

- Load: Load data from shared memory to either a register or thread-specific memory
- Store: Move data into shared memory

Atomic Read-Modify-Write (RMW)

- Test and Set: Set 1 to shared memory and return the previous value
- Compare and Swap (CAS): Update the data in shared memory if it equals an expected value
- Fetch and Add: Add a value to the data in shared memory and return the previous value

<pre>atomic_is_lock_free(C++11)</pre>	checks if the atomic type's operations are lock-free (function template)
<pre>atomic_store (C++11) atomic_store_explicit(C++11)</pre>	atomically replaces the value of the atomic object with a non- atomic argument (function template)
<pre>atomic_load (C++11) atomic_load_explicit(C++11)</pre>	atomically obtains the value stored in an atomic object (function template)
<pre>atomic_exchange (C++11) atomic_exchange_explicit(C++11)</pre>	atomically replaces the value of the atomic object with non- atomic argument and returns the old value of the atomic (function template)
<pre>atomic_compare_exchange_weak (C++11 atomic_compare_exchange_weak_explicit (C++11 atomic_compare_exchange_strong (C++11 atomic_compare_exchange_strong_explicit(C++11</pre>) atomically compares the value of the atomic object with non-) atomic argument and performs atomic exchange if equal or) atomic load if not) (function template)
<pre>atomic_fetch_add (C++11) atomic_fetch_add_explicit(C++11)</pre>	adds a non-atomic value to an atomic object and obtains the previous value of the atomic (function template)
<pre>atomic_fetch_sub (C++11) atomic_fetch_sub_explicit(C++11)</pre>	subtracts a non-atomic value from an atomic object and obtains the previous value of the atomic (function template)
<pre>atomic_fetch_and (C++11) atomic_fetch_and_explicit(C++11)</pre>	replaces the atomic object with the result of bitwise AND with a non-atomic argument and obtains the previous value of the atomic (function template)
<pre>atomic_fetch_or (C++11) atomic_fetch_or_explicit(C++11)</pre>	replaces the atomic object with the result of bitwise OR with a non-atomic argument and obtains the previous value of the atomic (function template)
<pre>atomic_fetch_xor (C++11) atomic_fetch_xor_explicit(C++11)</pre>	replaces the atomic object with the result of bitwise XOR with a non-atomic argument and obtains the previous value of the atomic (function template)
<pre>atomic_wait (C++20) atomic_wait_explicit(C++20)</pre>	blocks the thread until notified and the atomic value changes (function template)
<pre>atomic_notify_one(C++20)</pre>	notifies a thread blocked in atomic_wait (function template)
<pre>atomic_notify_all(C++20)</pre>	notifies all threads blocked in atomic_wait (function template)

Operations on atomic types

Parts of C++ atomic operations library

Lock Free vs. Wait Free

Compiler Reordering Optimizations

Problem of Memory Reordering

- Compilers and CPUs often modify the execution order of instructions to optimize performance
- It's the hard part of parallel programming

Out-of-order Execution by CPUs

For different CPU

- The optimization strategy are significantly different
- Provides different types of memory order guarantees
- Parallel programs require different processing

Туре	Alpha	ARMv7	MIPS	RISC-V			DOWER	SPARC			voc [a]		10 64	- (Architecture
				WMO	TSO	PA-RISC	POWER	RMO	PSO	TSO	XOD []	AIVID04	IA-04	Z/Architecture
Loads can be reordered after loads	Y	Y	_	Y		Y	Y	Y					Y	
Loads can be reordered after stores	Y	Y		Y		Y	Y	Y					Y	
Stores can be reordered after stores	Y	Y		Y		Y	Y	Y	Y				Y	
Stores can be reordered after loads	Y	Y	depend on	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Atomic can be reordered with loads	Y	Y	implementation	Y			Y	Y					Y	
Atomic can be reordered with stores	Y	Y		Y			Y	Y	Y				Y	
Dependent loads can be reordered	Y													
Incoherent instruction cache/pipeline	Y	Y		Y	Y		Y	Y	Y	Y	Y		Y	

Parallel Framework of Game Engine

Fixed Multi-thread

One fixed thread for each part of the game engine logic

- Render, Simulation, Logic, Network, and etc.
- Easy to implement

Issues with Fixed Multi-thread

- The workload is unbalanced among threads (cores)
- Unscalable while there are more processor cores

	Idle	ldle Idle	Idle	
Core #0 Core #1 Core Fixed Fixed Fixed Thread 0 Thread 1 Threa	e #2 Core #3 Core #4 ed Fixed ad 2 Thread 3	Core #5 Core #6	Core #7	··· Core

Thread Fork-Join

Fork-join for data-parallelizable work (based on fixed multi-thread)

• Use a thread pool to prevent frequent thread creation/destruction

Problems with Thread Fork-Join

- Not easy for logic programmers (work split, work threads count)
- Too many threads can bring performance overhead on context switch
- The workload is still unbalanced among threads (cores)

Two types of threads

- Named Thread •
 - Created by other systems and attached to parallel framework •
- Worker Thread
 - Three priorities: high, middle and low
 - The number is determined by the number of CPU cores

BP

Thread

Task graph

A directed acyclic graph

- Node→Task
- Edge→Dependency

Building Task Graph by Links

FGraphEventRef task1 = TGraphTask<FTaskGraphTestTask>::CreateTask().ConstructAndDispatchWhenReady();

Job System

Coroutine

Allows for multitasking by creating jobs that run inside of coroutines

- Coroutine is a lightweight execution context (include a user provided stack, registers...)
 - Execution is collaborative, means a coroutine can switch to another interactively

Coroutine

- Scheduled by programmers
- To be executed within a thread
- Context switch is faster without kernel switch

Thread

- Scheduled by operating system
- Resides in a process
- Context switch is costly with kernel switch

BOOMING

GAMES104

Stackful Coroutine

Coroutine owns an independent runtime stack which is reserved after yield

- Enable to yield from within a nested stackframe
- Use local variables just like normal functions

```
void main()
    doCoroutine(stackfulCO);
    . . .
                             void stackfulCO()
                                  subroutine(); ----> void subroutine()
                                                          int a = 3;
                                                          // OK, stack is reserved
                                                          yield();
                                                          // stack is restored
                                                          assert(a == 3); // never fire
```


Stackless Coroutine

Coroutine has no independent runtime stack to be reserved when yield

- Only the top-level routine may yield (subroutines have no idea where to return without stack)
- The data that is required to resume execution should be stored separately from the stack

```
void main()
    doCoroutine(stacklessC0);
    . . .
                             >void stacklessCO()
                                                                             void subroutine()
                                  subroutine();
                                  int a = 3;
                                                                                  // CAN'T
                                   // OK
                                                                                  yield(); 
                                  yield();
                                   // resume with a different stack
                                     CAN'T, 'a' is not in the stack
                                  assert(a == 3)
```


Stackful vs. Stackless Coroutine

Stackful Coroutine

- More powerful with enable to yield from within a nested stackframe
- Needs more memory to reserve stacks for each coroutine
- Coroutine context switch takes more time

Stackless Coroutine

- Unable to yield from within a subroutine
- More difficult to use without a stack to reserve data
- No extra memory needed for coroutine's stack
- Faster context switch

Fiber-based Job System

Allows for multitasking by creating *jobs* instead of threads

- Fiber is like coroutine except that fiber is scheduled by a scheduler
- Thread is the execution unit while fiber is the context
 - One thread for each processor core to minimize the context switch overhead
- Job is executed within the context of a fiber

Jobs

Fiber pool

One Work Thread for One Core

To minimize the overhead of thread context switch

- Multiple work threads for a single core still suffers from context switch
- One work thread for each core eliminates context switch

Fiber-based Job System

- Thread is the execution unit while fiber is the context
- Job is executed within a fiber

Job Scheduler - Global Job

LIFO and FIFO Mode

- Schedule Model
 - First In First Out (FIFO)
 - Last In First Out (LIFO)
- LIFO Mode
 - In most case, job dependency is tree like
 - Some system add jobs occasionally but wait them immediately

Job Scheduler - Job Dependency

Job Scheduler - Job Stealing

Pros and Cons of Job System

Pros

- Easy to implement task schedule
- Easy to handle task dependency
- Job stack is isolated
- Avoid frequency context switch

Cons

- C++ does not natively support fiber
- Implementation is different between OS
- Has some restrictions(thread_local invalid)

GAMES104

Procedure-oriented Programming Object-oriented Programming

- There are many different programming paradigms
- In practice, some paradigms are widely used
- Programming languages aren't always tied to a specific paradigm

BOOMING

GAMES104

Procedural Oriented Programming (POP)

- Follows a step-by-step approach to break down a task into a collection of variables and routines (or subroutines) through a sequence of instructions
- Impossible to write a game engine in this way
 - Data is not well maintained.
 - A co-relation with real-world objects is difficult

Object-Oriented Programming (OOP)

- Based on the concept of "objects", which can contain data and code
- It's natural for human to abstract from real world in an object-oriented way

Problems of OOP : Where to Put Codes?

"Attacker.doDamageTo()", or "Victim.receiveDamage()"? "Player.attachTo()", or "Enemy.isAttached()"?

Problems of OOP : Method Scattering in Inheritance Tree

Hard to know which parent class has the method implementation

What happend when player attacks a spider enemy?

Need check many different classes and methods to find answer

. . .

Problems of OOP : Messy Based Class

class ENGINE_API AActor : public UObject

const FTransform& GetTransform() const; const FTransform& ActorToWorld() const; FVector GetActorForwardVector() const; FVector GetActorUpVector() const; FVector GetActorRightVector() const; virtual void GetActorBounds(...) const; virtual FVector GetVelocity() const; float GetDistanceTo(const AActor* OtherActor) const; virtual void SetActorHiddenInGame(bool bNewHidden); bool GetActorEnableCollision() const; bool HasAuthority() const; UActorComponent* AddComponent(...); void AttachToActor(...); void DetachFromActor(const FDetachmentTransformRules& DetachmentRules); bool GetTickableWhenPaused(); bool IsActorInitialized() const; void ReceiveAnyDamage(...); void GetOverlappingActors(...) const; virtual void SetLifeSpan(float InLifespan); virtual void Serialize(FArchive& Ar) override; virtual void PostLoad() override;

Find some methods in common? Put it to the base class!

We get a messy base class

This is not the best OO design, and it certainly is possible to make a better one. But also, often code ends up being like this, even if no one wanted it that way.

Parts of methods of a "messy base class"

Problems of OOP : Performance

- Memory scattering
- Jungle of virtual functions

BOOMING G/AMES104

Problems of OOP : Testability

- **Unit Testing**
 - OO designs often need a lot of setup to test

tree

status

.

Data-Oriented Programming (DOP)

Processor-Memory Performance Gap

- Performance of memory grows much slowly than processor
- The gap is even larger which make memory becomes the main bottleneck of performance

The Evolution of Memory - Cache

Add cache to speed up data reading

- L1: Ranges between 256KB to no more than 1MB, but even that is sufficient.
- L2: Usually a few megabytes and can go up to 10MB.
- L3: Larger than L1 and L2, varies from 16MB to 64MB, shared between all cores.

11	CPU Core 0		CPU Core 1		
	512KB L1 Instrument Cache: ~1ns	512KB L1 Data Cache: ~1ns	512KB L1 Instrument Cache: ~1ns	512KB L1 Data Cache: ~1ns	
	2MB L2 Cache: ~3ns		2MB L2 Cache: ~3ns		
	0			/	
	Memory: ~100ns				

Memory

Principle of Locality

the tendency of a processor to access the same set of memory locations repetitively over a short period of time

CPU

Spatial Locality

 The use of data elements within relatively close storage locations

Vector3 v1, v2; struct Vector3

Single instruction multiple data (SIMD)

Operation count: 1 load, 1 multiply, and 1 save

LRU (Least Recently Used)

- When cache is full, discards the **least recently used** cache-line first.
 - Record the "used time" of each cache line
 - Discard the most "oldest used" cache line each time
 - Update "used time" when access data of cache line

The data read sequence: A, B, C, D, E, D, F

C(2)

D(5)

E(4)

Cache Line

- Data is transferred between memory and cache in blocks of fixed size (typically 64 bytes), called cache lines or cache blocks.
- A cache can only **hold a limited number of lines**, determined by the cache size. For example, a 64 kilobyte cache with 64-byte lines has 1024 cache lines.
- Every time you load any memory at all, you are loading in a full cache line of bytes

Cache Miss

- When cahce is full (loaded 4 rows), new rows will replace the oldest one
- When a elements not in cache, a whole row will be loaded

Data-Oriented Programming (DOP)

1. Data is all we have

Static Object Model

Alliance Information

Combat Map

Instructions are Data Too

0101010101011010 1010001111100001 1000100011111001 1110000110101011 0000111001010101 010101010.....

EI	apsed Time ⁽²⁾ : 31.539s	Đ		
	Clockticks:	85,288,127,932		
	Instructions Retired:	131,3	378,197,067	
	CPI Rate [®] :		0.649	
	MUX Reliability [®] :		0.957	
\odot	Front-End Bound [®] :		29.3% 🏲	of Pipeline Slots
			20.1% 🏲	of Pipeline Slots
	ICache Misses ⁽²⁾ :		7.1% 🏲	of Clockticks
	ITLB Overhead ⁽²⁾ :		3.1%	of Clockticks
	Branch Resteers ⁽²⁾ :		4.8%	of Clockticks
	DSB Switches ⁽²⁾ :		2.6%	of Clockticks
	Length Changing Prefixes ⁽²⁾ :		0.1%	of Clockticks
	MS Switches [®] :		3.1%	of Clockticks
	S Front-End Bandwidth [®] :		9.3%	of Pipeline Slots
\odot	Bad Speculation ⁽²⁾ :		8.2%	of Pipeline Slots
\odot	Back-End Bound ®:		21.5%	of Pipeline Slots
\odot	Retiring [®] :		40.9%	of Pipeline Slots
	Total Thread Count:		6	
	Paused Time ⁽²⁾ :		0s	

Data

Keep Code and Data Tight in Memory

• Keep both code and data small and process in bursts when you can

Performance-Sensitive Programming

- The work being done because of a misprediction will have to be undone
- Never modify variables once they are initially assigned

These 2 parts of code will not be excuted in parallel

because variables a & b is used before

a = 2* 5 а = . . . $a^2 = 4$ b2 = a2 / 2

Compiler allow these 2 parts of code to execute in parallel

BOOMING

GAMES104

Actually, compiler use static single-assignment (SSA) to deal with simple situation like this

False Sharing in Cache Line

- Ensuring any rapidly updated variables are kept local to the thread
- Cache contension

Branch prediction (1/3)

- CPU will prefetch instructions and data ahead
- Use branch prediction technics to decide what to prefetch


```
current index 2
Branch prediction (2/3)
                                                                                  3
                                                                                      12
                                                                                           9
                                                                                              22
                                                                                                   5
                                                                                                       13
                                                                      5
                                                                          8

    To avoid branch mis-prediction

                                                                When i = 2, CPU predict i = 3 is the same,
int a[10] = \{2, 5, 8, 11, 3, 12, 9, 22, 5, 13\};
                                                              thus prefetch doFunc1() instructions and data
for (int i = 0; i < 10; i ++)</pre>
                                                                       current index 3
    if (a[i] > 10)
                                              prefetched data:
         doFunc1();
                                                doFunc1()
                                                                 2
                                                                     5
                                                                                  3
                                                                                      12
                                                                                           9
                                                                                              22
                                                                                                   5
                                                                                                       13
                                                                          8
                                                                              11
                                                  actually:
                                                              But actually it should do doFunc2() when i = 3,
     else
                                                 doFunc2()
                                                                           it's a mis-prediction
         doFunc2();
                                                                           current index 4
                                              prefetched data:
                                                                  2
                                                                                      12
                                                                                           9
                                                                                              22
                                                                      5
                                                                          8
                                                                             11
                                                                                                   5
                                                 doFunc2()
                                                  actually:
                                                                   Again, predict doFunc2() when i = 4,
                                                 doFunc1()
                                                                     but actually should do doFunc1()
```


13

22

Branch prediction (3/3)

To avoid branch mis-prediction

```
int a[10] = {2,3,5,5,8,9,11,12,13,22};
                                                 2
                                                     3
                                                         5
                                                             5
                                                                            12
                                                                 8
                                                                     9
                                                                        11
for (int i = 0; i < 10; i ++)
    if (a[i] > 10)
                                                     If it's a sorted array, only 1 mis-
                                                          prediction will occur
        doFunc1();
    else
        doFunc2();
```


Existential Processing

Only processing existing elements rather than deciding whether should be processed on the fly

```
for actor in actor_array do
    if actor is alive then
        aliveFunc(actor)
        else
            deadFunc(actor)
        end
end
```

This code also faces branch prediction problems

Unlike the example before, actor_array changes every tick

```
for actor in alive_actor_array do
     aliveFunc(actor)
end
```

for actor in dead_actor_array do
 deadFunc(actor)
end

Completely avoid "if-else"

By maintaining 2 lists of different actors, we could avoid branch mis-precondition

Performance-Sensitive Data Arrangements

Reducing Memory Dependency

• (chained memory lookups/accesses by pointers)

• Load the first cache line 1

BOOMING

GAMES104

- Get the next node address
- Cache miss
- Unload the old one, and load another cahce line 2
- Repeating

Array of Structure vs. Structure of Array

AOS

struct Particle{
 Vector3 position;
 Vector3 velocity;
 Color color;
 float age;

//...
} Particle[N];

If we want to read the **position** of all particles, SOA has better performance

SOA

struct Particles{
 Vector3 position[N];
 Vector3 velocity[N];
 Color color[N];
 float age[N];
 //...
} Particles;

position 1	velocity 1	color 1	age 1			
position 2	velocity 2	color 2	age 2			
position 3	velocity 3	color 3	age 3			
position 4	velocity 4	color 4	age 4			

Entity Component System (ECS)

G/AMES104

Recap: Component-based Design (2/2)

Entity Component System (ECS)

A pattern to structure game code in a data-oriented way for maximum performance

- Entity: an ID refer to a set of components
- Component: the data to be processed by systems, no logic at all
- System: where the logic happens, read/write component data

A combination of technologies that work together to deliver a data-oriented approach to coding

- The Entity Component System (ECS) provides
 data-oriented programming framework
- The C# Job System provides a simple method of generating multithreaded code
- The Burst Compiler generates fast and optimized
 native code

G/AMES104

Unity ECS – Archetype

A specific combination of components

• Entities are grouped into archetypes

Unity ECS – Data Layout in Archetype

Same components in an archetype are packed tightly into chunks for cache friendliness

• A chunk is a block of memory with fixed size, i.e. 16KB

Unity ECS – System


```
public class MoveSystem : SystemBase
    protected override void OnUpdate()
        // For each entity which has Translation and Velocity
        Entities.ForEach(
            // Write to Displacement (ref), read Velocity (in)
            (ref Translation trans, in Velocity velocity) =>
                //Execute for each selected entity
                trans = new Translation()
                    // dT is a captured variable
                    Value = trans.Value + velocity.Value * dT
                };
```

.ScheduleParallel(); // Schedule as a parallel job

Unity C# Job System

Make it easier for users to write correct multithreaded code

- A job is a small unit of work that performs a specific task
- · Jobs can depend on other jobs to complete before they run

```
public struct FirstJob : IJob
{
    public void Execute()
    {
        ...
    }
}
public struct SecondJob : IJob
{
    public void Execute()
    {
    ...
}
```

var first_job = new FirstJob(); var second_job = new SecondJob();

```
// execute first_job
var first_job_handle = first_job.Schedule();
```

// second_job depends on first_job to complete
second_job.Schedule(first_job_handle);

Unity C# Job System – Native Container

A type of shared memory that can be accessed inside jobs

- Job cannot output result without native container (all data is a copy)
- Native containers support all safety checks

. . .

Native containers need to be disposed manually

// Allocate one float with "TempJob" policy
// Allocator.Temp: Fastest allocation, lifespan is 1 frame or fewer
// Allocator.TempJob: Slower than Temp, lifespan is 4 frames
// Allocator.Persistent: Slowest allocation, can last as long as needed
NativeArray<float> a = new NativeArray<float>(1, Allocator.TempJob);

// Need to dispose manually for unmanaged memory
a.Dispose();

Unity C# Job System – Safety System

Support safety checks (out of bounds checks, deallocation checks, race condition checks) for jobs

- Send each job a copy of data it needs to operate on to eliminate the race condition
 - Job can only access blittable data types (reference is invalid)

```
public struct Job : IJob
                                                                Schedule Job
    public float a;
    public float b;
    public void Execute()
                                          Job 0
                                                           Job 1
                                                                            Job 2
                                                                                             Job 3
                                               b
                                         а
                                                           а
                                                                b
                                                                            а
                                                                                 b
                                                                                             а
                                                                                                  b
```

Each job has a copy of data

High-Performance C# and Burst Compiler

High-Performance C# (HPC#) is a subset of C#

- Give up on most of the standard library (StringFormatter, List, Dictionary, and etc.)
- Disallow allocations, reflection, the garbage collector and virtual calls

Burst Compiler translates from IL/.NET bytecode to highly optimized native code using LLVM

• Generate expected machine code for specific platforms

Unreal Mass Framework

MassEntity – Entity

- FMassEntityHandle is **pure ID** as ECS **Entity**
- Index indicates the index in Entities array in FMassEntityManager
- SerialNumber as salt to Index
 - Release an old entity

. . .

- Create a new entity with the same Index
- SerialNumber is increased so the ID will be different

```
struct FMassEntityHand1e
```

struct MASSENTITY_API FMassEntityManager

```
int32 Index = 0;
int32 SerialNumber = 0;
```

TChunkedArray<FEntityData> Entities; TArray<int32> EntityFreeIndexList;

MassEntity – Component

- Same as Unity, each type of entity has an Archetype
- Fragments and tags are components for entities
- Tags are constant Boolean components to filter
 unnecessary processing

FMassChunkFragmentBitSet ChunkFragments; FMassSharedFragmentBitSet SharedFragments;

BOOMING

GAMES104

MassEntity – Systems

- ECS Systems in MassEntity are Processors derived from UMassProcessor
- Two important interface: ConfigureQueries() and Execute(...)

```
class MASSENTITY_API UMassProcessor : public UObject
{
    ...
protected:
    virtual void ConfigureQueries() PURE_VIRTUAL(UMassProcessor::ConfigureQueries);
    virtual void PostInitProperties() override;
    virtual void Execute(
        FMassEntityManager& EntityManager,
        FMassExecutionContext& Context) PURE_VIRTUAL(UMassProcessor::Execute);
```


MassEntity – Fragment Query

- Interface ConfigureQueries() runs when the processor is initialized
- Use FMassEntityQuery to filter archetypes of entities meeting systems requirements
- FMassEntityQuery caches filtered archetypes to accelerate future executions

void UMassApplyMovementProcessor::ConfigureQueries()

EntityQuery.AddRequirement<FMassVelocityFragment>(EMassFragmentAccess::ReadWrite); EntityQuery.AddRequirement<FTransformFragment>(EMassFragmentAccess::ReadWrite); EntityQuery.AddRequirement<FMassForceFragment>(EMassFragmentAccess::ReadWrite); EntityQuery.AddTagRequirement<FMassOffLODTag>(EMassFragmentPresence::None); EntityQuery.AddConstSharedRequirement<FMassMovementParameters>(EMassFragmentPresence::All);

});

{

MassEntity – Execute

void UMassApplyMovementProcessor::Execute(FMassEntityManager& EntityManager,

```
FMassExecutionContext& Context)
```

// Clamp max delta time to avoid force explosion on large time steps (i.e. during initialization).
const float DeltaTime = FMath::Min(0.1f, Context.GetDeltaTimeSeconds());
EntityQuery.ForEachEntityChunk(EntityManager, Context, [this, DeltaTime](FMassExecutionContext& Context)

const int32 NumEntities = Context.GetNumEntities();

const TArrayView<FTransformFragment> LocationList = Context.GetMutableFragmentView<FTransformFragment>(); const TArrayView<FMassForceFragment> ForceList = Context.GetMutableFragmentView<FMassForceFragment>(); const TArrayView<FMassVelocityFragment> VelocityList = Context.GetMutableFragmentView<FMassVelocityFragment>() for (int32 EntityIndex = 0; EntityIndex < NumEntities; ++EntityIndex)</pre>

```
FMassForceFragment& Force = ForceList[EntityIndex];
FMassVelocityFragment& Velocity = VelocityList[EntityIndex];
FTransform& CurrentTransform = LocationList[EntityIndex].GetMutableTransform();
// Update velocity from steering forces.
Velocity.Value += Force.Value * DeltaTime;
...
FVector CurrentLocation = CurrentTransform.GetLocation();
```

```
CurrentLocation += Velocity.Value * DeltaTime;
```

```
CurrentTransform.SetTranslation(CurrentLocation);
```


Conclusions

Modern Game Engine

Everything You Need Know About Performance

Not all CPU operations are created equal

Operation Cost in CPU Cycles	10 °	10 ¹	10²	10 ³	10 ⁴	10 ⁵	106
register-register op (ADD,OR,etc.)	<1						
Memory write	~1						
Bypass delay: switch between							
integer and floating-point units	0-3						
"Right" branch of "if"	1-2						
Floating-point/vector addition	1-3						
Multiplication (integer/float/vector)	1-7						
Return error and check	1-7						
L1 read		3-4					
TLB miss		7-21					
L2 read		10-12					
ranch of "if" (branch misprediction)		10-20					
Floating-point division		10-40					
128-bit vector division		10-70					
Atomics/CAS		15-30					
C function direct call		15-30					
Integer division		15-40					
C function indirect call		20-50					
C++ virtual function call		30	-60				
L3 read		30	-70				
Main RAM read			100-150				
JMA: different-socket atomics/CAS			100-300				
(guesstimate)							
NUMA: different-socket L3 read			100-300				
on+deallocation pair (small objects)			200-50	0			
IA: different-socket main RAM read			300-	-500			
Kernel call				1000-150	0		
hread context switch (direct costs)				2000			
C++ Exception thrown+caught				50	00-10000		
Thread context switch (total costs,					10000 - 1	million	
including cache invalidation)							
	Operation Cost in CPU Cycles register-register op (ADD,OR,etc.) Memory write Bypass delay: switch between integer and floating-point units "Right" branch of "if" Floating-point/vector addition Multiplication (integer/float/vector) Return error and check L1 read TLB miss L2 read ranch of "if" (branch misprediction) Floating-point division 128-bit vector division Atomics/CAS C function direct call Integer division C function indirect call C++ virtual function call L3 read Main RAM read JMA: different-socket atomics/CAS (guesstimate) NUMA: different-socket L3 read n+deallocation pair (small objects) A: different-socket main RAM read Kernel call Thread context switch (direct costs) C++ Exception thrown+caught Thread context switch (total costs, including cache invalidation)	Operation Cost in CPU Cycles10°register-register op (ADD,OR,etc.)<1	Operation Cost in CPU Cycles10°10¹register-register op (ADD,OR,etc.) Memory write41Bypass delay: switch between integer and floating-point units•1Bypass delay: switch between integer and floating-point units•1Floating-point/vector addition1-2Floating-point/vector addition1-3Multiplication (integer/float/vector)1-7Return error and check1-7L1 read3-4TLB miss7-24L2 read10-12ranch of "if" (branch misprediction)10-20Floating-point division10-40128-bit vector division10-40128-bit vector division10-70Atomics/CAS15-30C function indirect call10-50C function indirect call20-50C++ virtual function call20Main RAM read20JMA: different-socket atomics/CAS (guesstimate)10NUMA: different-socket L3 read10n+deallocation pair (small objects)1-40A: different-socket main RAM read1-70Kernel call1-70Thread context switch (direct costs) C++ Exception thrown+caught1-70Thread context switch (total costs, including cache invalidation)1-70	Operation Cost in CPU Cycles10°10¹10²register-register op (ADD,OR,etc.)IIIMemory writeIIIBypass delay: switch between integer and floating-point units "Right" branch of "if"IIFloating-point/vector additionI-3IMultiplication (integer/float/vector)I-7IReturn error and checkI-7IL1 readI-4IL2 readI-12ranch of "if" (branch misprediction)I-20Floating-point divisionI-40128-bit vector divisionI-70Atomics/CASIF-30C function indirect callIF-30Integer divisionI-5-30C function indirect callI-6-30L3 readI-30-70JMA: different-socket atomics/CASI-3-30Multifferent-socket atomics/CASI-3-30Main RAM readI-30-70JMA: different-socket L3 readI-30-300NUMA: different-socket L3 readI-30-300At omics/CASI-3-30C++ Exception thrown+caughtI-00-300Kernel callI-30-300NUMA: different-socket L3 readI-30-300C++ Exception thrown+caughtI-30-300C++ Exception thrown+caughtI-30-300C++ Exception thrown+caughtI-40-300Thread context switch (total costs, including cache invalidation)I-40-300	Operation Cost in CPU Cycles10°10°10°10°10°register-register op (ADD,OR,etc.)SIMemory writeSIBypass delay: switch between integer and floating-point unitsSI"Right" branch of "if"SIFloating-point/vector additionSIMultiplication (integer/float/vector)SIReturn error and checkSIL1 readSIL2 read10°ITLB missSIL2 read10°ISISISI SI SI SI SI SIMultiplicating-point division10°IL2 read10°ISI SI S	Operation Cost in CPU Cycles 10°	Operation Cost in CPU Cycles 10° <th10°<< td=""></th10°<<>

Distance which light travels while the operation is performed

References

Cache

- Entity Component Systems & Data Oriented Design, Unity Training Academy 2018-2019, #3 <u>https://aras-p.info/texts/files/2018Academy%20-%20ECS-DoD.pdf</u>
- Computer Architecture: A Quantitative Approach 5th Edition by John L. Hennessy, David A. Patterson
- What is the bandwith speed of L1,L2 and L3 Cache

https://linustechtips.com/topic/34636-what-is-the-bandwith-speed-of-l1l2-and-l3-cache/

- Intel Core i9-9900K CPU Review: More Cores, Speed, and Higher Price <u>https://www.overclockers.com/intel-core-i9-9900k-cpu-review-more-cores-speed-and-higher-price/</u>
- Wikipedia Cache replacement policies

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

Parallel Programming (1/3)

• Operating System Basics (Brian Will)

https://linuxwheel.com/operating-system-basics-brian-will/

- Parallel computing via multicore computers allow high processing capacity <u>https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-multicore-computers/</u>
- Internals of a Thread Pool

https://salonegupta.wordpress.com/2017/12/28/internals-of-a-java-thread-pool/

- CPP Reference Atomic <u>https://en.cppreference.com/w/cpp/atomic</u>
- TBB Tutorial <u>https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf</u>

Parallel Programming (2/3)

Parallel Programming Models and Paradigms

http://www.cse.hcmut.edu.vn/~hungnq/courses/pp/backup.2/thamkhao/Parallel%20Program ming%20Paradigms.pdf

- Parallel Paradigms and Parallel Algorithms https://pdc-support.github.io/introduction-to-mpi/05-parallel-paradigms/index.html
- Developing Parallel Programs A Discussion of Popular Models
 <u>https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-parallel-programs-170709.pdf</u>
- Modern Fortran: Building efficient parallel applications MEAP V13
 <u>https://livebook.manning.com/book/modern-fortran/welcome/v-13/</u>

Parallel Programming (3/3)

- Priority Inversion http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0101.html
- What is a Thread in OS and what are the differences between a Process and a Thread? https://afteracademy.com/blog/what-is-a-thread-in-os-and-what-are-the-differences-between-a-process-and-a-thread
- Understanding operating systems https://www.uow.edu.au/student/learning-co- op/technology-and-software/operating-systems/

Parallel Frameworks in Game Engine (1/2)

- GDC2015 Parallelizing the Naughty Dog Engine Using Fibers
 <u>https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine</u>
- GCAP 2016: Parallel Game Engine Design Brooke Hodgman <u>https://www.youtube.com/watch?v=JpmK0zu4Mts</u>
- Java Thread Pools <u>https://www.logicbig.com/tutorials/core-java-tutorial/java-multi-</u> <u>threading/thread-pools.html</u>
- C++20: Building a Thread-Pool With Coroutines https://blog.eiler.eu/posts/20210512/
- Processes, threads, and coroutines

https://subscription.packtpub.com/book/programming/9781788627160/1/ch01lvl1sec02/proc esses-threads-and-coroutines

Parallel Frameworks in Game Engine (2/2)

• UE并发-TaskGraph的实现和用法

https://zhuanlan.zhihu.com/p/398843895?utm_medium=social&utm_oi=1447486643037528

064&utm_psn=1546525648855732224&utm_source=ZHShareTargetIDMore

- Unreal Engine 5.0 Documentation Tasks System https://docs.unrealengine.com/5.0/en-US/tasks-systems-in-unreal-engine/
- UE4/UE5的TaskGraph <u>https://cloud.tencent.com/developer/article/1897046</u>

DOP (1/3)

• Programming Paradigms – Paradigm Examples for

Beginnershttps://www.freecodecamp.org/news/an-introduction-to-programming-

paradigms/#what-is-a-programming-paradigm

- GDC'cn 为实现极限性能的面向数据编程范式 叶劲峰<u>https://ubm-</u> <u>twvideo01.s3.amazonaws.com/o1/vault/gdcchina14/presentations/833779 MiloYip ADataOrie</u> <u>ntedCN.pdf</u>
- Timeline of Computer History

https://www.computerhistory.org/timeline/computers/

- The Fetch and Execute Cycle: Machine Language
 <u>https://math.hws.edu/javanotes-swing/c1/s1.html</u>
- Wikipedia-Single instruction, multiple data

https://ap.wikipadia.org/wiki/Cingla_ipatruction_multiple_date

DOP (2/3)

- Linked List (Data Structure) https://devopedia.org/linked-list-data-structure
- Sekiro: Shadows Die Twice All Bosses [No Damage]

https://www.youtube.com/watch?v=KPAvM2hcSH8

- Ori 2 Boss Mora (Giant Spider) Hard Difficulty <u>https://www.youtube.com/watch?v=tuhrtBRLQPw</u>
- The Greatest Frame Loss of All Time

https://www.youtube.com/watch?v=4efRYXuhVTA

 Monster Hunter World | Great Sword Tutorial <u>https://www.youtube.com/watch?v=X2vr8M3IQ88</u>

DOP (3/3)

• Data-Oriented Design, Fabian R, CRC Press, 2018.

https://www.dataorienteddesign.com/dodbook.pdf

- OOP Is Dead, Long Live Data-oriented Design. Nikolov S, Coherent Labs. CppCon 2018. https://www.bilibili.com/video/BV1kW41117uw?p=66&vd_source=f12a5db552661d28e85078

 <u>75c37983cd</u>
- Data-Oriented Design and C++, Acton M. Insomniac Games. CppCon 2014. <u>https://www.youtube.com/watch?v=rX0ltVEVjHc</u>
- Data-Oriented Design Resources: https://github.com/dbartolini/data-oriented-design

Unity DOTS (1/2)

- Getting Started with Unity DOTS <u>https://nikolayk.medium.com/getting-started-with-unity-dots-part-1-ecs-7f963777db8e</u>
- Unity Manual ParallelFor Jobs

https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html

- Unity Learn What is DOTS and why is it important <u>https://learn.unity.com/tutorial/what-is-</u> <u>dots-and-why-is-it-important#</u>
- On DOTS: Entity Component System https://blog.unity.com/technology/on-dots-entity-component-system
- Unite Los Angeles 2018 Keynote

https://www.youtube.com/watch?v=alZ6wmwvck0&t=6434s

Unity DOTS (2/2)

• Building a Data-Oriented Future - Mike Acton

https://www.youtube.com/watch?v=u8B3j8rqYMw

Getting started with Unity DOTS — Part 2: C# Job System
 <u>https://nikolayk.medium.com/getting-started-with-unity-dots-part-2-c-job-system-6f316aa05437</u>

Unreal Engine Mass Architecture

- UE5 MassEntity Documentation, https://docs.unrealengine.com/5.0/en-US/overview-of- mass-entity-in-unreal-engine/
- UE5的ECS: MASS框架(一), quabqi, 2022, <u>https://zhuanlan.zhihu.com/p/441773595</u>
- UE5的ECS: MASS框架(二), quabqi, 2022, <u>https://zhuanlan.zhihu.com/p/446937133</u>
- UE5的ECS: MASS框架(三), quabqi, 2022, <u>https://zhuanlan.zhihu.com/p/477803528</u>

Multimedia Material List

- Sekiro: Shadows Die Twice All Bosses [No Damage] <u>https://www.youtube.com/watch?v=KPAvM2hcSH8</u>
- Ori 2 Boss Mora (Giant Spider) Hard Difficulty

https://www.youtube.com/watch?v=tuhrtBRLQPw

- Monster Hunter World | Great Sword Tutorial <u>https://www.youtube.com/watch?v=X2vr8M3lQ88</u>
- Review in Progress: Battlefield 2042 <u>https://www.destructoid.com/review-in-progress-battlefield-2042-ps5-version/</u>
- Infographics: Operation Costs in CPU Clock Cycles, http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

GAMES104

Lecture 20 Contributors

- Olorin
- 灰灰

- 喵小君

Enjoy;) Coding

Course Wechat

Please follow us for further information