
Modern Game Engine - Theory and Practice

- Thank you all for supporting the course

team and Piccolo Community for the

last 5 month！

- Beside the lectures, we are thinking

about how to share more about game

engine to the community

- Please post your ideas on Blibili

Lecture 19, of what else the course

team could do to help you learning

(i.e. documents, videos on Piccolo

codes or whatever you think will be

meaningful)

- We will select 5 comments @GAMES-

WEBINAR Bilibili Course 19, to send

course T-shirts, deadline: 00:00

2022/08/22

Voices from Community

Rewarding list for 精选留言
（请联系小秘书-阿曼达或“GAMES-WEBINAR” B站后台台发送联系方式；）

@夕影随风 @七柳舞四 @多佛郎mingle

好害怕104哪天突然完结了，期待后续
有更多的内容

希望Piccolo再多一点文档,知识点
真是多啊

课程组能否整理一套类似本科生中培养
方案的学习流程，大体指出其他前序课
程或者是需要掌握的知识程度

@liangyush@我不是小杰

@剑锋不快 @Welann @暖风游戏厅 @云上男孩 @ANAΓKH

Modern Game Engine - Theory and Practice

• RHI Optimization

• Better encapsulation of the RHI

layer to prepare for the multi-

graphics API (DX12, Metal)

supports

• GPU Particle System

• Emitters and Particles

• GPU based particle simulation

Piccolo Engine Following Updates (1/2)

Modern Game Engine - Theory and Practice

• DebugDraw System

• Improve the debuggability of engine

systems

• Support drawing a variety of

geometries: point, segment, box,

sphere, cube, capsule, cylinder, text

and triangle mesh

Piccolo Engine Following Updates (2/2)

Modern Game Engine - Theory and Practice

• Q1:Can we mix up lockstep synchronization with state synchronization?

• Q2:If native cloud-based games came to real life one day, would network synchronization still be

necessary?

• Q3:Can players cheat in state synchronization?

Q&A

Modern Game Engine - Theory and Practice

Advanced Topics (1/3) – DOP & Job System

WorkThread

WorkThread

WorkThread

WorkThread

WorkThread

WorkThread

Visibility Lua Shadow Lighting PostProcess

…

LOD Animation Physics

Visibility

Motor

UIMotor

Animation

Animation

Animation

AI

UI

Motor

Motor

Visibility GBuffer Shadow Particle

Particle …

LOD GBuffer Animation Particle Particle UI …

Particle

AI Physics UI …

…Transparent

• Data Oriented Programming (DOP)

• Job System

Modern Game Engine - Theory and Practice

Advanced Topics (2/3) – Nanite & Lumen

Nanite Lumen

Modern Game Engine - Theory and Practice

Advanced Topics (3/3) – Motion Matching & PGC

• Motion Matching

• Procedurally Generated Content (PGC)

WANG XI GAMES 104 2022

Advanced Topics

Modern Game Engine - Theory and Practice

Lecture 19

Online Gaming Architecture

Modern Game Engine - Theory and Practice

Outline

Basics Advanced

• Character Movement Replication

• Hit Registration

• MMOG Network Architecture

• Bandwidth Optimization

• Anti-Cheat

• Build a Scalable World

• Network Protocols

• TCP, UDP and Reliable UDP

• Clock Synchronization

• Remote Procedure Call (RPC)

• Network Topology

• Game Synchronization

• Snapshot Sync.

• Lockstep Sync.

• State Sync.

Modern Game Engine - Theory and Practice

Character Movement Replication

Modern Game Engine - Theory and Practice

Character Movement Replication

From player 2's point of view, player 1's movement is very choppy and lags behind player 1's

actual position

Player 1

View

Server

View

Player 2

View

Modern Game Engine - Theory and Practice

Interpolation & Extrapolation

Purpose: Smooth movement of player's characters on screen

Interpolation

• Calculate the state between old but known states

Extrapolation

• Predict where entity is going from old states

ExtrapolationInterpolation

Modern Game Engine - Theory and Practice

Smooth States by Interpolations

• Position and Orientation can be interpolated between two recently received data

Known state

Modern Game Engine - Theory and Practice

Buffer States and Deferred Render

• Data packet will not be rendered immediately

when received

• Put into memory and wait for a new data packet

• After waiting for a time offset, start to render first

received data packet

• Create an artificial delay of interpolation offset

Modern Game Engine - Theory and Practice

Character Movement Replication by Interpolation

Result after interpolation was implemented

Player 1

View

Server

View

Player 2

View

Modern Game Engine - Theory and Practice

Interpolation Challenges of Vehicle Movement Replication

Modern Game Engine - Theory and Practice

Estimate Current State by Extrapolation

• Use past states to estimate current state to compensate net lag

Known state Predicted state

Modern Game Engine - Theory and Practice

Dead Reckoning

• Estimate future state based on states that have been received

Modern Game Engine - Theory and Practice

Projective Velocity Blending (1/2)

• At 𝑡0, the replicated character is at 𝑝0 with

velocity 𝑣0 and acceleration 𝑎0, and receive the

synced states with position 𝑝0
′ , velocity 𝑣0

′ ,

acceleration 𝑎0
′

• We can predict position 𝑝𝑡
′ after a time duration

𝑡 based the synced states

𝑝𝑡
′ = 𝑝0

′ + 𝑣0
′ 𝑡 +

1

2
𝑎0

′ 𝑡2

• Our goal is to reach 𝑝𝑡
′ 𝑡=𝑡𝐵

smoothly after a

fixed blending time duration: 𝑡𝐵 − 𝑡0

Modern Game Engine - Theory and Practice

Projective Velocity Blending (2/2)

At any time 𝑡, we can get the blending velocity 𝑣𝑡

And projecting the position 𝑝𝑡 from 𝑝0

Then get the dead reckoned position 𝑝𝑑 by

combining 𝑝𝑡 and 𝑝𝑡
′

𝑣𝑡 = 𝑣0 + 𝜆 𝑣0
′ − 𝑣0

𝜆 =
𝑡 − 𝑡0

𝑡𝐵 − 𝑡0

𝑝𝑡 = 𝑝0 + 𝑣𝑡𝑡 +
1

2
𝑎0

′ 𝑡2

𝑝𝑑 = 𝑝𝑡 + 𝜆(𝑝𝑡
′ − 𝑝𝑡)

Modern Game Engine - Theory and Practice

Collision Issues (1/4)

Dead reconking Collision trajection looks weird

Red: Snapshot

Blue: Simulated track

Green: Ground truth

Modern Game Engine - Theory and Practice

Collision Issues (2/4)

Phase 1: Collision starts

Red: Snapshot

Blue: Simulated track

Green: Ground truth

Modern Game Engine - Theory and Practice

Collision Issues (3/4)

Phase 2: The replica keeps going, since the extrapolation is based on the last snaphsot

Red: Snapshot

Blue: Simulated track

Green: Ground truth

Modern Game Engine - Theory and Practice

Collision Issues (4/4)

Phase 3: Finally we receive a snapshot to stop the replica, but replica gives master’s rigidbody

a huge velocity to pushing master away

Red: Snapshot

Blue: Simulated track

Green: Ground truth

Modern Game Engine - Theory and Practice

Physics Simualtion Blending During Collision

Tunable between two states

• State calculated by the client physics simulation

• State that tries to reach the dead reckoned positions

Tuned blending factors from Watch Dogs 2, Ubisoft Toronto. Bikes recover faster than cars

Modern Game Engine - Theory and Practice

Usage Scenario of Interpolation

Scenario for Using Interpolation

• Characters' movement are very non-

deterministic with high acceleration

• Gameplay suffers from the “wrap” when

extrapolation errors occur

Typical examples

• FPS

• MOBA

Apex Legends

Modern Game Engine - Theory and Practice

Usage Scenario of Extrapolation

Scenario for Using Extrapolation

• Player movement uses a realistic

physical model

• Gameplay suffers from latency due to

network transmission

Typical examples

• Racing game. Vehicle systems (Tanks,

Ships, etc.) World Of Warships

Modern Game Engine - Theory and Practice

Blend Scenario of Interpolation and Extrapolation

Sometimes we need to apply both interpolation and extrapolation for the game to work properly

• Apply Extrapolation on vehicles

• Apply Interpolation for characters

• Do extrapolation if not enough data received

Battlefield1

Modern Game Engine - Theory and Practice

Hit Registration

Modern Game Engine - Theory and Practice

How to Make a Headshot in Online Game

Net messages to travel from client to server, and interpolation causes you to see the enemy

way lag behind

Modern Game Engine - Theory and Practice

Where is the Enemy?

Due to latency, interpolation offset and time delay, you'll see other players slightly behind their

current server positions. Where should I shot?

Modern Game Engine - Theory and Practice

Where Should I Shot?

Modern Game Engine - Theory and Practice

Hit Registration

Hit registration is making a consensus of all players that whether you've actually hit your

enemy

Battlefield 3: Client-side hit detection CSGO: Server-side hit-registration

Modern Game Engine - Theory and Practice

Hit Registration

• Detecting hit event on client-side with replicated character positions

• Send hit events to the server

• Server run simple verification

The large map and lots of players Destruction and Vehicles

PUBG Battlefield 3

Modern Game Engine - Theory and Practice

A Comparison of Hitscan Weapons versus Projectile Weapons

Unlike hitscan weapons, projectile weapons can

also simulate the effect of gravity

The scenery in Battlefield is built from several hitboxes, so

destruction can take away the walls, the floors, etc.

Modern Game Engine - Theory and Practice

A Very Simple Server Verification of Hit Event

• Client send hit event with complete ray information to server

• StartPoint, HitPoint and HitObject of the Raycast

• Validate StartPoint whether is really close enough to shooter

• Validate the HitPoint whether is really belong to HitOject

• Ensure nothing is blocking along the path by casting a ray from the StartPoint and HitPoint

In real game, the server verification is VERY TRICKY AND COMPLICATED

Modern Game Engine - Theory and Practice

Server Verification Has to Guess

Modern Game Engine - Theory and Practice

Problem of Client-Side Hit Detection

Efficient and Precise

• Very efficient for hit detection without huge server workload

• Best shooting experience with pixel precision

Unsafe for cheating

• Fake hit event message

• Lag switches

• Infinite ammo …

Modern Game Engine - Theory and Practice

Detecting Hit on Server-Side?

Client doesn’t know the target current location on server

Modern Game Engine - Theory and Practice

Lag Compensation

Server-side state rewinding to compensate network lags when player’s commands are executed

• Get information from clients

• Rewind game state in cached state snapshots that matches the client's action time

• Run client operation in rewind game state

Modern Game Engine - Theory and Practice

Compensate all Possible Lags

• RewindTime = Current Server Time - Packet Latency - Client View Interpolation Offset

Actor: Enemy's client state

Red collision box: Enemy in the player's view

Blue collision box: Rewinded server state

Modern Game Engine - Theory and Practice

Cover Problems – Running into Cover

Shooter’s advantage

Modern Game Engine - Theory and Practice

Cover Problems – Coming out from Cover

Peeker Holder

Peeker’s advantage

Modern Game Engine - Theory and Practice

Startup Frames to Ease Latency Feeling

• A fixed animation before attack or move

can also eliminate the effect of lag from

network transmission

• Players will keep their attention on

animations and ignore the state delay

Modern Game Engine - Theory and Practice

Local Forecast VFX Impacts

• Clients can perform local hit tests in order to give the player some instant feedback, such as

displaying a blood splatter visual effect

• However, any permanent effects of the hits, such as reducing the hit points of a player, are

only applied after receiving confirmation from the server

Modern Game Engine - Theory and Practice

MMOG Network Architecture

Modern Game Engine - Theory and Practice

What is MMOG?

MMOG: Massively Multiplayer Online Game, or more commonly MMO

MMOs with a large numbers of players, often hundreds or thousands, on the same server can enable players to

cooperate and compete with each other on a large scale, and include a variety of gameplay types (MMORPG,

MMORTS, MMOFPS, etc.)

Final Fantasy XIV - MMORPG PlanetSide 2 - MMOFPS

Modern Game Engine - Theory and Practice

The first Network Game The first Role Playing Game

Mazewar in 1974 Multi-User Dimension in 1978

Modern Game Engine - Theory and Practice

Diversities of Modern MMO

Modern Game Engine - Theory and Practice

Game Sub-Systems

MMOs have a variety of gameplay and are supported by many sub-systems

• User management

• Matchmaking

• Trading system

• Social system

• Data storage

• ...

Modern Game Engine - Theory and Practice

MMO Architecture

Modern Game Engine - Theory and Practice

Services of Link Layer

Login Server

• Verification of client connection

Gateway

• Very important layer to separate inside/outside

networks

Modern Game Engine - Theory and Practice

Lobby

• Players can gather in the lobby,

see and interact with other players

• When the number of players

continues to increase, it is a

challenge to the performance of

the server and the client

Final Fantasy XIV

Modern Game Engine - Theory and Practice

Character Server

All player data is managed in one system. Such as account info, character info,

backpack info, mail info, etc.

Modern Game Engine - Theory and Practice

Trading System

• Buying and selling items on the marketplace

• Sending items or coins to other players

through the in-game Mail

• Game designers need to keep an eye on

market prices to prevent imbalances

• For a persistent world to maintain a stable

economy, a balance must be struck between

currency sources and sinks

• Players can use real-world money to buy a

specific in-game item
Trading System in Guild Wars 2

Modern Game Engine - Theory and Practice

Social System

• Player-to-player interplay and

communication

• Foster stronger social cohesion in-

game

Friends List GuildMultiple Chat Channels

Modern Game Engine - Theory and Practice

Matchmaking

• You have to consider attributes like

skills, level, latency, wait time...

• In general, making a good

matchmaking service is core for a

game design

• Running this on a global scale for

your player population presents a

whole different set of challenges

Modern Game Engine - Theory and Practice

Data Storage

The game data is very complex and diverse

• Player data (guilds, dungeons, warehouse, etc.)

• Monitoring data

• Mining data

• ...

• Data needs to be securely persisted and efficiently

organized for retrieved and analysis etc.

Choices of Database

Modern Game Engine - Theory and Practice

Relational Data Storage

• Requires Structure to be Predetermined

• Flexible Queries

• Always Consistent

Game Development Examples

• Player Data

• Game Data

• Inventory

• Item Shops/Trading

Modern Game Engine - Theory and Practice

Non-Relational Data Storage

• Structure Can Change For Each Entry

• Queries Have Higher Specificity

• May Not Always Be Consistent

Game Development Examples

• Player/Item Stats/Profile Game Data

• Enchantments and Upgrades

• Game States

• Quest Data

Modern Game Engine - Theory and Practice

In-Memory Data Storage

• Extremely Fast (Memory versus Hard Disk)

• Key-Value

• Fast Sorted/Ranged Searches

• Persistence among servers

Game Development Examples

• Matchmaking

• Leaderboards

• Session Management

• Boost Performance For Other Databases

Modern Game Engine - Theory and Practice

Player Number Growth

Global player growth in LOL The relationship between user load, service request

response time, and resource utilization

Modern Game Engine - Theory and Practice

Distributed System

A distributed system is a computing environment in which various components are spread

across multiple computers (or other computing devices) on a network

Modern Game Engine - Theory and Practice

Challenges with Distributed systems

• Data access mutual exclusion

• Idempotence

• Failure and partial failure

• Unreliable network

• Distributed bugs spread epidemically

• Consistency and consensus

• Distributed transaction

Modern Game Engine - Theory and Practice

Load Balancing

Refers to the process of distributing a set of tasks over a set of resources (computing

units), with the aim of making their overall processing more efficient

• Optimize the response time

• Avoid unevenly overloading some compute

nodes while other compute nodes are left

idle

• All players are evenly divided on multiple

servers

Modern Game Engine - Theory and Practice

Consistent Hashing (1/3)

It was designed to avoid the problem of having to

reassign every player when a server is added or

removed throughout the cluster

Modern Game Engine - Theory and Practice

Consistent Hashing (2/3)

Modern Game Engine - Theory and Practice

Consistent Hashing (3/3)

Modern Game Engine - Theory and Practice

Virtual Server Node in Consistent Hashing

Modern Game Engine - Theory and Practice

Servers Management

• The number of services increases

• Difficult to manage

• Lacks the flexibility to change the IP or

port at a later point in time

Modern Game Engine - Theory and Practice

Service Discovery - Registry

• Registers itself with the service registry when it enters the system

• An example of Register value

• server type/server_name@server_ip:port

Modern Game Engine - Theory and Practice

Service Discovery - Query and Watch

• Request service discovery service to query all values through service type and watch it

Modern Game Engine - Theory and Practice

Service Discovery - Health Check

• Notice Gateway Server B Failure when Server Instance B Heartbeat timeout

Modern Game Engine - Theory and Practice

Bandwidth Optimization

Modern Game Engine - Theory and Practice

Why Bandwidth Matters

• Usage-based billing: e.g. mobile, cloud service

• Latency increased by bandwidth: packet splitting/drop

• Connection drops due to message overflow

Modern Game Engine - Theory and Practice

Calculate Bandwidth

Affecting factors

• n = player numbers

• f = update frequency

• s = size of game state

Data transfer per second

• Server:

• Client (downstream):

• Client (upstream):

State

Change

State

Change

State

Change

Modern Game Engine - Theory and Practice

Data Compression (1/2)

• There are a lot of floating point numbers in the

game synchronization data, such as position,

rotation, speed, etc.

• Choosing the right floating-point precision can

save a lot of bandwidth

• e.g When representing human running speed,

only half precision is required

Modern Game Engine - Theory and Practice

Data Compression (2/2)

• When representing player position, the

player will only move within a certain

range due to player speed limitations

• We can divide the map into different

small pieces and use the relative position

to represent the player's position, which

can reduce the precision of the floating

point number of the synchronization

position

Modern Game Engine - Theory and Practice

Object Relevance

• Objects in relevance

• The player will be informed of state updates

• Usually, the ones player can see & interact

• Easiest implementation: all objects relevant to

all clients (for small player num).

• Limiting factor for max concurrent players

State

Change

State

Change

State

Change

Modern Game Engine - Theory and Practice

Relevance - Static Zones

• Distribute players into different

zones

• Players are relevant in the same

zone

• Reduce bandwidth waste

Affecting factors

• n = player numbers

• f = update frequency

• s = size of game state

Modern Game Engine - Theory and Practice

Relevance - Area of Interest (AOI)

• The area within which objects are

relevant to Player/NPC

• Only see & interact with objects

within range

• Remove unnecessary network data

Affecting factors

• n = player numbers

• f = update frequency

• s = size of game state

Modern Game Engine - Theory and Practice

AOI - Direct Range-Query

•

• Simple to implement

• Time complexity:

• Not suitable for MMOG, e.g. 1000 players

in one zone, 20 ticks/s

1000x1000x20 = 20,000,000 distance

computations per second

Modern Game Engine - Theory and Practice

AOI - Spatial-Grid (1/3)

Mapping Entities

• Map entity (x, y) grid N

• Relevant entities in the grids around current

player's grid

• Player's AOI list can be cached

Modern Game Engine - Theory and Practice

AOI - Spatial-Grid (2/3)

Events

Enter

• Add entities from observation

(observed) list

Leave

• Remove entities from observation

(observed) list

Modern Game Engine - Theory and Practice

AOI - Spatial-Grid (3/3)

Pros and Cons

Pros

• Fast query time O(1)

Cons

• Small grid: high memory cost

• Large grid: high CPU cost

• Object with varying AOI radius?

Modern Game Engine - Theory and Practice

AOI - Orthogonal Linked-list (1/4)

• Game entities in double linked-list

• xlist, ylist

• ascending order

• Less Objects to traverse

Modern Game Engine - Theory and Practice

AOI - Orthogonal Linked-List (2/4)

Traverse entities

• Within aoi radius

• Left/right direction

• For both x/y lists

Modern Game Engine - Theory and Practice

AOI - Orthogonal Linked-List (3/4)

Better Approach - Range Trigger

• Entity move trigger move

• Compare with trigger

• Event driven

Modern Game Engine - Theory and Practice

AOI - Orthogonal Linked-List Approach (4/4)

Pros

• Memory efficient

• Varying AOI radius

Cons

• New object insertion cost O(n)

• Not Suitable when entities move large

distance frequently

Modern Game Engine - Theory and Practice

AOI - Potentially Visible Set (PVS)

• Set of potentially visible areas

• Can be calculated offline

• Determine relevant objects from PVS

• e.g. Racing game: fast-moving car

Modern Game Engine - Theory and Practice

Varying Update Frequency by Player Position

• Distance-based update frequency

• Only closer objects are interactable

• Distance f bandwidth

Affecting factors

• n = player numbers

• f = update frequency

• s = size of game state

Modern Game Engine - Theory and Practice

Anti-Cheat

Modern Game Engine - Theory and Practice

Cheating Kill Online Games

77% of players will likely stop playing online games when other players are cheating, according to the survey of Irdeto.

Modern Game Engine - Theory and Practice

Millions Ways of Cheating

Game code modifications

• Modify or read memory data

• Crack client

System software invoke

• D3D Render Hook

• Simulate mouse and keyboard operations

• ...

Net Packet interception

• Send fake packets

• Modify packet data

Modern Game Engine - Theory and Practice

Obfuscating Memory

• A cheater might be able to get the location of the player coordinates in the memory and

move the character ignoring the game rules, such as passing the wall

• Furthermore, the cheater can utilize the location of these values to map out even larger

data structures in the memory, such as the player object itself

Modern Game Engine - Theory and Practice

Executable Packers (1/2)

• Game core logic can be restored by reverse

engineering

• Players can crack the game by analyzing the

code, finding game loopholes, making plug-

ins, etc..

Modern Game Engine - Theory and Practice

Executable Packers (2/2)

• The packager obfuscates the source program and adds decompression code

• The decompression code will execute first, and the source program is decrypted in memory

Modern Game Engine - Theory and Practice

Verifying Local Files by Hashing

• Ensure that the game files have not been

modified

• For example, the cheater could modify the

wall textures to be transparent so all

enemies could be seen through the walls

• The cheater could also adjust the lightning

to make it easier to see enemies

Modern Game Engine - Theory and Practice

Packet Interception and Manipulation

• When the data is not encrypted or hacked,

the player can build game logic based on

packet data even without starting the game

• Such cheat programs often become money-

making tools, which seriously reduce game's

the overall profit

Modern Game Engine - Theory and Practice

Encrypt the Network Traffic (1/2)

Two kinds of algorithms

• Symmetric-key algorithm

• Obfuscate and restore data according to the

same key

• Fast and efficient

• Asymmetric encryption

• Encryption and decryption use different keys

• Slow, only used for encrypting critical data

Modern Game Engine - Theory and Practice

Encrypt the Network Traffic (2/2)

• Distribute symmetric key securely using asymmetric encryption

• Transfer data using symmetric encryption key

Modern Game Engine - Theory and Practice

System Software Invoke

• Modify the DirectX kernel and change the

execution flow of the rendering function

• Can force the rendering engine to modify the

occlusion relationship

• See the movement of the enemy behind the

wall

Modern Game Engine - Theory and Practice

Valve Anti-Cheat and Easy Anti-Cheat

• Detects malicious behavior caused by any file conflicts

while interacting with the game

• Stops the player from playing the game at all

• Prevents any illegal modifications and configuration

changes that enable the use of exploits in a game

Modern Game Engine - Theory and Practice

AI Cheat

• All platforms

• No code modification required

• Independent from the game

• Game screen

• Target detection

• Move cursor

• Fire

Modern Game Engine - Theory and Practice

Rich AI Middlewares

• Real-Time Object Detection. YOLO V5, V7 ...

• Skeleton based Action recognition

Modern Game Engine - Theory and Practice

Counter-Strike: Overwatch

• The system is based on other players

reviewing footage from players that are

suspected of cheating

• Many reviewers are looking at the same

cases and the majority decide whether the

suspect was cheating or not

Passing judgement after reviewing evidence in Counter

Strike: Global Offensive’s Overwatch system

Modern Game Engine - Theory and Practice

Statistic-based System

• Collect the user's game information, such as victory and critical hit rate

• Compare your own historical data and some thresholds rules or from other player's reports

to mark players

• Check manually to confirm whether they cheat

Modern Game Engine - Theory and Practice

Detecting Known Cheat Program

• A proper anti-cheat program should

have a way to scan the user's

computer for known cheating

programs based on various

signatures

• The simplest method can simply

entail comparing hashes or process

names

Example of identifier-based anti-cheat system

Modern Game Engine - Theory and Practice

Build a Scalable World

Modern Game Engine - Theory and Practice

Scalable Game Servers

Zoning

• Distribute large player numbers in a large world

• Distribution might be uneven

Instancing

• Run a large number of game areas independently in parallel

• Reduce congestion/competition

Replication

• Allows high user density

• E.g. high density PVP games

Modern Game Engine - Theory and Practice

Zoning - Seamless Zones (1/4)

• Players are reasonably

distributed in a large world

• The client only connects to

one responsible server

• Cross border: auto transfer

client to another server

Modern Game Engine - Theory and Practice

Zoning - Seamless Zones (2/4)

Zone Border

Smooth experience:

• Border width >= max AOI radius

But how to make them interact?

Modern Game Engine - Theory and Practice

Zoning - Seamless Zones (3/4)

Zone Border - Entities

Active Entity

• Resides in connected zoned server (authority)

• Has a ghost agent in other zones

• Can see ghost entities in another zone

Ghost Entity

• Also called shadow entity

• Is an agent entity owned by another zone

• Receive updates from original entity

Modern Game Engine - Theory and Practice

Zoning - Seamless Zones (4/4)

Cross Border: A -> B

① Before move

• An active entity in zone A

② Near boundary (A)

• Active in A; Ghost in B

③ At boundary

• The entity has been transferred to zone B

④ Near boundary (B)

• Active in B; Ghost in A

⑤ Beyond boundary (B)

• Removed from zone A

Modern Game Engine - Theory and Practice

Replication

• Cooperatively process same

world zone

• Entity updates are distributed

among servers

• Each server creates its own

active entities

• Updates to active entities will be

auto replicated to all remaining

servers (as Ghost)

Modern Game Engine - Theory and Practice

Scalable Game Servers - Combination

Modern Game Engine - Theory and Practice

Future is on the Horizon

Modern Game Engine - Theory and Practice

Lecture 19 Contributor

- 德辉

- Peter

- Ximenes

- yf

- 鸭毛

- BOOK

- 伟哥

- Minjie

- 邓导

- 阿鹏

- 凯哥

- 喵小君

- 大喷

- 爵爷

- Jason

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

Replicate Character Movement

• Replicating Chaos: Vehicle Replication in 'Watch Dogs 2', Matt Delbosc, Ubisoft Toronto, GDC

2017: https://www.gdcvault.com/play/1024597/Replicating-Chaos-Vehicle-Replication-in

• "Believable dead reckoning for networked games.", Murphy, Curtiss, and E. Lengyel, Game

Engine Gems 2 (2011) : 307-328.

https://www.researchgate.net/publication/293809946_Believable_Dead_Reckoning_for_Netw

orked_Games

• Client-side Interpolation:

https://docs-multiplayer.unity3d.com/netcode/0.1.0/learn/clientside_interpolation/index.html

• Source Multiplayer Networking:

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

https://www.gdcvault.com/play/1024597/Replicating-Chaos-Vehicle-Replication-in
https://www.researchgate.net/publication/293809946_Believable_Dead_Reckoning_for_Networked_Games
https://docs-multiplayer.unity3d.com/netcode/0.1.0/learn/clientside_interpolation/index.html
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

Modern Game Engine - Theory and Practice

Lag Mitigation

• Latency Compensating Methods in Client/Server In-game Protocol Design and

Optimization, Yahn W. Bernier: https://www.gamedevs.org/uploads/latency-compensation-

in-client-server-protocols.pdf

• Valorant's netcode: https://technology.riotgames.com/news/peeking-valorants-netcode

• Source Multiplayer Networking, valve developer community:

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

• Implementation and Evaluation of Hit Registration in Networked First Person Shooters,

Jonathan Lundgren: https://liu.diva-portal.org/smash/get/diva2:1605200/FULLTEXT01.pdf

• How It Works: Lag compensation and Interp in CS:GO:

https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV

https://www.gamedevs.org/uploads/latency-compensation-in-client-server-protocols.pdf
https://technology.riotgames.com/news/peeking-valorants-netcode
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://liu.diva-portal.org/smash/get/diva2:1605200/FULLTEXT01.pdf
https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV

Modern Game Engine - Theory and Practice

MMOG Network Architecture (1/2)

• Intro to Databases in Games: How to Use Them in Games and Game Development - AWS

Online Tech Talks: https://www.youtube.com/watch?v=7HppNxu_hdA

• Massively multiplayer online game, WIKI:

https://en.wikipedia.org/wiki/Massively_multiplayer_online_game

• Consistent Hashing and Random Trees:

• Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web:

https://dl.acm.org/doi/pdf/10.1145/258533.258660

• Consistent hashing: https://en.wikipedia.org/wiki/Consistent_hashing

• Fowler–Noll–Vo hash function:

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

https://www.youtube.com/watch?v=7HppNxu_hdA
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://dl.acm.org/doi/pdf/10.1145/258533.258660
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Modern Game Engine - Theory and Practice

MMOG Network Architecture (2/2)

• Performance Testing Methodology:

http://hosteddocs.ittoolbox.com/questnolg22106java.pdf

• Glinka, F. et al. (2008) 'High-Level Development of Multiserver Online Games',

International Journal of Computer Games Technology, 2008(327387). Available at:

https://downloads.hindawi.com/journals/ijcgt/2008/327387.pdf

• Alibaba Cloud MMO Gaming Solution Architecture:

https://www.alibabacloud.com/blog/593877

http://hosteddocs.ittoolbox.com/questnolg22106java.pdf
https://downloads.hindawi.com/journals/ijcgt/2008/327387.pdf
https://www.alibabacloud.com/blog/593877

Modern Game Engine - Theory and Practice

Bandwidth Optimization

• Replication in network games: Bandwidth (Part 4): https://0fps.net/2014/03/09/replication-in-network-

games-bandwidth-part-4/

• Introducing Time Dilation: https://www.eveonline.com/news/view/introducing-time-dilation-tidi

• Glazer, J. and Madhav, S. (2016) Multiplayer Game Programming: Architecting Networked Games. New

York: Addison-Wesley

• Managing and Mining Multiplayer Online Games for the Summer Semester 2017:

https://www.dbs.ifi.lmu.de/Lehre/mmmo/sose17/slides/MMMO-2-Core_1.pdf

• Handling large amounts of players: https://mmo-blueprint.com/handling-large-amounts-of-players/?i=1

• Zinx应用-MMO游戏案例: https://github.com/aceld/zinx

• KBEngine: https://github.com/kbengine/kbengine

https://0fps.net/2014/03/09/replication-in-network-games-bandwidth-part-4/
https://www.eveonline.com/news/view/introducing-time-dilation-tidi
https://www.dbs.ifi.lmu.de/Lehre/mmmo/sose17/slides/MMMO-2-Core_1.pdf
https://mmo-blueprint.com/handling-large-amounts-of-players/?i=1
https://github.com/aceld/zinx
https://github.com/kbengine/kbengine

Modern Game Engine - Theory and Practice

Anti-Cheat (1/2)

• Cheating in online games, WIKI:

https://en.wikipedia.org/wiki/Cheating_in_online_games

• The Day FPS Games Died, 2021.07:

https://www.youtube.com/watch?v=revk5r5vqxA

• 警惕AI外挂, LYi, 2021.08:

https://www.bilibili.com/video/BV1Lq4y1M7E2

• YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,

Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao, 2022.07:

https://arxiv.org/abs/2207.02696

https://en.wikipedia.org/wiki/Cheating_in_online_games
https://www.youtube.com/watch?v=revk5r5vqxA
https://www.bilibili.com/video/BV1Lq4y1M7E2
https://arxiv.org/abs/2207.02696

Modern Game Engine - Theory and Practice

Anti-Cheat (2/2)

• MarI/O - Machine Learning for Video Games, SethBling:

https://www.youtube.com/watch?v=qv6UVOQ0F44

• Comparative Study of Anti-cheat Methods in Video Games, Samuli Lehtonen, 2020.3:

https://helda.helsinki.fi/bitstream/handle/10138/313587/Anti_cheat_for_video_games_fin

al_07_03_2020.pdf

• 游戏外挂攻防艺术, 徐胜, 2013

• Python Plays Grand Theft Auto 5 - Reboot, Harrison:

https://github.com/Sentdex/pygta5

https://www.youtube.com/watch?v=qv6UVOQ0F44
https://helda.helsinki.fi/bitstream/handle/10138/313587/Anti_cheat_for_video_games_final_07_03_2020.pdf
https://github.com/Sentdex/pygta5

Q&A

Modern Game Engine - Theory and Practice

Enjoy;)

Coding

Course Wechat

Please follow us for

further information

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Citation (1/2)

• Maze War (1978) - First Person Shooter History - Ep01:

https://www.youtube.com/watch?v=ZjY5s_05Qlw

• How It Works: Lag compensation and Interp in CS:GO:

https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV

• World of Warcraft (2021) - Gameplay (PC UHD) [4K60FPS]:

https://www.youtube.com/watch?v=d26Kl98_qo8

• Guild Wars 2’s greatest STRENGTH is also its WEAKNESS:

https://www.youtube.com/watch?v=jGcQDhSPLHM

• FINAL FANTASY XIV: https://jp.finalfantasyxiv.com

• WHY PLAY EVE ONLINE in 2022? - And why this is one of my favorite games:

https://www.youtube.com/watch?v=j2t_XPDOIFc

https://www.youtube.com/watch?v=ZjY5s_05Qlw
https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV
https://www.youtube.com/watch?v=d26Kl98_qo8
https://www.youtube.com/watch?v=jGcQDhSPLHM
https://jp.finalfantasyxiv.com
https://www.youtube.com/watch?v=j2t_XPDOIFc

Modern Game Engine - Theory and Practice

Citation (2/2)

• World of Warcraft: Cataclysm Login Screen:

https://www.youtube.com/watch?v=isCsAEwpIOY

• 10 Best MMOs To Play In 2022:

https://www.youtube.com/watch?v=W0rvIv6diVU

• Planetside 2: https://www.planetside2.com/home

• Planetside 2: Things Just Got Harder:

https://www.youtube.com/watch?v=HTN-yc5x0pA

• 15 Years of WoW vs 1 Year of FFXIV:

https://www.youtube.com/watch?v=5T-mcLYBnKc

• MUD1 (1978) - First MUD game:

https://www.youtube.com/watch?v=9Gep3LwLKWk

https://www.youtube.com/watch?v=isCsAEwpIOY
https://www.youtube.com/watch?v=W0rvIv6diVU
https://www.planetside2.com/home
https://www.youtube.com/watch?v=HTN-yc5x0pA
https://www.youtube.com/watch?v=5T-mcLYBnKc
https://www.youtube.com/watch?v=9Gep3LwLKWk

