
Modern Game Engine - Theory and Practice

Voices from Community - T-shirt Style

- T-shirt is in manufacturing, expected to be sent out in 3 weeksz

- Please add Wechat “小秘书-阿曼达” in wechat groupchat, for

shipping information, if you are not in our wechat group,

please direct message to “GAMES-WEBINAR” Bilibili account

- Other ways to get our t-shirt:

we will sent T-shirts to community

members who finished our

homework over 2 times

- Deadlines of all Homework 1, 2, 3,

4, 00:00 , 2022/08/31

Rewarding list for last event:

@大绒毛怪, @元宇宙羊, @SHtech、BoBo,

@尤水就下, @秋后算命, @今天好蓝瘦,

@TheBigFrog, @waterroomwater, @rmlx, @huangbaichao

Modern Game Engine - Theory and Practice

Voices from Community - Great Comments 小引擎小巧且灵动自由的在天空
舞蹈

搭建游戏引擎是一件浪漫的事

我认识到的引擎不仅是世界的科
学技术，更是带着镣铐起舞的艺
术

Modern Game Engine - Theory and Practice

Q&A

• Q1: What’s your opinion on the future trending on deep learning and reinforcement learning?

• Q2: Does the AI module need modification with game version updates?

• Q3: Could you explain DLSS to us?

WANG XI GAMES 104 2022

Fundamentals

Modern Game Engine - Theory and Practice

Lecture 18

Online Gaming Architecture

Modern Game Engine - Theory and Practice

PLAY ANYWHERE WITH ANYONE

Game developers have never stopped exploring multiplayer online gaming

Modern Game Engine - Theory and Practice

Challenges in Multiplayer Online Gaming (1/5)

Different Behavior in Online Game

Consistency

• Network Synchronization

Modern Game Engine - Theory and Practice

Challenges in Multiplayer Online Gaming (2/5)

Attempting to Reconnect...Latency Impact

Reliability

• Network Latency

• Drop and Reconnect

Modern Game Engine - Theory and Practice

Challenges in Multiplayer Online Gaming (3/5)

Cheating Program

Fake and
Fraud

Information
Leakage

Banned

Illegal Profit

Destroy

Accounts Hacked

Security

• Cheats

• Accounts Hacked

Modern Game Engine - Theory and Practice

Challenges in Multiplayer Online Gaming (4/5)

Diversities

• Cross-Play

• Rapid iteration

• Multiple Game Systems

Chat

Trading

Matching

Mail

Leaderboards

‘Do you have ?’

‘Do you have ?’

Game Sub-SystemsVariety of Game Types

How to Play Together

in Different Platforms?

Modern Game Engine - Theory and Practice

Challenges in Multiplayer Online Gaming (5/5)

Ready Player One, Massive Players

Microservice

High Throughput

Distributed System

Quick Response

Disaster Recovery

Complexities

• High Concurrency

• High Availability

• High Performance

Modern Game Engine - Theory and Practice

Outline

Basics

• Network Protocols

• TCP, UDP and Reliable UDP

• Clock Synchronization

• Remote Procedure Call (RPC)

• Network Topology

• Game Synchronization

• Snapshot Sync.

• Lockstep Sync.

• State Sync.

Advanced

• Character Movement Replication

• Hit Registration

• Lag Compensation

• MMO Game Network Architecture

• AOI

• Anticheat

• The Future

Modern Game Engine - Theory and Practice

Network Protocols

Modern Game Engine - Theory and Practice

The Founding Fathers of the Internet

An SRI International Packet Radio Van,

used for the first three-way

internetworked transmission

Diagram of the first internetworked

connection

Designed the TCP/IP protocols and

the internet architecture.

In 1977 Cerf and Kahn will link three networks(packet radio, satellite, and the

ARPANET) and prove the efficacy of their TCP/IP protocol in a dramatic

round-the-world transmission from a moving vehicle, the SRI Packet Radio

Research van.

Modern Game Engine - Theory and Practice

How to communication between two PCs

• A and B must agree on the meaning of the bits being sent and received at

many different levels, including

• How many volts represents a 0 bit, and for a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

Modern Game Engine - Theory and Practice

The Problem of Communication

Applications

Transmission

media

• Re-implement every application for every new underlying transmission medium?

• Change every application on any change to an underlying transmission medium?

• No! But how does the Internet design avoidthis?

HTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Modern Game Engine - Theory and Practice

Solution: Layering

Applications

Transmission

media

• Intermediate layers provide a set of abstractions for applications and media

• New applications or media only need implementation for intermediate layer's interface

HTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

Modern Game Engine - Theory and Practice

Layering in the Internet - OSI Model

Application

• Provides functions to users

Presentation

• Converts different representations

Session

• Manages task dialogs

Transport

• Provides end-to-end delivery

Network

• Sends packets over multiple links

Data Link

• Sends frames of information

Physical

• Sends bits as signals

Modern Game Engine - Theory and Practice

Network Socket-based Communication

Application layer Process Socket

Application layer

Host A

Process

Socket

Transport layer

Network layer

Link layer

Physical layer

Application layer

Process

Socket

Transport layer

Network layer

Link layer

Physical layer

Host B

Modern Game Engine - Theory and Practice

Socket

A software structure within a network node of a computer network that serves as an endpoint

for sending and receiving data across the network.

A Socket is combination of an IP Address

and a Port Number.

Modern Game Engine - Theory and Practice

Setup Socket

Both client and server need to setup the socket

• Function

int socket (int domain, int type, int protocol)

• domain

- AF_INET -- IPv4

- AF_INET6 -- IPv6

...

• type

- SOCK_STREAM -- TCP

- SOCK_DGRAM -- UDP

...

• protocol

- 0

• Eg

int sockfd = socket(AF_INET, SOCK_STREAM, 0)

Modern Game Engine - Theory and Practice

Transmission Control Protocol (TCP)

• Connection-Oriented

• Reliable and Ordered

• Flow Control

• Congestion Control

Modern Game Engine - Theory and Practice

TCP Retransmission Mechanisms

Duplicate ACKs

• Senders sends packets and seqnos

• 1, 2, 3, 4, 5, 6, 7, 8

• Assume 5th packet (seqno 5) is lost, Stream

of ACKs will be

• 1, 2, 3, 4, 4, 4, 4

Modern Game Engine - Theory and Practice

TCP Congestion Control

• The congestion window (CWND) of TCP starts

to grow from a small value

• When congestion occurs, packet loss or

timeout, CWND will be reduced according to a

certain algorithm

• This leads to high delay and cause delay jitter

As the main transmission protocol on the Internet, TCP congestion control is necessary, otherwise it will

cause congestion collapse. TCP congestion control is the main congestion control measure on the Internet,

and it is also the main cause of TCP performance problems

Modern Game Engine - Theory and Practice

User Datagram Protocol (UDP)

David P. Reed

He was involved in the early development

of TCP/IP, and was the designer of the

User Datagram Protocol (UDP), though

he finds this title "a little embarrassing".

He was also one of the authors of the

original paper about the end-to-end

principle, End-to-end arguments in

system design, published in 1984.

Modern Game Engine - Theory and Practice

UDP Features

UDP (User Datagram Protocol)

• Connectionless

• UnReliable and Unordered

• NO Flow Control

• NO Congerstion Control

Modern Game Engine - Theory and Practice

Network Protocols Usage in Game

Game suitable for use

• TCP

• UDP

Modern Game Engine - Theory and Practice

Reliable UDP

Modern Game Engine - Theory and Practice

TCP is Not Time Critical

• TCP is the complex and heavyweight protocol. It provides reliable delivery and advanced

features, but it has more overhead

• TCP is a fair, traffic oriented protocol designed to improve bandwidth utilization. But it's not

designed for speed

• So Why TCP is slow?

Modern Game Engine - Theory and Practice

UDP is Fast but Unreliable

• UDP is lightweight and fast but unreliable, packet loss and disorder will occur

• How to achieve reliable and real-time communication?

Modern Game Engine - Theory and Practice

Why We Need to Customize Protocol

• Game Server

• Keep-alived connection (TCP)

• Need keep logic consistency in “order” (TCP)

• High responsive & low latency (UDP)

• Broadcast commonly used (UDP)

• Web Server

• Handles the HTTP protocol

• Delivers static web content—e.g., HTML pages,

files, images, video.

GameServer

Development

WebServer

Development

Modern Game Engine - Theory and Practice

Acknowledgement & Sequence Number

• Positive acknowledgment (ACK) is a signal that is passed between communicating

processes, computers, or devices to signify acknowledgment, or receipt of message

• Negative ACK (NACK or NAK) is a signal that is sent to reject a previously received

message or to indicate some kind of error

• Sequence number (SEQ) is a counter used to keep track of every byte sent outward by

a host

• Timeouts specified periods of time allowed to elapse before an acknowledgment is to

be received

Modern Game Engine - Theory and Practice

Automatic Repeat Request (ARQ)

An error-control method for data transmission that uses ACK and timeouts to achieve

reliable data transmission over an unreliable communication channel.

If the sender does not receive an acknowledgment before the timeout, it re-transmits the

packet until it receives an acknowledgment or exceeds a predefined number of

retransmissions

• Sliding window protocol

• Stop-and-Wait ARQ

• Go-Back-N ARQ

• Selective Repeat ARQ

Modern Game Engine - Theory and Practice

Sliding Window Protocol

• Send mutilple frames at a time, number of frames to be sent is based on Window size

• Each frame is numbered by Sequence number

• When the frame at the front of the window is received, the window slides

Modern Game Engine - Theory and Practice

Sliding Window Protocol

• Send mutilple frames at a time, number of frames to be sent is based on Window size

• Each frame is numbered by Sequence number

• When the frame at the front of the window is received, the window slides

Modern Game Engine - Theory and Practice

Stop-and-Wait ARQ

• Windows size = 1

• After transmitting one frame, the sender

waits for an ACK before transmitting the

next frame

• If the ACK does not arrive after a certain

time, the sender times out and retransmits

the original frame

• Poor utilization of bandwidth, poor

performance

Modern Game Engine - Theory and Practice

Go-Back-N ARQ

• N is Sender's Windows Size

• The Receiver only sends cumulative ACK

• If an ACK is not received within an agreed-

upon time period, all frames in the current

window are transmitted

Modern Game Engine - Theory and Practice

Selective Repeat ARQ

• In Selective Repeat ARQ, only the damaged or

lost frames are retransmitted

• The receiver sends the ack of each frame, and

the sender maintains the timeout time of each

frame

• When receiver receive damaged packet, it will

send a NACK, The sender will send/retransmit

frame for which NACK is received

Modern Game Engine - Theory and Practice

Make UDP Reliable in Packet Loss Scenario

With the increase of packet loss rate and delay, the reliable UDP can not meet the transmission

requirements gradually.eg.If packet loss rate increase to 20%, use reliable UDP is still with high

delay.

Modern Game Engine - Theory and Practice

Forward Error Correction (FEC)

• The transmission of enough additional redundant information with the primary data stream

to reconstruct lost IP packets up to a certain extent

Modern Game Engine - Theory and Practice

FEC Algorithms

• Reduce packet loss rate, but cost addtional bandwidth

• The packet loss rate is high, the effect of packet loss compensation is more obvious

• Two FEC algorithms

• XOR FEC

• Reed-Solomon Codes

Modern Game Engine - Theory and Practice

XOR-FEC (1/2)

C = A xor B

A = A xor (B xor B) = (A xor B) xor B = C xor B

B = (A xor A) xor B = A xor C

Modern Game Engine - Theory and Practice

XOR-FEC (2/2)

• There are four packets A, B, C, D

• Let E = XOR (A, B, C, D)

• A = XOR (B, C, D, E)

• B = XOR (A, C, D, E)

• C = XOR (A, B, D, E)

• D = XOR (A, B, C, E)

• If any packet is lost, it can be recovered with the other four packets

• Only one packet can be lost in continuous data. If A and B are lost at the same time, the

algorithm cannot recover

Modern Game Engine - Theory and Practice

Reed-Solomon Codes (1/3)

There are N valid data, and M FEC data are expected

to be generated

• Form N valid data into a unit vector D

• Generate a transformation matrix B: it is composed

of a N-order identity matrix and a N * M Vandemode

matrix (The matrix composed of any n rows of

matrix B is reversible)

• The matrix G obtained by multiplying the matrix B

and Vector D contains M redundant FEC data

Modern Game Engine - Theory and Practice

Reed-Solomon Codes (2/3)

Assume D1, D4, C2 are lost

• The B matrix also needs to delete the corresponding

M rows to obtain a deformation matrix of B'

Modern Game Engine - Theory and Practice

Reed-Solomon Codes (3/3)

• Inverse matrix B' get B'-1

• Multiply B'-1 on both sides to

recover the original data

Modern Game Engine - Theory and Practice

Customize Your UDP based on ARQ and FEC

Reliability

• Use Selective Repeat ARQ

Real-time

• Smaller RTO growth

• No congestion control

• Fast retransmission mechanism

• No delay ACK

Hybrid ARQ and FEC

• Before ARQ, FEC is used for error

correction

Flexibility

• Design protocol for speed

• Support both reliable and unreliable

transmission

Modern Game Engine - Theory and Practice

Clock Synchronization

Modern Game Engine - Theory and Practice

RTT

Round-Trip Time

• Send/Recv delay

• Propagation delay

• Response time of the origin server

RTT vs. Ping

• Ping tests are usually performed within a

transport protocol that uses ICMP packets

• RTT is measured at the application layer

RTT vs. Latency

• Latency is the time required for a data packet to

travel from the sending endpoint to the receiving

endpoint (only one trip)

Modern Game Engine - Theory and Practice

Network Time Protocol (NTP)

Network Time Protocol is an internet protocol used to

synchronize with computer clock time sources in a

network

• Reference clock

• GPS clock or radio ransmiiting station

• Amazinglly precise timekeeping devices such as

atomic clocks

• Not connected to the internet

• Send their time through radio or optical fiber

Standard radio transmitting station of Mount Otakadoya

(JJY),Fukushima prefecture,Japan.

The atomic clock on board HMS Prince of Wales

Modern Game Engine - Theory and Practice

Time Server Stratums

Stratum Values

• Degrees of separation from the reference clock

• Reference clock has stratum value of 0

• Servers with stratum value 1 is called primary

time servers

• If a device's stratum value is over 15, its time is

not trustworthy

• Device will choose server with less stratum

value automatically when correcting time

Modern Game Engine - Theory and Practice

NTP Algorithm (1/3)

Use NTP is quite simple, just like this

• Client ask time server for time

• Server receives the request and reply

• Client receives the reply

But we have to do something with the Delay!

Modern Game Engine - Theory and Practice

NTP Algorithm (2/3)

We recordes 4 timestamps as

The implicit assumption that the one-

way delay is statistically half the round

trip delay

Local-clock correction is computed

from the offset data by:

• + Offset

*The delay and clock-offset samples obtained can be filtered using maximum-likelihood techniques

Modern Game Engine - Theory and Practice

NTP Algorithm (3/3)

Let's take an example:

It’s 17:01:00 on the client It’s 17:01:30 on the server

• is 17:01:00 (17:01:30)

• is 17:01:32 (17:01:32)

• is 17:01:33 (17:01:33)

• is 17:01:05 (17:01:35)

Round Trip Delay = (05-00)-(33-32)=4s

Offset = (32-00+33-05)/2 = 30s

So at client’s time is corrected to:

• + Offset = 17:01:35

Modern Game Engine - Theory and Practice

Stream-Based Time Synchronization with Elimination of

Higher Order Modes (1/2)

1. Client stamps current local time on a "time request" packet and sends to server

2. Upon receipt by server, server stamps server-time and returns

3. Upon receipt by client, a time delta is calculated by delta = (current Time-sent Time) / 2

So far this algorithm is very like to NTP

Modern Game Engine - Theory and Practice

Stream-Based Time Synchronization with Elimination of

Higher Order Modes (2/2)

4. The first result should immediately be used to

update the clock

5. The client repeats Steps 1-3 (NTP-like process), five

or more times

6. The results of the packet receipts are accumulated

and sorted in ascending order by latency

7. All samples above that are approximately 1.5 times

the median are discarded, and the remaining samples

are averaged using an arithmetic mean

Modern Game Engine - Theory and Practice

Remote Procedure Call (RPC)

Modern Game Engine - Theory and Practice

Socket Programming: Still not Great

• Lots for the programmer to deal with every time

• How to separate different requests on the same connection?

• How to write bytes to the network/read bytes from the network?

• What if Host A's process is written in Go and Host B’s process is in C++?

• What to do with those bytes?

• Still pretty painful… have to worry a lot about the network

• Have you received the message?

Modern Game Engine - Theory and Practice

Communication with Messages

Client ServerHey, do something

working {

Done/Result

Modern Game Engine - Theory and Practice

Communication Way (2/3)

• Initially, people "hand-coded" messages to send requests and responses

• Message is a stream of bytes – "op codes" and operands

• Lots of drawbacks

• Need to worry about message format

• Have to pack and unpack data from messages

• Servers have to decode messages and

dispatch them to handlers

• Messages are often asynchronous

• After sending one, what do you do until the

response comes back?

• Messages aren’t a natural programming model Writing it by hand...

Modern Game Engine - Theory and Practice

More Challenges on Logic Communication

• For a remote procedure call, a remote machine may:

• Run process written in a different language

• Represent data types using different sizes

• Use a different byte ordering (endianness)

• Represent floating point numbers differently

• Have different data alignment requirements

e.g., 4-byte type begins only on 4-byte memory boundary

Modern Game Engine - Theory and Practice

Remote Procedure Call (RPC)

• RPC is a request–response protocol. An RPC is initiated by the client, which sends a request message

to a known remote server to execute a specified procedure with supplied parameters

• Goals

• Ease of programming

• Hide complexity

• Familiar model for programmers

(just make a function call)

Application layer

Process

Socket

Transport layer

Network layer

Link layer

Physical layer

Application layer

Socket

Transport layer

Network layer

Link layer

Physical layer

Host BHost A

RPC Layer RPC Layer

Process

https://en.wikipedia.org/wiki/Request%E2%80%93response

Modern Game Engine - Theory and Practice

RPC example

• Go language

• Output

Hello World

Modern Game Engine - Theory and Practice

Why RPC?

• Goal: Easy-to-program network communication that makes client-server

communication transparent

• Retains the "feel" of writing centralized code

• Programmers needn't think about the network

• Make communication appear like a local procedure call

• Don't need to worry about serialization/deserialization for network

• Don't need to worry about complexities of network

Modern Game Engine - Theory and Practice

Interface Definition Language

• A server defines the service interface using an interface

definition language (IDL)

The IDL specifies the names, parameters, and types for all

client-callable server procedures

• example: ASN.1 in the OSI reference model

• example: Protobuf (Google's data interchange format)

• ...

Google ProtoBuf

Modern Game Engine - Theory and Practice

RPC Stubs

• A client-side stub is a procedure that looks to the client as

if it were a callable server procedure

• The client program thinks it's invoking the server but

it's calling into the client-side stub

• A server-side stub looks like a caller to the server

• The server program thinks it's called by the client but

it's really called by the server-side stub

• The stubs send messages to each other to make the RPC

happen transparently

Modern Game Engine - Theory and Practice

Stub Compiler

• A "stub compiler" reads the IDL declarations and produces two stub procedures for each

server procedure

• The server programmer implements the service's procedures and links them with the

server-side stubs

• The client programmer implements the client program and links it with the client-side

stubs

• The stubs manage all of the details of remote communication between client and

server

Modern Game Engine - Theory and Practice

Real RPC Package Journey

Modern Game Engine - Theory and Practice

Network Topology

Modern Game Engine - Theory and Practice

Original Peer-to-Peer (P2P)

• Each client broadcasts game event to the all

others

• Robustness

• Cheating is much easier

• Synchronization is required among all nodes

to maintain the consistency of the distributed

game state

Modern Game Engine - Theory and Practice

P2P with Host Server

• A player can act as "server", known as host

• If host disconnected, the game may end

• The host need to handle game actor that can

not be controled by players, such as bot

Modern Game Engine - Theory and Practice

P2P Games

• No rely on server

• Used in Lan commonly

• The “Host” is basically in

control of the sessions

• A limited number of players

at once

Counter-Strike Warcraft III

Red Alert Left 4 Dead

Modern Game Engine - Theory and Practice

Dedicated Server

• Authority

• Simulate game world

• Dispatch data to players

• High performance requirements

Modern Game Engine - Theory and Practice

P2P vs Dedicated Server

P2P Dedicated Server

Pros

1. Robustness

2. Removes the "server issues" problem

in multiplayer sessions.

3. No extra cost on server

1. Easy to maintain as well as cheating

avoidance

2. Can handle massive game world

3. Responsiveness of the game is not

relay on the network conditions of

each individual client

Cons

1. Cheating is much easier

2. Every player needs a decent network

connection for game to function

properly

3. Can only handle a limited number of

players

1. High cost on server

2. Much more work on server side

program

3. Single point of failure

Modern Game Engine - Theory and Practice

When RTT is too high

• When players are in different countries, far away, or when the network environment is

complex

• Use dedicated line and edge gateway to reduce latency

Modern Game Engine - Theory and Practice

Game Synchronization

Modern Game Engine - Theory and Practice

Single-Player Gaming

Game Tick

• Player inputs

• Convert to game commands

• Game logic

• Game render

For Player

• Player inputs

• Consistency in each other

Modern Game Engine - Theory and Practice

Online Gaming

For Player

• Player inputs

• Consistency in each other

How to play together at different terminals?

• Game commands

• Game Logic

Modern Game Engine - Theory and Practice

Game Synchronization

To answer the demand for responsive strategies, the synchronization rule is designed to solve

the delay and consistency of all destination.

Modern Game Engine - Theory and Practice

Synchronization Methods

Honor of Kings Counter Strike

Lockstep State Synchornization

Quake

Snapshot

Modern Game Engine - Theory and Practice

Snapshot Synchronization

Modern Game Engine - Theory and Practice

Snapshot Synchronization

Modern Game Engine - Theory and Practice

Snapshot Synchronization

• Client sends inputs to server

• Server simulates the game world

• Generates whole game state

snapshots

• Sends them down to clients

• Client updates the display according

to the snapshot

Modern Game Engine - Theory and Practice

Snapshot Synchronization - Jitter and Hitches

• Server tick rate is limited

• Performance

• Bandwidth

10 pps60 pps

Modern Game Engine - Theory and Practice

Snapshot Interpolation

• Not rendering

immediately after

snapshot recevied

• Keep an interpolation

buffer

• Interpolation between the

two delayed snapshots

Modern Game Engine - Theory and Practice

Delta Compression

• Only sync snapshot delta to client

• Example Quake3

Modern Game Engine - Theory and Practice

Delta Compression

Snapshot Synchorization

• 60HZ

• Max Bandwidth 4.5 mbps

Delta Compression

• 60HZ

• Max Bandwidth 676 kbps

Modern Game Engine - Theory and Practice

Synchronizing Snapshot

• Client performance is wasted

• High server pressure

• High data volume and high bandwidth requirements

• As games get more complex, snapshots get bigger

Modern Game Engine - Theory and Practice

Lockstep Synchronization

Modern Game Engine - Theory and Practice

Lockstep Origin (1/2)

Lockstep synchronization, used in military simulation, is by far the simplest techique to ensure

consistency

• Same Result

• Same time

• Same action

Lockstep in Military

Modern Game Engine - Theory and Practice

Lockstep Origin (2/2)

No member is allowed to advance its simulation clock until all others members have acknowledged that

they are done.

In particular, it is clear that a totally ordered delivery is a sufficient condition to ensure game state

consistency across different nodes, as it guarantees that all generated events are reliably delivered

according to the same unique order.

Five Card StudChess

Modern Game Engine - Theory and Practice

Lockstep in Online Game

• Lockstep Principle

Modern Game Engine - Theory and Practice

First Game Used Lockstep

• The network synchronization method

of DOOM (1994) was pointed out in a

2006 paper

• Lockstep is not mentioned in the

paper, but it is now generally

accepted that Doom (1994) was the

first multiplayer FPS online game to

use this type of synchronization

• It uses P2P architecture
Doom 1994

Modern Game Engine - Theory and Practice

Lockstep Initialization

Loading...

• Ensure that the initial data of each

client is deterministic

• Game model

• Static data

• ...

• Synchronize clock

Modern Game Engine - Theory and Practice

Deterministic Lockstep (1/2)

• Client sends inputs to Server

• Server receives and sorts

• Wait for input from all clients

before forwarding

• After receiving data from the

server, the client executes the

game logic

Modern Game Engine - Theory and Practice

Deterministic Lockstep (2/2)

If Player B's message B2 arrives later?

(The dotted line B2 in the figure)

• Disadvantages

• Game progress depends on

slowest player

• The delay of the game is not

fixed, the experience is not

good

• All the players will wait if a

player offline

Modern Game Engine - Theory and Practice

Player Offline in Deterministic Lockstep

• Waiting for players...

Dota StarCraft

Modern Game Engine - Theory and Practice

Bucket Synchronization

• Bucket: a fixed time period

• Each bucket

• Collect all instructions

• Broadcast to all players

• There is no need to wait for all

players' commands to be

received before forwarding

Modern Game Engine - Theory and Practice

A Good Trade-off between Consistency and Interactivity

Maintenance

So we need to find a basis balance between them.

The threshold:

As soon as the measured interactivity degree decreases below a given threshold,

take some procedure skips processing obsolete game events with

the aim of bringing back a satisfactory interactivity level

Modern Game Engine - Theory and Practice

Deterministic Difficulties

• Deterministic

• The same input sequence need to produce the

same game state on all machines

• Deterministic is Hard

• Floating point

• Random number

• Containers and algorithms (sort, add, remove, etc.)

• Math tools (vectors, quaternions, etc)

• Physics simulation (very difficult)

• Code logic execution order

Modern Game Engine - Theory and Practice

Floating Point Numbers (1/4)

• Because of the computer binary, These

numbers can be accurately represented

• 0.5 = 1/2

• 0.25 = 1/4

• 0.75 = 1/2+1/4

• 0.875 = 1/2+1/4+1/8

• Such numbers can only be approximated

• 2/3 ≈ 0.66..7

• Floating point numbers must comply with

the IEEE 754 standard

Modern Game Engine - Theory and Practice

Floating Point Numbers (2/4)

• Floating point numbers conform to the IEEE 754 standard

• But different platforms may have different behavior

Floating Point Hardware & OS Behaviour

• Intel / Amd

• PS / Xbox

• Windows / linux

• Android / Ios

• ...

Floating Point Compilers Behaviour

• Math Library(sin、cosin、tan、exp、pow ...)

• Third party components

• Different platforms

• Different versions

• Different languages

• ...

Modern Game Engine - Theory and Practice

Floating Point Numbers (3/4)

Idea: Avoid problems on the precision boundary, customize the precision

• Fixed-point math library

• Look-up table (trigonometric functions, etc.)

• Amplification and truncation

Simple method

• Multiply by 1000, then divide by 1000, there is an overflow risk

• The numerator and denominator are represented by fixed-point numbers (2/3)

• ...

Modern Game Engine - Theory and Practice

Floating Point Numbers (4/4)

One Solution: Fixed point math

A fixed-point number can be split into three parts

• An optional sign bit

• An integer

• A fractional part

• Need to implement addition, subtraction,

multiplication and division etd.

• Implement class, class methods

• Performance needs to be considered

Modern Game Engine - Theory and Practice

Random Number (1/2)

• Random problems in the game

• Trigger of random events, npc random

birthplace

• A random attribute of the attack, e.g. critical

strike chance

• ...

• These logics are generally implemented with

random numbers

• How to implement random logic that is

completely consistent for multiple players

Modern Game Engine - Theory and Practice

Random Number (2/2)

• Random numbers are pseudorandom

• Before the game starts, initialize the random

number seed

• For different players' clients, the number of

random function calls is fixed, and the

generated random numbers are the same

windows 11 ubuntu 20.04

Modern Game Engine - Theory and Practice

Deterministic Solution

• Fixed-point numbers represent floating-point

numbers in critical game logic

• Deterministic random algorithm

• Deterministic containers and algorithms (sort,

add, remove, etc.)

• Deterministic math tools (vectors, quaternions,

etc.)

• Deterministic physics simulation (very difficult)

• Deterministic execution order

Modern Game Engine - Theory and Practice

Tracing and Debugging

Method of get checksum

• All data checksum

• Key data checksum

• Other methods

Automatically locate BUG

• Server compares different client's checksums

• Client uploads 50 frames of full logs

• Find inconsistencies in the compared logs

Modern Game Engine - Theory and Practice

Lag and Delay

• Client send operation

• Receive the operation of this frame from the server

• execute

Lag: Network is unstable. If you wait until you receive

new frame, there will be a lag

Solution

• use buffer to cache frames

• Large buffer, large delay

• Small buffer, sensitive to lag

Modern Game Engine - Theory and Practice

Separating Game Logic from Rendering (1/2)

Lag problem

• Separation of logic and rendering

• Local client-side interpolation smoothing

Frame rate

• The logical frame rate is generally

10~30 frames

• The rendering frame rate is generally

higher

Modern Game Engine - Theory and Practice

Separating Game Logic from Rendering (2/2)

Advantage

• Different frequencies, independent operation

• Rendering separation to avoid tearing and

freezing

• Rendering freezes, does not affect the operation

of logical frames

• Servers can run logic frames to solve some

cheating problems

• If the server runs logical frames, it can save key

frame snapshots to speed up reconnection

Modern Game Engine - Theory and Practice

Reconnection Problem

• Offline

• Reconnect

• Catch up

Modern Game Engine - Theory and Practice

Client Game State Snapshots

• Snapshots can be saved regularly on

the local client and serialized to disk

• When reconnection occurs, restore the

game state from the disk serialized data

• Server sends player commands after

snapshot

• Accelerate to catch up with the game

progress

Modern Game Engine - Theory and Practice

Quick Catch Up

How to catch up？

• In the sample code, chasing 10 frames

each time

• If originally 10 frames per second, when

chasing frames, it may run 100 frames

per second

Modern Game Engine - Theory and Practice

Server State Snapshot Optimization

• The server runs logical frames and

saves snapshots of keyframes

• The server sends the snapshot, and the

player commands after the snapshot

• Accelerate to catch up with the game

progress

Modern Game Engine - Theory and Practice

Temporary Offline, No Crash

• Client also keeps game state, keyframes, deterministic-timed frames

• After reconnecting, the server sends commands to the dropped player

• Accelerate to catch up the game progress

Modern Game Engine - Theory and Practice

Observing

Watching other players playing the game

• Reconnecting and watching are essentially the same

• Watching is similar to reconnecting after a client crash

• Player action command, forwarded to the player watching the game

• Watching is usually delayed for a few minutes to prevent screen peeping

Modern Game Engine - Theory and Practice

Replay

Execute player commands in order which can speed up

• Replay file

• Save game commands for a game

• Files take up little space

• How to implement go back?

• When the client executes the replay file, it adds a

key frame snapshot, which can go back to the key

frame moment

• The current version of Honor of Kings go back to

the key frame before 60s

Honor of Kings

Modern Game Engine - Theory and Practice

Lockstep Cheating Issues (1/3)

Multiplayer-PVP

• Game over

• The client uploads the key data checksum,

the server verifys the game result

• During the game

• Report the key data checksum

• Cheating players are kicked out, etc.

Modern Game Engine - Theory and Practice

Lockstep Cheating Issues (2/3)

2 Players

• Server can not detect who is cheating using

key data checksum

• If the server is not verified, the cheating player

will only affect one player in this case

Modern Game Engine - Theory and Practice

Lockstep Cheating Issues (3/3)

• Difficult to avoid thirty-party plug-in to

access war-fog or other hidden data

• Game logic is performed on the

client side

• Clients have all the game data

Perspective Plug-in

Modern Game Engine - Theory and Practice

Lockstep Summary (1/2)

Advantages

• Low bandwidth, only sends commands

• High development efficiency, similar to single-player game development

• Precise action/hit detection

• Easy to record games

Modern Game Engine - Theory and Practice

Lockstep Summary (2/2)

Problems

• Maintain the consistency is difficult to achieve

• Hard to solve the cheat plugin to unveil all game states

• Longer disconnection and reconnection time

• Need more complex optimization

Modern Game Engine - Theory and Practice

State Synchronization

Modern Game Engine - Theory and Practice

State Synchronization

Modern Game Engine - Theory and Practice

State Synchronization

Replication Protocol of Halo

Guaranteed eventual delivery of

most current state

- Object position

- Object health

- 150+ properties

State Data

Unreliable notifications of transient

occurrences

- Please fire my weapon

- This weapon was fired

- Projectile detonated

- More events

Events Control Data

High-frequency, the best-effort transmission

of rapidly-updated data extracted from player

control inputs

- Current analog stick values for all players

- Current position of client's own biped

- More properties

Modern Game Engine - Theory and Practice

State Synchronization

State

• The game state is necessary to represent the game world. e.g: HP, MP

State Synchronization

• Server does not generate a single update for all clients. It sends client a customized data

packet

• If the game world is too complex, you can set an Area Of Interest (AOI) for reducing server

overhead

Modern Game Engine - Theory and Practice

Server Authorizes the Game World

Server

• Game world is authorized

• Receive input and state from client

• Run game logic

• Send state

Client

• Receive data and simulate game world

• Game play improvement

Modern Game Engine - Theory and Practice

Authorized and Replicated Clients

Authorized (1P)

• Player's local game client

Server

• Authorized server

Replicated (3P)

• Simulated character in other player's client

Modern Game Engine - Theory and Practice

State Synchronization Example (1/4)

Player1 (Authorized)

• Fire

Player2 (Replicated)

• See player1 open fire

Modern Game Engine - Theory and Practice

State Synchronization Example (2/4)

Player 1 presses an input on their local machine to fire

Server

• Player1 fire

• Send to each client

Player1 (Authorized)

• Fire

• Send to server

Player2 (Replicated)

• Recieve packet

• Player1 fire

Modern Game Engine - Theory and Practice

State Synchronization Example (3/4)

Server

• Tell each client to replicate the movement of Player 1's projectile

Modern Game Engine - Theory and Practice

State Synchronization Example (4/4)

Server

• Tell each client to destroy their copies of Player 1's projectile

• Tell all clients to response to damage of the projectile

Modern Game Engine - Theory and Practice

Dumb Client Problem

Clients can not to do anything until receive

server state update

How to see an immediate response?

• Client-side prediction

• Server reconciliation

Modern Game Engine - Theory and Practice

Client-Side Prediction

Authorized client

• Press “→”

• Received server message

• Start movement

Server

View

Player 1

View

Modern Game Engine - Theory and Practice

Overwatch - Client-side Prediction

• RTT = 160ms

• Half RTT = 80ms

• Command frame = 16ms

The client is always ahead of the server by

half RTT and one buffered command

frame

• Press key and response immediately

Modern Game Engine - Theory and Practice

Server Reconciliation (1/4)

Authorized client: Buffer

• Record every state when do the client prediction

• Compare with the past server data when it was received on client side

Player 1

View

Server

View

Modern Game Engine - Theory and Practice

Server Reconciliation (2/4)

Ring buffer for states

• Stores all of our states in the past several

frames on client

Process

• If the client computed the same result as server,

the client will continue on its merry way to

simulate the next input

Problem

• If misprediction？

Modern Game Engine - Theory and Practice

Server Reconciliation (3/4)

• If blocked by an obstacle at the server

• Position is wrong! (in red)

• Client must accept the new server

update

• Retrace all predicted movement starting

from the new confirmed position

Modern Game Engine - Theory and Practice

Server Reconciliation (4/4)

• If the client and server disagree on

the results, we've mispredicted

• Have to reconcile

Ring buffer for inputs

• Stores all of inputs we did in the

past several frames on client.

Process

• Overwrite the clients results with

the server's results

• Replay all of your inputs to catch

back up to what you believe now

Modern Game Engine - Theory and Practice

Server Reconciliation Example

Overwatch

• We try to move

• The server said no

• We got yanked back down to where

we were before and froze

Mei’s blaster unleashes a concentrated, short-range stream of frost that

damages, slows, and ultimately freezes enemies in place.

Modern Game Engine - Theory and Practice

Packet Loss

• Client input packages fail to reach

the server

• The server tries to keep tiny input

buffer of unprocessed input

• If the server run out of input buffer,

server will duplicate your last input

in a window

• Push client sends missed inputs

asap

Modern Game Engine - Theory and Practice

State Synchronization Vs. Lockstep Synchronization

State Synchronization Lockstep Synchronization

Deterministic Logic Not necessary Necessary

Response Better responsiveness Poor responsiveness

Network Traffic Usually high Usually low

Development

efficiency
Much more complicated Easy to develop, difficult to Debug

Number of players Few players
Support small and large numbers of

players

Cross-platform Relatively easy Relatively difficult

Reconnect Relatively easy Relatively difficult

Replay File Size Big Small

Cheat Relatively hard Relatively easy

Modern Game Engine - Theory and Practice

Are We Ready to Make a Online Game?

To be continued…

Modern Game Engine - Theory and Practice

Lecture 18 Contributor

- 德辉

- Peter

- Ximenes

- yf

- 鸭毛

- BOOK

- 伟哥

- 大喷

- 爵爷

- Brooklyn

- 邓导

- Jason

- 阿鹏

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

Network Protocols

• Internet protocol suite:

https://en.wikipedia.org/wiki/Internet_protocol_suite

• OSI Model:

https://www.practicalnetworking.net/series/packet-traveling/osi-model/

• Automatic repeat request:

https://en.wikipedia.org/wiki/Automatic_repeat_request

• Network Communication and Remote Procedure Calls (RPCs):

https://www.cs.princeton.edu/courses/archive/fall18/cos418/docs/L2-rpc.pdf

• What are TCP and UDP?

https://www.gdyunjie.cn/showinfo-114-788-0.html

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://www.practicalnetworking.net/series/packet-traveling/osi-model/
https://en.wikipedia.org/wiki/Automatic_repeat_request
https://www.cs.princeton.edu/courses/archive/fall18/cos418/docs/L2-rpc.pdf
https://www.gdyunjie.cn/showinfo-114-788-0.html

Modern Game Engine - Theory and Practice

Network Synchronization (1/3)

• Synchronization Issues with Smart Solutions:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6405&rep=rep1&type=pdf

• An Efficient Synchronization Mechanism for Mirrored Game Architectures:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6043&rep=rep1&type=pdf

• The Brave New World of Multiplayer Online Games - Synchronization Issues with Smart Solutions,

Marco Roccetti, Stefano Ferretti, Claudio E. Palazzi:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6405&rep=rep1&type=pdf

• Network Time Protocol(NTP):https://www.rfc-editor.org/rfc/rfc958.html

• Algorithms for Synchronizing Network Clocks:https://datatracker.ietf.org/doc/html/rfc956

• "Minimizing Latency in RealTime Strategy Games", Jim Greer, Zack Booth Simpson, Game

Progamming Gems 3 chapter 5.1, 2001: https://archive.org/details/game-programming-gems-3

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6405&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6043&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6405&rep=rep1&type=pdf
https://www.rfc-editor.org/rfc/rfc958.html
https://www.ntp.org/
https://archive.org/details/game-programming-gems-3

Modern Game Engine - Theory and Practice

Network Synchronization (2/3)

• JMP van Waveren, "The DOOM III Network Architecture", 2006:

https://mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf

• Christophe DIOT, Laurent GAUTIER, "A Distributed Architecture for Mult iplayer Interactive Applications

on the Internet", IEEE, 1999:

https://ieeexplore.ieee.org/abstract/document/777437/

• Mark Terrano, Paul Bettner "Network Programming in Age of Empires and Beyond". GDC 2001:

https://www.gamedevs.org/uploads/1500-archers-age-of-empires-network-programming.pdf

• 腾讯游戏, 腾讯游戏开发精粹. 电子工业出版社, 2019.9:

https://gameinstitute.qq.com/game-gems

• Cocos, 帧同步游戏在技术层面的实现细节, 2021

https://zhuanlan.zhihu.com/p/408734657

JMPvanWaveren,"TheDOOMIIINetworkArchitecture",2006.https:/mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf
https://ieeexplore.ieee.org/abstract/document/777437/
https://www.gamedevs.org/uploads/1500-archers-age-of-empires-network-programming.pdf
https://gameinstitute.qq.com/game-gems
https://zhuanlan.zhihu.com/p/408734657

Modern Game Engine - Theory and Practice

Network Synchronization (3/3)

• IEEE 754:

https://en.wikipedia.org/wiki/IEEE_754

• QUAKE 3 SOURCE CODE REVIEW - NETWORK MODEL. 2012:

https://fabiensanglard.net/quake3/network.php

• David Aldridge, I Shot You First - Networking the Gameplay of HALO - REACH. GDC 2011:

https://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking

• Timothy Ford, "Overwatch Gameplay Architecture and Netcode". GDC 2017:

https://www.gdcvault.com/play/1024001/-Overwatch-Gameplay-Architecture-and

• Unreal engine Document:

https://docs.unrealengine.com/5.0/en-US/networking-overview-for-unreal-engine/

• Gaffer on Games: https://gafferongames.com/#posts

https://en.wikipedia.org/wiki/IEEE_754
https://fabiensanglard.net/quake3/network.php
https://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking
https://www.gdcvault.com/play/1024001/-Overwatch-Gameplay-Architecture-and
https://docs.unrealengine.com/5.0/en-US/networking-overview-for-unreal-engine/
https://gafferongames.com/#posts

Q&A

Modern Game Engine - Theory and Practice

Enjoy;)

Coding

Course Wechat

Please follow us for

further information

Modern Game Engine - Theory and Practice

