Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Voices from Community — Certificate

We’'ll set three grading levels for Certificates
* Graduated: submitted all assignments in time with grading over 60 points
+ Excellent: Passed and with 2 assignments achieving 100 points (HW1 not counted)

* OQOutstanding: Passed and with 3 assignments achieving 100 points (HW1 not counted)

Rewarding for Graduation:
* Piccolo T-Shirt

Submission Window: September 15t 2022 to October 3152022

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voices from Community — WHAT'S THE NEXT

Future plan for Piccolo Community
« Code explained

« on 10" October

« details will be announced in our WeChat groups
« Various technical content

« Community activities

* releases of Piccolo versions

You can also send your fabulous advices about code explained via e-mail:

piccolo-gameengine@boomingtech.com

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Q&A

 Q1: Many games are ruined by cheaters. Could we get rid of cheaters once and for all?

« Q2: What's the difference between micro-service and distributed server architecture?

* Q3: We're always wishing we could battle with friends around the world.
How could we implement a global server?

Modern Game Engine - Theory and Practice BOQMING &9 GAMESIO4

Lecture 20

Data-Oriented Programming
and Job System

Advanced Topics

WANG XI GAMES 104 2022

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Code Execution Is Not As Simple As It Looks

Code is executed on top of specific hardware and operating system

« Hardware and OS must be considered if we want to write a high performance program

Qunity @

UNREAL CRY=NGINZ

EMNGEGINE

i0OS Windows Android

g

Hardware 1 B l

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Basics of Parallel Programming

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Ceiling of Moore's Law and Multi-Cores

« The number of transistors in a dense integrated circuit (IC) doubles about every two years
* Inthese years, chip densities are no longer doubling every two years

« Multi-core processor becomes the new industry trend

User
System Application
Software Software

10000 ¢ I I I
1000 —

100 =

7))

10 g =

L +++ 4
#+ +

1E + =
|

0.1 l | | | | | |
v (=} el (=]) (=) Ua) () v
c~ o o0 (=) (=) (=] S — —
(o)} (=)} (=) (=)} (=) (=] (=] (=] (=]
— — — — — o (o] o o

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Process and Thread
Process
* The instance of an application (or program) = e =
* Has its own individual region of memory
registers registers registers
Thread stack stack stack
« Preemptive multitasking counter counter counter
« The smallest unit of task that can be scheduled by OS <« thread
* Must reside in a process
» Threads in the same process share the same region of memory

Multi-threaded process

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

taskl task?2

Types of Multitasking

scheduler s

Lry
'''''''
N .

Preemptive Multitasking

‘e
.
.
.
g
g
‘e
Q

» Currently executing task can be interrupted at a time :
switch

decided by the scheduler

 Scheduler determines which task to be executed next

» Applied in most operating systems
taskl task2

Non-preemptive Multitasking

» Tasks must be explicitly programmed to yield control .

» Tasks must cooperate for the scheduling scheme to work <

» Currently many real-time operating systems (RTOS) also

support this kind of scheduling

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Thread Context Switch

Store the state of a thread and resume the execution at a later point
« State including registers, stack and other OS required data
» Thread context switch implies extra user-kernel mode switch

 (Cache invalidation after context switch has even more cost

Thread 1 b—m8— Cache invalidation may takes 10,000~1,000,000 cycles

user mode
kernel mode

user to kernel context switch kernel to user

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Parallel Problems in Parallel Computing

Embarrassingly Parallel Problem (or Perfectly Parallel) 3000. 7~ 3.1133
n—=yq .,?Txm. D

- Little or no dependency or need for communication between parallel LO e
tasks 0.81 -
oo
Non-embarrassingly Parallel Problem 04
« Communication is needed between parallel tasks 02
Embarrassingly Parallel Non-embarrassingly Parallel 0.0 L

0.0 0.2 0.4 0.6 0.8 1.0

lnpm/“ //‘2 / lnpmﬁ L) / Monte Carlo algorithm is a typical
example of embarrassingly parallel
AUY /A'/ m /‘cpuz;

VAT AT =

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Data Race in Parallel Programming
Multiple threads in a single process access the same memory location concurrently
« At least one of the accesses is for writing
while(job_count < 100) |
{
doSomething();
job_count++; code: code:
} e | d0Something() | doSomething() G——
Read job_count 1 2 Read job_count
Increment job_count Increment job_count
o Read job_count Write new job_count jOb_Count Write new job_count
. Compute Jc?b_count + 1 data: dota:
* Write new job_count b cauntis Jobicouit =

2 thread expect job_count + 2, but actually +1

Modern Game Engine - Theory and Practice

BOOMING -

TECH

GAMES104

Blocking Algorithm - Locking Primitives

Lock
« Only one thread can acquire the lock at a time

« Make a critical section for shared resource access

while (true)
{

Entry section

\ 4

mutex.lock();

o e e o o e o o o .

|doSometh1ng1()ﬂ

Only one thread can
Critical section —»l doSomething2(); l<— do this part of code
| In the same time

\ 4

Exit section

mutex.unlock();

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Other Issues with Locks

« Thread suspending and resuming will bring performance overhead
« Suspending threads never get resumed if the thread that acquires the lock exits abnormally
* Priority Inversion

* A higher priority task attempts to acquire the lock that is already acquired by a lower priority task

Priority Inversion

- Z1 e @

1

TAKE | SE !
1

(MEDIUM)

TAKE GIVE

Thread 0 | | Thread 1 | | Thread 2 on | (P — @

1

1

L}
| J | | [1 5
t1 t2 t3 t4 t5 t6

Time
Deadlock Caused by Thread Crash Priority Inversion

Modern Game Engine - Theory and Practice

BOOMING -
BooM GAMES104

Atomic Operation : Lock-free Programming

Atomic Loads and Stores Operations on atomic types

atomic_is lock free(c++11)

 Load: Load data from shared memory to either a

atomic_store (C++11)
atomic_store_explicit(c++11)

register or thread-specific memory atomic_load

atomic_load explicit(c++11)

atomic exchange (C++11)

- Store: Move data into shared memory atomic_exchange_explicit (c++10

atomic_compare_exchange weak {C++11)
atomic_compare_exchange weak explicit (c++11)
atomic_compare_exchange_strong {c+411)
atomic_compare_exchange_strong_explicit(c++11)

atomic_fetch_add (C++11)

Ato m | C Read . M Od Ify_WrIte (R MW) atomic fetch add expliciti(c++11)

atomic_fetch_sub (C++11)
atomic_fetch sub_explicit(c++11)

« Test and Set: Set 1 to shared memory and return

atomic fetch and (c++11)
atomic_fetch_and_explicitic++11)

the previous value

atomic_fetch_or (c++11)
atomic_fetch or_explicitic++11)

« Compare and Swap (CAS): Update the data in

atomic_fetch xor (C++11)
atomic fetch xor explicit(c++11)

shared memory if it equals an expected value

atomic_wait (c++20)
atomic_wait_explicit(c++20)

« Fetch and Add: Add a value to the data in shared atonic notity oneic:+20

atomic_notify alli(c++20)

memory and return the previous value

checks if the atomic type's operations are lock-free

(function template)

atomically replaces the value of the atomic object with a non-
atomic argument

(function template)

atomically obtains the value stored in an atomic object
(function template)

atomically replaces the value of the atomic object with non-
atomic argument and returns the old value of the atomic
(function template)

atomically compares the value of the atomic object with non-
atomic argument and performs atomic exchange if equal or
atomic load if not

(function template)

adds a non-atomic value to an atomic object and obtains the
previous value of the atomic

(function template)

subtracts a non-atomic value from an atomic object and
obtains the previous value of the atomic

(function template)

replaces the atomic object with the result of bitwise AND with
a non-atomic argument and obtains the previous value of the
atomic

(function template)

replaces the atomic object with the result of bitwise OR with a
non-atomic argument and obtains the previous value of the
atomic

(function template)

replaces the atomic object with the result of bitwise XOR with
a non-atomic argument and obtains the previous value of the
atomic

{function template)

blocks the thread until notified and the atomic value changes
(function template)

notifies a thread blocked in atomic_wait

(function template)

notifies all threads blocked in atomic_wait
(function template)

Parts of C++ atomic operations library

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Lock Free vs. Wait Free

Lock Free Wait Free

Thread1 Thread? Thread3 Thread 4 Thread1l =~ Thread2 ~ Thread3 ~Thread 4

Time Time

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Compiler Reordering Optimizations

movl b(%srip), %eax

Turn off _ddi 51, %eax ¥01d functionl()

optimizations: : . _ :
P mov 1l eax, a(%rip) Same as: g‘ b + 1;
= @;
?[/01d functionl() movl $0, b(3rip) } Same order
a=b+ 1;
b = 0; .
} movl b(srip), %eax
movl 50, b (3rip) void functionl()
Turnon o Looks like: { int temp = b;
optimization; a9dl s1, %eax ' 5= P~ =
movl Seax, a(%rip) a = temp + 1;

} Reordered!

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Problem of Memory Reordering

Compilers and CPUs often modify the execution order of instructions to optimize performance

It's the hard part of parallel programming

Initialize:
int a = 0;
int b = 1;

Thread 1 Thread 2
void functionl() void function2()
{ {

a=>b+ 1; while(b!=0)
b = 0; {
} continue;
}
assert(a==2); » Will the assertion fire?

Modern Game Engine - Theory and Practice BOOMING * GAMESI04

TECH
Out-of-order Execution by CPUs WEAK STRONG
| Really weak < dat\\alvcieza:e?\ic;';ncy < Usually strong < ng:sei;\tt;anl{y
For dlfferent CPU DEC Alph Orki:ng x86/64 dual 386 (circa 1989)
« The optimization strategy are significantly different i gﬁ ui L‘}f
« Provides different types of memory order guarantees ow vl tomis e il
.‘fm i - default atomics
e Parallel ire diff t : o B B4
arallel programs require airferent processing gl = o o s
analogy
RISC-V SPARC
Type Alpha | ARMv7 MIPS PA-RISC POWER x86 (3] AMDG64 |A-64 z/Architecture
WMO TSO RMO PSO | TSO
Loads can be reordered after loads Y Y Y Y Y Y Y
Loads can be reordered after stores Y Y Y Y Y Y Y
Stores can be reordered after stores Y Y Y Y Y Y Y Y
Stores can be reordered after loads Y Y depend on Y Y Y Y Y Y Y Y Y Y
Atomic can be reordered with loads ik i implementation | vy Y Y Y
Atomic can be reordered with stores Y Y Y Y Y Y Y
Dependent loads can be reordered Y
Incoherent instruction cache/pipeline Y Y Y Y Y Y Y Y Y Y

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Parallel Framework of Game Engine

Modern Game Engine - Theory and Practice BOOMING ~ GAMES104

TECH

.

Fixed Multi-thread

One fixed thread for each part of the game engine logic
« Render, Simulation, Logic, Network, and etc.

« Easy to implement

Render o D Transpar Postproc
Visibility GBuffer Shadow Lighting Forward ent acs Ul

Simulation Animatio
Thread

Physics Particle

Logic
Thread

Network Thread

Lua

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104
Issues with Fixed Multi-thread
« The workload is unbalanced among threads (cores)
« Unscalable while there are more processor cores
Workload
Idle Idle Idle Idle .
Core #0 Core #1 Core #2 Core #3 Core #4 Core #5 Core #6 Core #7 Core

L
X
@
o

| Fixed ! ! Fixed ! ! Fixed !
1 Thread 0 Lo Thread 1 L Thread 2 Lo Thread 3 !
L L

Modern Game Engine - Theory and Practice

BOOMING -

TECH

.

GAMES104

Thread Fork-Join

Fork-join for data-parallelizable work (based on fixed multi-thread)

» Use athread pool to prevent frequent thread creation/destruction

B I icibiity GBuffer Shadow Lighting Forward |Tonepar Pestprog s,y

Thread ent ess

i i AR Fork Join —_—

S%l:l:e:lcclln A"‘:'f"” Physics Particle
on

Thread Pool

Work
Thread

Animation
Task

Work
Thread

TASK

(o

A

TASK

A

Work
Thread

Animation
Task

Animation ; - EEEEI‘."
Task —m Applicatic! 1

Al

Logic
Thread

. Al Motor

Network Thread

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Problems with Thread Fork-Join

* Not easy for logic programmers (work split, work threads count)
« Too many threads can bring performance overhead on context switch

« The workload is still unbalanced among threads (cores)

F 3

Workload

Work comes

4

Core #0 Core #1 Core #2 Core #3 Core #4 Core #5 Core #6 Core #7 Core
' Fixed 1! Fixed 1! Fixed 1! Fixed 1! Work 1 ' Work 1! Work ' Work |
t Thread0 | 1 Thread1 | 1 Thread2 |, 1 Thread3 | « Thread |, ' Thread | ' Thread | 1 Thread |

1 | 1 I | 1 ! 1 !

—_——— = — —_——— e = — = —_——— e = = —_——— = — = e _— = —_——— e —— —_———— = — = - — — =

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Unreal Parallel framework /Similar to Thread Fork-Join

Transpar Postproc ul
ent SS

L Visibility GBuffer Shadow Lighting Forward

Two types of threads
 Named Thread

» Created by other systems and attached to parallel framework

« Worker Thread
« Three priorities: high, middle and low Networ Theas /

« The number is determined by the number of CPU cores

Named Thread Worker Thread

Render RHI Audio Stats

Thread | Thread | Thread | Thread | Threaad Thread Thread Thread

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Task graph

A directed acyclic graph
 Node—Task
« Edge—Dependency

\ 4

Modern Game Engine - Theory and Practice

BOOMING -
BOOMING . GAMES104

Building Task Graph by Links

g Task2

=

g Task4

FGraphEventRef taskl = TGraphTask<FTaskGraphTestTask>::

FGraphEventArrav task? prerequistes:

(

task?_prerequistes. Add(taskl) :

EGraphEventRef task’ = TGraphTask<FTaskGraphTestTask>::

FGraphEventArrav task3 prereguistes:

LEaskS_prerequistes.Add(taskl);

?Graphﬁventﬂef taskd = TGrapjTask<ﬁ?askGraphTestfask>::

FGraphEventArrav taskd prerequistes;

taskd prerequistes. Add(task3):

FGraphEventHef task4 = TGraphlask<blaskGraphTestTask>::

FGraphEventArray taskd_prerequistes;

tasko_prerequistes. Add{task?) ;
taskzi;Drerequistes. Add (task4) :

CreateTask (). ConstructAndDispatchWhenReady () -

CreateTask (&task? prerequistes). ConstructAndDispatchWhenReady () ;

CreateTask (&task3 prerequistes). ConstructAndDizpatchWhenReady () :

CreateTask (&taskd_prerequistes). ConstructAndDispatchWhenReady () :

FGraphEventRef taskd = TGraphTask<FTaskGraphTestTask}::CreateTask(&taskd_prerequistes). ConstructAndDispatchWhenReady () :

FTaskGraphInterface::Get (). WaitUntilTaskCompletes (taskd) :

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Job System

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Coroutine

Allows for multitasking by creating jobs that run inside of coroutines
« Coroutine is a lightweight execution context (include a user provided stack, registers...)

« Execution is collaborative, means a coroutine can switch to another interactively

main reqular main
function coroutine
e _—
1 function call l create & call
yield
resume
return return

1 |

- "

Modern Game Engine - Theory and Practice

BOOMING = = GAMES104

TECH ’

Coroutine vs. Thread

Coroutine
« Scheduled by programmers
 To be executed within a thread

« Context switch is faster without kernel switch

Thread
« Scheduled by operating system
* Resides in a process

« Context switch is costly with kernel switch

Thread X

Thread Y

Thread Z

Process

Application

Modern Game Engine - Theory and Practice BOOMING

" GAMESI104

Stackful Coroutine

Coroutine owns an independent runtime stack which is reserved after yield
« Enable to yield from within a nested stackframe
« Use local variables just like normal functions

void main()

{
doCoroutine(stackfulCO);
} T I »void stackfulCO()
{
subroutine();—— void subroutine()
} {
int a = 3;
// OK, stack is reserved
yield();

// stack is restored

assert(a == 3); // never fire

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Stackless Coroutine

Coroutine has no independent runtime stack to be reserved when yield
« Only the top-level routine may vyield (subroutines have no idea where to return without stack)
« The data that is required to resume execution should be stored separately from the stack

void main()

{
doCoroutine(stacklessCO);
} T I »void stacklessCO()
{

subroutine(); » void subroutine()
int a = 3; {
// OK // CAN'T
yield(); yield();
// resume with a different stack }

// CAN'T, 'a' is not in the stack
assert(a == 3);

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Stackful vs. Stackless Coroutine

Stackful Coroutine

More powerful with enable to yield from within a nested stackframe
Needs more memory to reserve stacks for each coroutine

Coroutine context switch takes more time

Stackless Coroutine

Unable to yield from within a subroutine
More difficult to use without a stack to reserve data
No extra memory needed for coroutine's stack

Faster context switch

Modern Game Engine - Theory and Practice BOOMING

TECH

" GAMESI104

Fiber-based Job System

Allows for multitasking by creating jobs instead of threads

Fiber is like coroutine except that fiber is scheduled by a scheduler

Thread is the execution unit while fiber is the context

One thread for each processor core to minimize the context switch overhead
Job is executed within the context of a fiber

x| =S e

Fiber L (7 l

Jobs Fiber pool Work threads

Modern Game Engine - Theory and Practice

BOOMING -

TECH

-

GAMES104

One Work Thread for One Core

To minimize the overhead of thread context switch
« Multiple work threads for a single core still suffers from context switch

 One work thread for each core eliminates context switch

Work Work Work Work
Thread @ Thread § Thread @ Thread

1616016 -

»

a

Context Switch

Modern Game Engine - Theory and Practice

BOOMING -

TECH

<

GAMES104

Fiber-based Job System

 Thread is the execution unit while fiber is the context

 Job is executed within a fiber

Work Work Work
Thread Thread Thread

- |
Rend
Bairl](e?wrd .

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Job Scheduler - Global Job

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

LIFO and FIFO Mode

» Schedule Model
» First In First Out (FIFO)
« Last In First Out (LIFO)
* LIFO Mode
* In most case, job dependency is tree like

« Some system add jobs occasionally but wait them immediately

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Job Scheduler - Job Dependency

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Job Scheduler - Job Stealing

Work
Thread EEn

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Pros and Cons of Job System

Pros

« Easy to implement task schedule
« Easy to handle task dependency
« Job stack is isolated

* Avoid frequency context switch

Cons
« C++ does not natively support fiber
* Implementation is different between OS

» Has some restrictions(thread_local invalid)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Programming Paradigms

Procedure-oriented Programming
Object-oriented Programming

Modern Game Engine - Theory and Practice BOOMING * GAMESI04

TECH
Programming Paradigm of Game Engine
« There are many different programming paradigms
* In practice, some paradigms are widely used
« Programming languages aren't always tied to a specific paradigm
Imperative

Programming Paradigms / \
/\, "
Pascal Object-Oriented

Imperative Paradigm Declarative Paradigm precedural C++ Eiffel
/\ /\ bash Java
CLOS
Logic M
Procedurgl Object Oriented Functional Logic Datalog SQL LISP
Programming Programming Programming Programming Prolog _ Functional
| Declarative

Structured
Programming

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Procedural Oriented Programming (POP)

« Follows a step-by-step approach to break down a task into a collection of variables and routines

(or subroutines) through a sequence of instructions

* Impossible to write a game engine in this way
« Data is not well maintained.

» A co-relation with real-world objects is difficult

F+F--F+F

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Object-Oriented Programming (OOP)

« Based on the concept of "objects", which can contain data and code

 It's natural for human to abstract from real world in an object-oriented way

OBJECT ORIENTED

» GameObject < PROGRAMMING
* Name ‘s F
¢ ... cLAsS OBJECTS
Vehicle * Create() Weapon ’

» Destroy()

* Speed . - Damage)]

« Capacity = « AmmoType Al y ‘

e * @ P @‘j’
* M Ove () ¢ FI re() ATTRIBUTES METHODS
* Pickup() » Reload() ewrLGHT oPLAY

©FOOD ©EAT

An example of game object

©) dreamstime.com

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Problems of OOP : Where to Put Codes?

"Attacker.doDamageTo()", "Player.attachTo()",
or "Victim.receiveDamage()"’? or "Enemy.isAttached()"?

Modern Game Engine - Theory and Practice

BOOMING
BooM GAMES104

Problems of OOP : Method Scattering in Inheritance Tree

 Hard to know which parent class has the method implementation

GO base

BipedCreature

player

MyriadsCreature

;

Enemy

Spider

What happend when player attacks a spider enemy?

Need check many different classes and
methods to find answer

Modern Game Engine - Theory and Practice

BOOMING -
TECH GAMES104

Problems of OOP : Messy Based Class

N NN N NN NN NN RN NN NN N R NN N NN N NN N NN R E N NN AR AN AN AN NN AN NN AN AN NN AN AN NRANEERENEEREERE RN,

: class ENGINE_API AActor : public UObject

{

bool
bool

void
void
bool
bool
void
void

const FTransform& GetTransform() const;

const FTransform& ActorToWorld() const;

FVector GetActorForwardVector() const;

FVector GetActorUpVector() const;

FVector GetActorRightVector() const;

virtual void GetActorBounds(...) const;

virtual FVector GetVelocity() const;

float GetDistanceTo(const AActor* OtherActor) const;
virtual void SetActorHiddenInGame(bool bNewHidden);

GetActorEnableCollision() const;
HasAuthority() const;

UActorComponent* AddComponent(...);

AttachToActor(...);

DetachFromActor(const FDetachmentTransformRules& DetachmentRules);
GetTickableWhenPaused();

IsActorInitialized() const;

ReceiveAnyDamage(...);

GetOverlappingActors(...) const;

virtual void SetLifeSpan(float InLifespan);
virtual void Serialize(FArchive& Ar) override;
virtual void PostLoad() override;

Parts of methods of a "messy base class"

Find some methods in common?
Put it to the base class!

We get a messy base class

This is not the best OO design, and it
certainly is possible to make a better one.
But also, often code ends up being like this,
even if no one wanted it that way.

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Problems of OOP : Performance

« Memory scattering

 Jungle of virtual functions

g Whatthe bt going
> 35 1 2 VRO SEvUSAREY

Memo! :
: ry Game || e ‘ Game irate——pf Behavior n
(Simplified) Object || object ; 1 |
~ : : e R R o R e
e)
Behavior /4 \ Rigidbody (& ™ Behavior ? Transform
» - : y
Behavior Transform Renderer ™ Rigidbody

Modern Game Engine - Theory and Practice

BOOMING -
BooM GAMES104

Problems of OOP : Testability

Unit Testing

« OO designs often need a lot of setup to test

To test a
soldier.attack()
method

Which

Setup several needs»

Initalize game
object models

Load basic
attributes

soldier objects

Setup animation
tree

Setup motor
status

jobs health
team = armor

f-.

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Data-Oriented Programming (DOP)

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Processor-Memory Performance Gap

» Performance of memory grows much slowly than processor
 The gap is even larger which make memory becomes the main bottleneck of

performance

100,000

10,000 Jorsssremmsssussmssssssnmssssssmssssssnsssssssssussssnsssssssessmssssssssssnsssssssssssssssssssnsssssssssnssssnssssssssssassssnssnsssssssss Ll e cosssnsnsacns |
;

1,000

Processor

Processor-Memory
Performance Gap

100 Jesesseees

0 frrrrerereeeeesssessssensesssssssssssssesss Ao ssssssssassassss s sssssssssssssasassss s fpas snss s o P TR

1980 1985 1990 1995 2000 2005 2010

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
2

The Evolution of Memory - Cache
Add cache to speed up data reading

L1: Ranges between 256KB to no more than 1MB, but even that is sufficient.
« L2: Usually a few megabytes and can go up to 10MB.

« L3: Larger than L1 and L2, varies from 16MB to 64MB, shared between all cores.

CPU Core 0 CPU Core 1
512KB L1 Data
Cache: ~1ns

512KB L1 Data
Cache: ~1ns

2MB L2 Cache: ~3ns 2MB L2 Cache: ~3ns

16MB L3 Cache: ~10ns

Memory: ~100ns

Modern Game Engine - Theory and Practice BOOMING

Boon GAMES104

-

Principle of Locality

the tendency of a processor to access the same set of memory locations
repetitively over a short period of time

Spatial Locality

« The use of data elements within relatively
close storage locations

Vector3 vl, v2; struct Vectors I R E
{ \ 4 _4

i b e MR |
{ }

Modern Game Engine - Theory and Practice

BOOMING . GAMES104

TECH

Single instruction multiple data (SIMD)

Data Pool

Instruction Pool

Vector Unit

ordinary CPU

one 32-bit register holds one number

R; | 9 N

R, | 3 |

Rs | 27 q
RAM

8-bit numbers

input | 5 | 9 | 2 | 8 |

result | 15 | 27 | | I

Operation count:
4 loads, 4 multiplies, and 4 saves

SIMD CPU
one 32-bit register acts as four 8-bit registers
Ryl 5] 9 [2 | 8 |\
R, 3 [3]3] 3
R;y | 15 [27 | 6 |24\\

RAM

8-bit numbers
nput [5 [9 [2 [8 |
result | 15 [27 | 6 [24 |

Operation count:
1 load, 1 multiply, and 1 save

Modern Game Engine - Theory and Practice

BOOMING
BooM GAMES104

LRU (Least Recently Used)

 When cache is full, discards the least recently used cache-line first.

Record the "used time" of each cache line
Discard the most "oldest used" cache line each time
Update "used time" when access data of cache line

A(0)
Y
A0) | B(1)
v
A0) | B(1) | C(2)
v
A0y | B(1) | C(2) | D(3)

Cache

data name

line
Last used time
sequence number

€

Access E but cache

R R miss, replace A(0)
E(4) "E‘!-HII C(2) D(3)
Access D and cache hit,
y * update "used time" to 5
E(4) | B(1) | C(2) | D(5)
Aceess F but cache
ST LI miss, replace B(1)
E(4) FIEJ‘"G{EJ D(5)

The data read sequence: A, B,C,D,E,D, F

Modern Game Engine - Theory and Practice

BOOMING
BOOMING . GAMES104

Cache Line

Data is transferred between memory and cache in blocks of fixed size (typically 64 bytes),

called cache lines or cache blocks.

A cache can only hold a limited number of lines, determined by the cache size. For

example, a 64 kilobyte cache with 64-byte lines has 1024 cache lines.

Every time you load any memory at all, you are loading in a full cache line of bytes

Cache Line

0x00
0x08
0x10
0x18

@ Initial status of cache line and
memory

0x00
0x08
0x10
0x18

Cache Line @ Initial status of cache line and
memory

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Cache Miss

Assume L1 cache with 4 cache lines

Each cache line is 64 bytes (16 integers) :
Row-major order Column-major order

Two way of iteration

16 cache miss

256 cache miss

 When cahce is full (loaded 4 rows), new rows will replace the oldest one
 When a elements not in cache, a whole row will be loaded

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Data-Oriented Programming (DOP)

1. Data is all we have

Particle Effect
Static Object

Model
Mesh of Terrain
Alliance _
Information Distance of
Enemies
Remain Ammo
Combat Map Count

Type of Weapon

Modern Game Engine - Theory and Practice

BOOMING " GAMES104

TECH

int test()

{

int a = 1;

Instructions are Data Too

1100011100000110
,0000000000000000

int b = 2;

return a + b;

Code

0000000000000010

0101010101011010
1010001111100001

——1000100011111001

1110000110101011
0000111001010101
01010101010..........

Elapsed Time : 31.539s [
Clockticks 85,288,127,932
Instructions Retired: 131,378,197,067
CPI Rate - 0.649
MUX Reliability 0.957
Front-End Bound 29.3% Rk of Pipeline Slots
Front-End Latency 20.1% Kk of Pipeline Slots
ICache Misses 7.1% R of Clockticks
ITLB Overhead - 3.1% of Clockticks
Branch Resteers 48% of Clockticks
DSB Switches 26% of Clockticks
Length Changing Prefixes “: 0.1% of Clockticks
MS Switches 3.1% of Clockticks
») Front-End Bandwidth 9.3% of Pipeline Slots
») Bad Speculation 82% of Pipeline Slots
») Back-End Bound *: 21.5% R of Pipeline Slots
») Retiring 40.9% of Pipeline Slots
Total Thread Count: 6
Paused Time Os

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Keep Code and Data Tight in Memory

« Keep both code and data small and process in bursts when you can

Instruction
Cache Memory
AN lnsinieion Currently execute
Cache . :
CPU Instructions
Registers
Data Unload : :
—> / nload current instructions,
Cache load new instructions of
other program
CPU may switch to other
program in runtime _ _
— Reload instructions of
Code may also have origin predtam

cache miss problem!

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Performance-Sensitive Programming

Modern Game Engine - Theory and Practice BOOMING * GAMESI04

TECH

Reducing Order Dependency

« The work being done because of a misprediction will have to be undone

* Never modify variables once they are initially assigned

These 2 parts of
code will not be
excuted in parallel

because variables a
& b is used before

a * 5

a/ 2

a = 2

b =a*5

Compiler allow these
32 = 4 2 parts of code to

b2 = a2 / 2 execute in parallel

Actually, compiler use static single-assignment (SSA)
to deal with simple situation like this

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

False Sharing in Cache Line

« Ensuring any rapidly updated variables are kept local to the thread

« Cache contension

Processor package

Socket 0 Socket 1
Core 0 Core 3
[Regs | [Regs | Thread 0 Thread 1
L1 L1 L1 L1
d-cache| |i-cache d-cache| |i-cache Cache Cache
L2 unified cache L2 unified cache Cache Line Shared Cache Line _l
cache line]

L3 unified cache
(shared by all cores)

Memory

e T

Main memory

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Branch prediction (1/3) Clock cycle

. : . 1 2 3 4 5 6 7 8
« CPU will prefetch instructions and data ahead

« Use branch prediction technics to decide
Waiting
what to prefetch instructions

0
L]
L]
[]

r;tage 1: Fetch
... 5_ . BN

a =4 : = Stage 2: Decode - .
.. . gﬁ . .
III Lstage 4: Writ&back .
1-Fa+b>5then
c =6 - Completed .
S AN N R NN NN NN NN R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEES ; instructions

Instrument

Code (simplified for example)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Branch prediction (2/3) N 2
5 215 |8(11| 3129 |22]5 |13
When i = 2, CPU predict i = 3 is the same,

« To avoid branch mis-prediction

int a[1e] = {2,5,8,11,3,12,9,22,5,13}; : thus prefetch doFunc1() instructions and data :
for (int 1 = @; 1 < 10; 1 ++)
{ g & g currentlndex3 ..
{ prefetched data: :
doFunci1(); doFuncil() 2 5|18 |11|3|12(9|22| 5 |13
actually: _ _
ilse doFuncé() But actually it should do doFunc2() when i = 3,:
{ it's a mis-prediction
doFuncZ(); A et | N N :
} current index 4
} | :
. prefetched data:
- doFunc2() 2151811 3 |12 9 (22| 5 |13
dilczttljslclyl:() Again, predict doFunc2() when i = 4,

but actually should do doFunc1()

Modern Game Engine - Theory and Practice

BOOMING -

TECH

GAMES104

Branch prediction (3/3)

« To avoid branch mis-prediction

3|15(5|8]9(11|1213

22

int a[16] =i{2,3,5,5,8,9,11,12,13,22}; 2
for (int 1 =0; i < 10; i ++)
{
if (a[i] > 10)
{
doFuncl1();
}
else
{
doFunc2();
}

I

If it's a sorted array, only 1 mis-
prediction will occur

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Existential Processing

Only processing existing elements rather than deciding whether should be processed on the fly

for actor in actor_array do E . for actor in alive actor_array do
if actor is alive then : aliveFunc(actor)
aliveFunc(actor) E . end
else : :
deadFunc(actor) : . for actor in dead_actor_array do
end : ; deadFunc(actor)
end =—> end
This code also faces branch : :
prediction problems Completely avoid "if-else"
Unlike the example before, . By maintaining 2 lists of different actors,

actor_array changes every tick we could avoid branch mis-precondition

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Performance-Sensitive Data
Arrangements

Modern Game Engine - Theory and Practice

BOOMING -
BooM . GAMES104

Reducing Memory Dependency

» (chained memory lookups/accesses by pointers)

Un-used mamory ‘ | Used memory | | Linked List Node

Load the first cache line 1
Get the next node address
Cache miss

Unload the old one, and
load another cahce line 2
Repeating

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Array of Structure vs. Structure of Array

AOS SOA

struct Particle{ struct Particles{
Vector3 position; Vector3 position[N];
Vector3 velocity; Vector3 velocity[N];
Color color; Color color[N];
float age; If we want to read the float age[N];
//... position of all particles, SOA /...

} Particle[N]; has better performance } Particles;

o T T o - T [

I velocity 2 velocity 1 velocity 2 Il \VACTHENE.
foosionsJueoos Jooors [aacs NI oo s | coor | coors [N

.m

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Entity Component System (ECS)

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Recap: Component-based Design (1/2)

VA

' _x_Transform %
v , Motor

Model

Animation
Physics
AI .-

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Recap: Component-based Design (2/2)

° Code example zlass GameObjectBase

vector<ComponentBasex> |components;
virtual void tick();

Base class of component L

class|ComponentBase
{ class Drone:

public GameObjectBase

virtual void tick() = 0; {

G , . 1

class TransformComponent: class ModelComponent: class MotorComponent: class AIComponent: Animat
public|ComponentBase public|ComponentBase public| ComponentBase publigq ComponentBase Pﬂgziéon
{ { { {
Vector3 positiony Mesh mesh; float battery; void tick();
. void tick(); void scout();
void tick();)(void tick(); vaddimavel); v

}; };

0

Modern Game Engine - Theory and Practice

BOOMING -

TECH

GAMES104

Entity Component System (ECS)

A pattern to structure game code in a data-oriented way for maximum performance

~

Translation

Translation

Rotation

Rotation

LocalToWorld

LocalToWorld

Renderer

Renderer

\ Components

N I

Entity: an ID refer to a set of components

| Entity C |

Translation

Rotation

LocalToWord

Components

D))
)04
&K

Component: the data to be processed by systems, no logic at all

System: where the logic happens, read/write component data

Comn)

LZW=T"*R

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Unity Data-Oriented Tech Stack (DOTS)

A combination of technologies that work together to

deliver a data-oriented approach to coding

« The Entity Component System (ECS) provides
data-oriented programming framework

« The C# Job System provides a simple method of
generating multithreaded code

« The Burst Compiler generates fast and optimized

native code

Modern Game Engine - Theory and Practice

BOOMING
TECH

" GAMESI104

Unity ECS — Archetype

A specific combination of components

Entities are grouped into archetypes

‘ Entity A H Entity B J

-)

Translation Translation

Raotation Rotation

LocalToWaorld LocalTowarld

Renderer Renderer

\ Archetype M /

f"-

Entity C

~

Translation

Rotation

LocalTowarld

Archetype N
h

A

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Unity ECS — Data Layout in Archetype

Same components in an archetype are packed tightly into chunks for cache friendliness

A chunk is a block of memory with fixed size, i.e. 16KB

Archetype

(11

Chunk

\ Chunk

\ Chunk /

Archetype

(Y

Chunk

Chunk

Archetype

—

Chunk

Chunk

Chunk

Chunk

-
-
-
-

Translation Translation
Renderer Renderer
_ Chunk

Modern Game Engine - Theory and Practice BOOMING * GAMES104

TECH

Unity ECS — System

Translation

Velocity

Archetype A

Archetype B

Archetype C
Query result chunks

public class MoveSystem : SystemBase

{

protected override void OnUpdate()

{

// For each entity which has Translation and Velocity
Entities.ForEach(
// Write to Displacement (ref), read Velocity (in)
(ref Translation trans, in Velocity velocity) =>
{
//Execute for each selected entity
trans = new Translation()
{
// dT 1is a captured variable
Value = trans.Value + velocity.Value * dT
}s
}
)

.ScheduleParallel(); // Schedule as a parallel job

Modern Game Engine - Theory and Practice BOOMING -

TECH

GAMES104

Unity C# Job System

Make it easier for users to write correct multithreaded code

A job is a small unit of work that performs a specific task

Jobs can depend on other jobs to complete before they run

public struct FirstJob :

{

}

public void Execute()

{
}

public struct SecondJob :

{

public void Execute()

{
}

IJob

IJob

var first _job = new FirstJob();
var second_job = new SecondJob();

// execute first job
var first job handle = first_job.Schedule();

// second_job depends on first job to complete
second_job.Schedule(first_job_handle);

Modern Game Engine - Theory and Practice BOOMING *

TECH

GAMES104

Unity C# Job System — Native Container

A type of shared memory that can be accessed inside jobs

Job cannot output result without native container (all data is a copy)
Native containers support all safety checks

Native containers need to be disposed manually

// Allocate one float with "TempJob" policy

// Allocator.Temp: Fastest allocation, lifespan is 1 frame or fewer
// Allocator.TempJob: Slower than Temp, lifespan is 4 frames

// Allocator.Persistent: Slowest allocation, can last as long as needed
NativeArray<float> a = new NativeArray<float>(1, Allocator.TempJob);

// Need to dispose manually for unmanaged memory
a.Dispose();

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Unity C# Job System — Safety System

Support safety checks (out of bounds checks, deallocation checks, race condition checks) for jobs
» Send each job a copy of data it needs to operate on to eliminate the race condition

« Job can only access blittable data types (reference is invalid)

public struct Job : IJob
{ Schedule Job

public float a;
public float b;

public void Execute()

{ Job O Job 1 Job 2 Job 3

y alb alb alb al|b

Each job has a copy of data

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

High-Performance C# and Burst Compiler

High-Performance C# (HPC#) is a subset of C#
« Give up on most of the standard library (StringFormatter, List, Dictionary, and etc.)

» Disallow allocations, reflection, the garbage collector and virtual calls

Burst Compiler translates from IL/.NET bytecode to highly optimized native code using LLVM

» Generate expected machine code for specific platforms

I
4
I

ages |
oooonD
Job Scheduler & Runtime

‘ Native Containers

Unity Runtime

MassSmartObjects

MassSimulation

MassLOD MassMovement
MassReplication MassRepresentation
MassGameplayDebug MassGameplayEditor

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Unreal Mass Framework
Mass
MassEntity
MassEntity MassAl
ther tem N
UL PRI MassEntityTestSuite MassAlMovement
StructUtils MassEntityEditor MassAlIMovementEditor
: MassCrowd
ZoneGraph MassAlIBehavior -
MassCrowd
SmartObjects MassGameplay MassAlDebug
ZoneGraphAnnotations MassCommon MassActors MassAlReplication
StateTree MassSignals MassSpawner MassAlTestSuite

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

MassEntity — Entity

« FMassEntityHandle is pure ID as ECS Entity
* Index indicates the index in Entities array in FMassEntityManager
« SerialNumber as salt to Index

* Release an old entity

« Create a new entity with the same Index

 SerialNumber is increased so the ID will be different

struct FMassEntityHandle struct MASSENTITY_API FMassEntityManager
{ {
int32 Index = 0; TChunkedArray<FEntityData> Entities;
int32 SerialNumber = 0; TArray<int32> EntityFreelndexList;

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

MassEntity — Component

struct FMassArchetypeCompositionDescriptor
« Same as Unity, each type of entity has an Archetype {

 Fragments and tags are components for entities

_ FMassFragmentBitSet Fragments;
« Tags are constant Boolean components to filter FMassTagBitSet Tags;
FMassChunkFragmentBitSet ChunkFragments;

unnecessar rocessin .
yP g FMassSharedFragmentBitSet SharedFragments;

Goes to Index 0 of the Velocity Array
Fragment
Velocity Archetype [Transforn , Velocity]
Fragment Goes to Index 0 of | Transform Array | | Velocity Array | Entity ID
the Transform Array
Transform 0| value 1 | | value 1 | Entity ID references
1 | Value 2 | | Value 2 | an index inside each
Fragment 2| value 3 | | value3 | Fragment array
Goes to Index 2 of I | | |
Transform 7
the Transform Array Entity ID
Fragment [Transform, Velocity]
Ll Goes to Index 2 of the Velocity Array

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

MassEntity — Systems

« ECS Systems in MassEntity are Processors derived from UMassProcessor

« Two important interface: ConfigureQueries() and Execute(...)

class MASSENTITY_API UMassProcessor : public UObject
{

protected:
virtual void ConfigureQueries() PURE VIRTUAL(UMassProcessor::ConfigureQueries);
virtual void PostInitProperties() override;
virtual void Execute(
FMassEntityManager& EntityManager,
FMassExecutionContext& Context) PURE_VIRTUAL(UMassProcessor::Execute);

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
MassEntity — Fragment Query
» Interface ConfigureQueries() runs when the processor is initialized
« Use FMassEntityQuery to filter archetypes of entities meeting systems requirements
« FMassEntityQuery caches filtered archetypes to accelerate future executions
A.rchetype
[Yelority 0L hdex) Call EntityQuery for Archetype
[Transform, Velocity]
Filter for Archetype EntityQuery Processor
Archetype Archetype filter Contains processing logic
[Transform, Velocity] [Transform, Velocity] for Fragments
Returns Archetype Return Transform and Velocity
data arrays from Archetype
Archetype
[Transform, LOD Index]
void UMassApplyMovementProcessor::ConfigureQueries()
{
EntityQuery.AddRequirement<FMassVelocityFragment>(EMassFragmentAccess: :ReadWrite);
EntityQuery.AddRequirement<FTransformFragment>(EMassFragmentAccess: :ReadWrite);
EntityQuery.AddRequirement<FMassForceFragment>(EMassFragmentAccess: :ReadWrite);
EntityQuery.AddTagRequirement<FMassOffLODTag>(EMassFragmentPresence: :None);
EntityQuery.AddConstSharedRequirement<FMassMovementParameters>(EMassFragmentPresence::All);

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

MassEntity — Execute

void UMassApplyMovementProcessor::Execute(FMassEntityManager& EntityManager,
FMassExecutionContext& Context)
{
// Clamp max delta time to avoid force explosion on large time steps (i.e. during initialization).
const float DeltaTime = FMath::Min(@.1f, Context.GetDeltaTimeSeconds());
EntityQuery.ForEachEntityChunk(EntityManager, Context, [this, DeltaTime](FMassExecutionContext& Context)
{

const int32 NumEntities = Context.GetNumEntities();

const TArrayView<FTransformFragment> LocationList = Context.GetMutableFragmentView<FTransformFragment>();
const TArrayView<FMassForceFragment> ForcelList = Context.GetMutableFragmentView<FMassForceFragment>();
const TArrayView<FMassVelocityFragment> VelocitylList = Context.GetMutableFragmentView<FMassVelocityFragment>()

for (int32 EntityIndex = 0; EntityIndex < NumEntities; ++EntityIndex)
{
FMassForceFragment& Force = ForcelList[EntityIndex];
FMassVelocityFragment& Velocity = VelocitylList[EntityIndex];
FTransform& CurrentTransform = LocationList[EntityIndex].GetMutableTransform();
// Update velocity from steering forces.
Velocity.Value += Force.Value * DeltaTime;

FVector CurrentLocation = CurrentTransform.GetlLocation();

CurrentLocation += Velocity.Value * DeltaTime;
CurrentTransform.SetTranslation(CurrentLocation);

})s

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Conclusions

Modern Game Engine

Everything You
Need Know About
Performance

Not all CPU operations are created equal

Operation Costin CPU Cycles 10° 10° 102 103 104

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”

Floating-point/vector addition

Multiplication (integer/float/vector)

Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if’ (branch misprediction)
Floating-point division

10-12]
10-20 |
1000 |
128-bit vector division 1070 |
=
=
[15-40 |
EXX
[30-60 |

-l =
d Kk
SN

Atomics/CAS
C function direct call
Integer division
C function indirect call
C++ virtual function call
L3 read

Main RAM read [100-150]

NUMA: different-socket atomics/CAS

(guesstimate)
NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call
Thread context switch (direct costs) [2000 |
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels

while the operation is performed &

10° 10°

410000 - 1 million

30km

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

References

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Cache

« Entity Component Systems & Data Oriented Design, Unity Training Academy 2018-2019, #3
https://aras-p.info/texts/files/2018Academy%20-%20ECS-DoD.pdf

« Computer Architecture: A Quantitative Approach 5th Edition by John L. Hennessy , David A.
Patterson

« What is the bandwith speed of L1,L2 and L3 Cache
https://linustechtips.com/topic/34636-what-is-the-bandwith-speed-of-1112-and-I3-cache/

 Intel Core 19-9900K CPU Review: More Cores, Speed, and Higher Price

https://www.overclockers.com/intel-core-i9-9900k-cpu-review-more-cores-speed-and-

higher-price/

« Wikipedia - Cache replacement policies

https://en.wikipedia.org/wiki/Cache_replacement_policies#lL east recently used (LRU)

EntityComponentSystems&DataOrientedDesign,UnityTrainingAcademy2018-2019,#3https://aras-p.info/texts/files/2018Academy%20-%20ECS-DoD.pdfComputerArchitecture:AQuantitativeApproach5thEditionbyJohnL.Hennessy,DavidA.Patterson
https://linustechtips.com/topic/34636-what-is-the-bandwith-speed-of-l1l2-and-l3-cache/
https://www.overclockers.com/intel-core-i9-9900k-cpu-review-more-cores-speed-and-higher-price/
https://en.wikipedia.org/wiki/Cache_replacement_policiesLeast_recently_used_(LRU)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Parallel Programming (1/3)

« QOperating System Basics (Brian Will)

https://linuxwheel.com/operating-system-basics-brian-will/

« Parallel computing via multicore computers allow high processing capacity

https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-

multicore-computers/

* Internals of a Thread Pool

https://salonegupta.wordpress.com/2017/12/28/internals-of-a-java-thread-pool/

« CPP Reference - Atomic https://en.cppreference.com/w/cpp/atomic

« TBB Tutorial https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf

https://linuxwheel.com/operating-system-basics-brian-will/
https://www.teldat.com/blog/parallel-computing-bit-instruction-task-level-parallelism-multicore-computers/
https://salonegupta.wordpress.com/2017/12/28/internals-of-a-java-thread-pool/
https://en.cppreference.com/w/cpp/atomic
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Parallel Programming (2/3)

« Parallel Programming Models and Paradigms

http://www.cse.hcmut.edu.vn/~hungnaqg/courses/pp/backup.2/thamkhao/Parallel%20Program

minq%20Paradigms.pdf

« Parallel Paradigms and Parallel Algorithms https://pdc-support.github.io/introduction-to-

mpi/05-parallel-paradigms/index.html

« Developing Parallel Programs - A Discussion of Popular Models

https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/0ss-

parallel-programs-170709.pdf

« Modern Fortran: Building efficient parallel applications MEAP V13

https://livebook.manning.com/book/modern-fortran/welcome/v-13/

http://www.cse.hcmut.edu.vn/~hungnq/courses/pp/backup.2/thamkhao/Parallel Programming Paradigms.pdf
https://pdc-support.github.io/introduction-to-mpi/05-parallel-paradigms/index.html
https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-parallel-programs-170709.pdf
https://livebook.manning.com/book/modern-fortran/welcome/v-13/

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Parallel Programming (3/3)

 Priority Inversion http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiBO101.html

« Whatis a Thread in OS and what are the differences between a Process and a Thread?

https://afteracademy.com/blog/what-is-a-thread-in-os-and-what-are-the-differences-

between-a-process-and-a-thread

« Understanding operating systems https://www.uow.edu.au/student/learning-co-

op/technology-and-software/operating-systems/

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0101.html
https://afteracademy.com/blog/what-is-a-thread-in-os-and-what-are-the-differences-between-a-process-and-a-thread
https://www.uow.edu.au/student/learning-co-op/technology-and-software/operating-systems/

Modern Game Engine - Theory and Practice BOQMING | GAMES104

TECH

Parallel Frameworks in Game Engine (1/2)

GDC2015 - Parallelizing the Naughty Dog Engine Using Fibers
https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine

GCAP 2016: Parallel Game Engine Design - Brooke Hodgman

https://www.youtube.com/watch?v=JpmKQOzu4Mts

Java - Thread Pools https://www.logicbig.com/tutorials/core-java-tutorial/java-multi-

threading/thread-pools.html
C++20: Building a Thread-Pool With Coroutines https://blog.eiler.eu/posts/20210512/

Processes, threads, and coroutines

https://subscription.packtpub.com/book/programming/9781788627160/1/ch01lvilsec02/proc

esses-threads-and-coroutines

https://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine
https://www.youtube.com/watch?v=JpmK0zu4Mts
https://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/thread-pools.html
https://blog.eiler.eu/posts/20210512/
https://subscription.packtpub.com/book/programming/9781788627160/1/ch01lvl1sec02/processes-threads-and-coroutines

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Parallel Frameworks in Game Engine (2/2)

« UEF&-TaskGraphBISCINFOAA
https://zhuanlan.zhihu.com/p/398843895?utm medium=social&utm 0i1=1447486643037528
064&utm psn=1546525648855732224&utm source=ZHShareTargetIDMore

« Unreal Engine 5.0 Documentation - Tasks System https://docs.unrealengine.com/5.0/en-

US/tasks-systems-in-unreal-engine/
- UE4/UE5RYTaskGraph https://cloud.tencent.com/developer/article/1897046

https://zhuanlan.zhihu.com/p/398843895?utm_medium=social&utm_oi=1447486643037528064&utm_psn=1546525648855732224&utm_source=ZHShareTargetIDMore
https://docs.unrealengine.com/5.0/en-US/tasks-systems-in-unreal-engine/
https://cloud.tencent.com/developer/article/1897046

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

DOP (1/3)

* Programming Paradigms — Paradigm Examples for

Beginnershttps://www.freecodecamp.org/news/an-introduction-to-programming-

paradigms/#what-is-a-programming-paradigm

« GDC'cn ASKIMAR PR BERVE R BHEMIZTCI I EIlEhttps://ubm-
twvideo01.s3.amazonaws.com/ol/vault/gdcchinal4/presentations/833779 MiloYip_ADataOrie
ntedCN.pdf

« Timeline of Computer History

https://www.computerhistory.org/timeline/computers/

« The Fetch and Execute Cycle: Machine Language

https://math.hws.edu/javanotes-swing/c1/s1.html

« Wikipedia-Single instruction, multiple data

| P Y R Y . [[P A I I o Y [EE Nl IR I B R [Ry

https://www.freecodecamp.org/news/an-introduction-to-programming-paradigms/#what-is-a-programming-paradigm
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdcchina14/presentations/833779_MiloYip_ADataOrientedCN.pdf
https://www.computerhistory.org/timeline/computers/
https://math.hws.edu/javanotes-swing/c1/s1.html
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

DOP (2/3)

« Linked List (Data Structure) https://devopedia.org/linked-list-data-structure

Sekiro: Shadows Die Twice - All Bosses [No Damage]
https://www.youtube.com/watch?v=KPAVM2hcSH8
Ori 2 - Boss - Mora (Giant Spider) - Hard Difficulty

https://www.youtube.com/watch?v=tuhrtBRLQPw

The Greatest Frame Loss of All Time

https://www.youtube.com/watch?v=4efRY XuhVTA

Monster Hunter World | Great Sword Tutorial

https://www.youtube.com/watch?v=X2vr8M31Q88

https://devopedia.org/linked-list-data-structure
https://www.youtube.com/watch?v=KPAvM2hcSH8
https://www.youtube.com/watch?v=tuhrtBRLQPw
https://www.youtube.com/watch?v=4efRYXuhVTA
https://www.youtube.com/watch?v=X2vr8M3lQ88

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

DOP (3/3)

« Data-Oriented Design, Fabian R, CRC Press, 2018.

https://www.dataorienteddesign.com/dodbook.pdf

« OOP Is Dead, Long Live Data-oriented Design. Nikolov S, Coherent Labs. CppCon 2018.
https://www.bilibili.com/video/BV1kWA4111 7uw?p=66&vd_source=f12a5db552661d28e85078
75¢c37983cd

« Data-Oriented Design and C++, Acton M. Insomniac Games. CppCon 2014.

https://www.youtube.com/watch?v=rXO0ItVEV|Hc

« Data-Oriented Design Resources: https://github.com/dbartolini/data-oriented-design

https://www.dataorienteddesign.com/dodbook.pdf
https://www.bilibili.com/video/BV1kW41117uw?p=66&vd_source=f12a5db552661d28e8507875c37983cd
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://github.com/dbartolini/data-oriented-design

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Unity DOTS (1/2)

« Getting Started with Unity DOTS https://nikolayk.medium.com/getting-started-with-unity-
dots-part-1-ecs-7f963777db8e

« Unity Manual - ParallelFor Jobs

https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html

 Unity Learn - What is DOTS and why is it important https://learn.unity.com/tutorial/what-is-

dots-and-why-is-it-important#

« On DOTS: Entity Component System https://blog.unity.com/technology/on-dots-entity-

component-system

« Unite Los Angeles 2018 Keynote

https://www.youtube.com/watch?v=alZ6wmwvck0&t=6434s

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf
https://docs.unity3d.com/Manual/JobSystemParallelForJobs.html
https://learn.unity.com/tutorial/what-is-dots-and-why-is-it-important
https://blog.unity.com/technology/on-dots-entity-component-system
https://www.youtube.com/watch?v=alZ6wmwvck0&t=6434s

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Unity DOTS (2/2)

« Building a Data-Oriented Future - Mike Acton
https://www.youtube.com/watch?v=u8B3|8rgY Mw

« Getting started with Unity DOTS — Part 2. C# Job System

https://nikolayk.medium.com/qgetting-started-with-unity-dots-part-2-c-job-system-

6f316aa05437

https://www.youtube.com/watch?v=u8B3j8rqYMw
https://nikolayk.medium.com/getting-started-with-unity-dots-part-2-c-job-system-6f316aa05437

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Unreal Engine Mass Architecture

« UES5 MassEntity Documentation, https://docs.unrealengine.com/5.0/en-US/overview-of-

mass-entity-in-unreal-engine/
« UESHJECS: MASS#HEZE(—), quabgi, 2022, https://zhuanlan.zhihu.com/p/441773595
- UESHYECS: MASSHEZE(Z), quabqi, 2022, https://zhuanlan.zhihu.com/p/446937133
« UESHJECS: MASSHEZE(Z), quabgi, 2022, https://zhuanlan.zhihu.com/p/477803528

https://docs.unrealengine.com/5.0/en-US/overview-of-mass-entity-in-unreal-engine/
https://zhuanlan.zhihu.com/p/441773595
https://zhuanlan.zhihu.com/p/446937133
https://zhuanlan.zhihu.com/p/477803528

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Multimedia Material List

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Sekiro: Shadows Die Twice - All Bosses [No Damage]
https://www.youtube.com/watch?v=KPAvM2hcSHS8
Ori 2 - Boss - Mora (Giant Spider) - Hard Difficulty

https://www.youtube.com/watch?v=tuhrtBRLQPw

Monster Hunter World | Great Sword Tutorial

https://www.youtube.com/watch?v=X2vr8M3IQ88

Review in Progress: Battlefield 2042 https://www.destructoid.com/review-in-progress-

battlefield-2042-ps5-version/

Infographics: Operation Costs in CPU Clock Cycles, http://ithare.com/infographics-operation-

costs-in-cpu-clock-cycles/

https://www.youtube.com/watch?v=KPAvM2hcSH8
https://www.youtube.com/watch?v=tuhrtBRLQPw
https://www.youtube.com/watch?v=X2vr8M3lQ88
https://www.destructoid.com/review-in-progress-battlefield-2042-ps5-version/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Lecture 20 Contributors

- i N - Olorin U=
- avar] - Rig - IR

Modern Game Engine - Theory and Practice BOOMING GAMES1I04

&A

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Enjoy;)
Coding

Course Wechat

Please follow us for
further information

