
Modern Game Engine - Theory and Practice

Voices from Community

Modern Game Engine - Theory and Practice

- Voting results for T-shirt style: 53% vs. 47%

(119 total)

- We will make Style 1 T-shirts as souvenirs

- Please comment under “Lecture 17”

@Bilibili before 24:00 this Sunday

7/31 about your great ideas of what

souvenirs you want for Piccolo

- We will give out 10 T-shirts for

the best comments

Rewarding list for last event:

@吃饭睡觉打逗逗2, @地地地瓜瓜大王, @Rivers小何,

@微夏丿风, @亻Biu, @红魔族第一的程序猿,

@川明177, @Quincy-1, @宠花上天, @AsEiif

Voices from Community – T-shirt Style Voting

Modern Game Engine - Theory and Practice

- If you have other lecture notes, creative

ideas, or any interesting projects, we can

help you to release in our community

• contact email:

@主题歌的一天

- Really appreciated for sharing

notes and making contributions to

Piccolo community

Voices from Community – Great Lecture Notes

• piccolo-gameengine@boomingtech.com

Modern Game Engine - Theory and Practice

• Q1: What’s your opinion on AI reading operating instructions from players directly?

• Q2: What’s the budget of computation of AI behaviors?

• Q3: Is it feasible to distribute the computation of AI agents over the network to alleviate performance

pressure from AI systems?

Q&A

WANG XI GAMES 104 2022

Advanced Artificial Intelligence

Modern Game Engine - Theory and Practice

Gameplay Systems

Lecture 16

AI Basic

• Navigation

• Steering

• Crowd Simulation

• Sensing

• Classic Decision Making Algorithms

Advanced AI

• Hierarchical Tasks Network

• Goal-Oriented Action Planning

• Monte Carlo Tree Search

• Machine Learning Basic

• Build Advanced Game AI

Outline of Artificial Intelligence Systems

Modern Game Engine - Theory and Practice

Hierarchical Tasks Network

Modern Game Engine - Theory and Practice

Transformers fall of cybertron(2012)

HTN assumes there are many Hierarchical tasks

Overview

Modern Game Engine - Theory and Practice

Make a Plan Like Human

Prepare the

material

Go to the

classroom

Learn

Q&A after class

Search on

Internet

Download and

Print

Take a class

Hierarchical:

• people in real world usually make their plan hierarchically

Find Books in

Library

Borrow Books

Decompose

Select

Method 1

Method 2

Modern Game Engine - Theory and Practice

HTN Framework (1/2)

World state

• Contains a bunch of properties

• Input to planner, reflect the status of

world

• It’s a Subject World View in AI Brain

Sensors

• Perceive changes of environment and

modify world state

• It’s more like Perception

Planner HTN Domain

Plan Runner

Task

Task

Task

Task

Task Task Task Task Task Task

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Hierarchical

Tasks

Modern Game Engine - Theory and Practice

HTN Framework (2/2)

HTN Domain

• Load from asset

• Describe the relationship of

hierarchical tasks

Planner

• Make a plan from World State and

HTN Domain

Plan Runner

• Running the plan

• Update the world state after the task

Planner HTN Domain

Plan Runner

Task

Task

Task

Task

Task Task Task Task Task Task

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Hierarchical

Tasks

Modern Game Engine - Theory and Practice

HTN Task Types

Two types of Tasks

• Primitive Task

• Compound Task

Primitive Task1 Compound Task1

Modern Game Engine - Theory and Practice

Primitive Task (1/2)

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition 1

Effect 1

Precondition 2

Effect 2

…

…

Primitive Task 2

• Preconditions

• Determine whether an action could be executed

• Check whether properties of game world being satisfied

• Action

• Determine what action the primitive task executes

• Effects

• Describe how the primitive task modify the game world

state properties

Modern Game Engine - Theory and Practice

Primitive Task （2/2）

Consume potion

Potion available

Recover from poisoning

Use Potion Task

Consume panacea

Panacea available

Use Panacea Task

Recover from sleeping

Recover from poisoning

Potion -1

Panacea -1

Modern Game Engine - Theory and Practice

Compound Task (1/2)

Compound Task 1

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

… Primitive Task1

Compound Task2

Method 2

Primitive Task1

Method 1

Compound Tasks

• Contain several methods

• Methods have different priority

• Each method has preconditions

Method

• contains a chain of sub-Tasks

• Sub-task could be a primitive

task or a compound task

…

or

or

Priority

High

Low

Modern Game Engine - Theory and Practice

Compound Task (2/2)

Make potion

Materials -5

Make Potion Task

Potion +1

Use potion

Has Potion

Recover from poisoning

Use Potion Task

Potion -1

Detoxify Task

Method 1

Has enough materials

Method 2

Has enough gold

or

Make potion

Method 1

Use potion

Buy potion

Method 2

Use potion

x5

Modern Game Engine - Theory and Practice

HTN Domain (1/2)

Root Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

…

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…
Primitive Task

Compound Task

Method 1

…

Method 2 …
Method N …
…

Action

Precondition

Effect

Primitive Task

or

or

or

Modern Game Engine - Theory and Practice

Make potion

Make potion…

Use potion

Buy potion

Buy potion…

Use potion

HTN Domain (2/2)

Find Potion…

Make potion…

Buy potion…

Root Task

Detoxify
Use potion

Find potion…

Use panacea…

Recover Task

or

or

or

Run away

Attack

…

…

or

or

Modern Game Engine - Theory and Practice

Planning (1/7)

Step 1

• Start from the root task

• Choose the method satisfying

the precondition in order

Root Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

…
World State

property

property

property

property

property

Priority

High

Low

Select according

to priority and

precondition

or

or

Modern Game Engine - Theory and Practice

Planning (2/7)

Step 2

• Decompose the method to tasks

• Check precondition in order

• Decompose the task if it is a compound task

Method 1

Primitive Task1

Compound Task2

Method 1

…

Decompose

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

or

or

Modern Game Engine - Theory and Practice

Planning (3/7)

Step 2 (For primitive tasks)

• Assume all action will be succeed, update “world state” in temporary memory

• World state has a duplicated copy in planning phase for scratch paper

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 1

…

Action 1

Precondition

Effect

Primitive Task 1

World State

property

property

property
Update

Property

or

or Temporary Memory

Modern Game Engine - Theory and Practice

Planning (4/7)

Step 2 (For primitive tasks)

• go back and select a new method if precondition is not satisfied

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 2

…

Action 1

Precondition

Effect

Primitive Task 1

×

or

Try Next Method

Modern Game Engine - Theory and Practice

Planning (5/7)

Step 2 (For compound task)

• select the next method if precondition is not satisfied

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 1

…

Compound Task

Method 1

Precondition 1

Method 2

Precondition 2

×

×

or

or

or

Modern Game Engine - Theory and Practice

Planning (6/7)

Step 3

• Repeat step 2 until no more task needs to be

done

• The final plan contains only primitive tasks

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition

Effect

Primitive Task 2

Plan

Action N

Precondition

Effect

Primitive Task N

……

Modern Game Engine - Theory and Practice

Make potion

Make potion…

Use potion

Buy potion

Buy potion…

Use potion

Planning (7/7)

Find Potion…

Make potion…

Buy potion…

Root Task

Detoxify

Recover Task

Use potion

Find potion…

Use panacea…

or

or

or

Run away

Attack

… …

or

or

× ×

Modern Game Engine - Theory and Practice

Run plan

Run plan

• Execute tasks in order

• Stop until all tasks succeed, or one task failed

Execute task

• Check precondition and return failure if not satisfied

• Execute action

• if succeed -> update world state and return success

• if failed -> return failure

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition

Effect

Primitive Task 2

Plan

Action N

Precondition

Effect

Primitive Task N

……

Modern Game Engine - Theory and Practice

Replan

There are three situations that the agent

could start plan

• Not have a plan

• The current plan is finished or failed

• The World State changes via its

sensor

Re-plan and chose

attack task

Root Task

Detoxify

or

or

Run away

Attack
…

Failed because there

was no escape

Modern Game Engine - Theory and Practice

Conclusion

Pros:

• HTN is similar with BT, and it is more high-level

• It outputs a plan which has long-term effect

• It would be faster compared to the BT in the same case

Cons:

• Player’s behavior is unpredictable, so the tasks may be easy to fail

• The World state and the effect of tasks are challenging for designers

Modern Game Engine - Theory and Practice

Goal-Oriented Action Planning

Modern Game Engine - Theory and Practice

Goal-Oriented Action Planning (GOAP)

• GOAP is more automated

• It takes backward planning rather than

forward

Assassins Creed Odyssey

Modern Game Engine - Theory and Practice

Structure

Planner

Plan Runner

Action

Action

Action

Action

Action Action Action Action Action Action

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Goal Set

Action Set

Sensors and World State

• Similar to HTN

Goal set

• All available goals

Action set

• All available actions

Planning

• Output sequence of actions

Select

Goal

Make

Plan
Execute

Modern Game Engine - Theory and Practice

Goal Set

• Precondition decides witch goal will be

selected

• Priority decide witch goal should be

selected among all the possible goals

• Each goal can be presented as a Collection

of States
Goal

Precondition

State

Goal

Precondition 1

State 1

Precondition 2

…

State 2

…

Unsatisfied states

Goal Set

Goal 1

Goal 2

Goal N

…Priority

High

Low

World State

property

property

property

property

property

Modern Game Engine - Theory and Practice

Goal Selection

Unsatisfied states

Goal Set

Detoxify

Defend

Attack

Priority

High

Low

Detoxify

Run away

Attack

Modern Game Engine - Theory and Practice

Action Set

Action in GOAP is with precondition, effect and cost

• Precondition: in which state, character can do this action

• Effect: after the action is done, how does the world state

changes

• Cost: defined by developer, used as a weight to make the

plan which has the lowest cost

Action 1

Precondition

Effect

Action 2

Precondition 1

Effect 1

Precondition 2

Effect 2

…

…

Cost

Cost

Unsatisfied states

Action Set

Action 1

Action 2

Action N
…

Modern Game Engine - Theory and Practice

Backward Planning Like a Human

• When making a plan, start

from goal state

Current world State

Goal

…
 ...

Action N

Action 2

Action 1

how to detoxify?

Is in poison how to have a

potion?

buy a potion

use potion

visit the shop and

give him money

Planning

how to buy a

potion?

!

Modern Game Engine - Theory and Practice

Planning (1/4)

Step 1

• Check goals according to priority

• Find the first goal of which precondition is satisfied

World State

property

property

property

property

property
Unsatisfied states

Goal Set

Goal 1

Goal 2

Goal N

…Priority

High

Low

Goal 1

Precondition 1

State 1

Goal 2

Precondition 2

State 1

××

State 2

Modern Game Engine - Theory and Practice

Planning (2/4)

Step 2

• Compare the target state with world state to find

unsatisfied goal

• Set all unsatisfied states of the goal into a stack

Goal 2

Precondition 2

State 1

State 2

World State

Property 1

Property 2

Property 3

Property N

×
State 2 and state 3

is not satisfied,

push it into stack

Stack of

Unsatisfied States

State 2

State 3

State 3 ×
…

Modern Game Engine - Theory and Practice

Planning (3/4)

Step 3

• Check the top unsatisfied state from the stack

• Select an action from action set which could satisfy the chosen state

• Pop the state if it is satisfied by the selected action

State 3

Unsatisfied states

Action Set

Action 1

Action 2

Action N

…

Action 3
Action 3

Precondition

Set State 3
Cost

Stack of

Unsatisfied States

State 2

State 3

Precondition

Modern Game Engine - Theory and Practice

Planning (4/4)

Step 4

• Push action to plan stack

• Check precondition of corresponded action

• If precondition is not satisfied, push state to stack of unsatisfied states

Action 3

Precondition 6

Satisfy State 3
Cost

Precondition 5

×

World State

Property 5

Property 6

Property N

Stack of

Unsatisfied States

State 2

State 6

Plan stack

Action 3
…

Modern Game Engine - Theory and Practice

Build States-Action-Cost Graph

Can be turned into a path planning problem

• Node：Combination of states

• Edge：Action

• Distance : Cost

Search direction

• Start node : states of the goal

• End node : current states

Current
Find the shortest path from goal state to current state

Goal

4

2

2

2

5

6

A

B

C

D

E

F

9

3

5

3

8

7

Modern Game Engine - Theory and Practice

The Lowest Cost Path

c

c

Current… …

Use a potion

Cost 1

Use a panacea

Cost 5

Buy a panacea

Cost 10

Buy a potion

Cost 3

Make a potion

Cost 2

Can use A* or other shortest path algorithms

• Heuristics can be represented with number of unsatisfied states

Goal

Modern Game Engine - Theory and Practice

Conclusion

Pros:

• Compared with HTN, GOAP plans is more dynamic

• Decoupling goals and behaviors

• HTN can easily make precondition/effect mismatching mistakes

Cons:

• In a single AI system, the runtime planning would be slower than

BT/FSM/HTN

• Also needs a well-represented world state and action effect

Modern Game Engine - Theory and Practice

Monte Carlo Tree Search

Modern Game Engine - Theory and Practice

Monte Carlo Tree Search

MCTS is another automated planning, and it

behaves more diversely

Modern Game Engine - Theory and Practice

Monte Carlo Tree Search

Like playing chess, simulate millions

possible moves in mind and choose the

“best” step

“I will win after

a few steps！”

Modern Game Engine - Theory and Practice

Monte Carlo Method

Monte Carlo Method
• A broad class of computational

algorithms that rely on

repeated random sampling

to obtain numerical results

A typical Monte Carlo method to calculate π

Monte Carlo Tree Search

Modern Game Engine - Theory and Practice

Monte Carlo Tree Search

Current State

Possible Actions

…

What is the

"best move"？

Modern Game Engine - Theory and Practice

State

• The state of game

• Represented by a node

Action

• One step operation of AI

• Represented by an

edge

Edge = Action

Node = State

States and Actions

Modern Game Engine - Theory and Practice

States Transfer

Transfer state from A to B by action

Action

B

A

ActionState A State B

Modern Game Engine - Theory and Practice

…

…

…

A Tree Structured State Space :

The set of states that can be reached

from the current state after a

possible sequence of actions

State Space

Current State:

State Space

… …

Modern Game Engine - Theory and Practice

Current State

Output

• The action to the best

state from current state

Current state

…

…

…

… …

…

…

…

… …

NOTICE: Rebuild the State Space for Each Move

Modern Game Engine - Theory and Practice

Simulation : Playing a Game in Mind Quickly

Simulation
• Run from the state node according to the Default Policy

to produce an outcome

In the case of Go

• Apply random moves from the state until the game is

over

• Return 1 (win) or 0 (loss) depending on the result

Default Policy

• A meaningful but quick rule or neural network to play

the game

1

…

Random Move

1 Win！

Simulation of Go

Modern Game Engine - Theory and Practice

How to evaluate the states?

Evaluation Factors

• Q: Accumulation of Simulation Results

• N: Number of simulations

…
Random Move

1 Win

Q/N

0/0 1/1

0+1=1

0+1=1

…

0 Lose

1+0=1

1+1=2
1/2

Evaluation Factors

Maybe not direct simulation but from child nodes

Modern Game Engine - Theory and Practice

Backpropagate

Propagate influence of child state back parent state

• Q𝐹𝑎𝑡ℎ𝑒𝑟𝑁𝑜𝑑𝑒 = Q𝐹𝑎𝑡ℎ𝑒𝑟𝑁𝑜𝑑𝑒 + Q𝐵𝑎𝑐𝑘𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒

• 𝑁𝑛𝑜𝑑𝑒 = 𝑁𝑛𝑜𝑑𝑒 + 1
• Repeat it until reaching the root

…

1 Win！

Simulation

1/1

1/1

2/2

0/1

1/2

3/4

0/1

0/2

1/1

2/2

3/3

0/1

1/2

4/5

0/1

0/2

+1/+1

+1/+1

+1/+1

Backpropagation

Modern Game Engine - Theory and Practice

Iteration Steps

Four steps are applied per search iteration

Current

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Selection : select the most urgent “expandable” node

Expansion : expand the tree by selecting an action

Simulation : simulate from the new node and produce an outcome

Backpropagate : backpropagate the outcome of simulation from the new node

Repeat

Modern Game Engine - Theory and Practice

Generally impossible to traverse the state space

• We prioritize exploring the most promising regions in state space

• Pre-set a computational budget and stop exploring the state space when the budget is reached

Search in “Infinite” State Space

Modern Game Engine - Theory and Practice

Selection — Expandable Node

Select the most urgent “expandable” node

“expandable” node

• Nonterminal state and has unvisited children

• Example:

The Current State Before First Iteration The State has unvisited children

Which one is the most

urgent expandable

node?

Modern Game Engine - Theory and Practice

Selection — Exploitation and Exploration

What is most promising

child node？

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Exploration

• Look in areas that have not been well sampled yet

• Select the child which has low number of visits

Exploitation

• Look in areas which appear to be promising

• Select the child which has high Q/N value

2/6 6/9 1/3

2/6 6/9 1/3

9/18

Modern Game Engine - Theory and Practice

UCB (Upper Confidence Bounds)

How to balance exploration and exploitation?

• Use UCB (Upper Confidence Bounds) formula

𝑈𝐶𝐵𝑗 =
𝑄𝑗

𝑁𝑗
+ 𝐶 ∙

2 ln 𝑁

𝑁𝑗

• 𝑈𝐶𝐵𝑗 : the UCB value of the node j

• 𝑄𝑗 : the total reward of all playouts that passed through node j

• 𝑁𝑗 : the number of times node j has been visited

• 𝑁 : the number of times the parent node of node j has been visited

• 𝐶 : a constant, adjusted to lower or increase the amount of exploration performe

Exploitation Exploration

The smaller the Nj, the larger the value

value

𝑁𝑗

𝑄/𝑁

𝑄
𝑗𝑄1/𝑁1 𝑄2/𝑁2 𝑄𝑗/𝑁𝑗

… …

Modern Game Engine - Theory and Practice

Selection

Expandable

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

How to select the most urgent expandable node

• Always Search from the root node

• Find the highest UCB value child node (promising child) of current node

• Set promising child as current node

• Iterate above steps until current node is expandable. Set current node as selected node

Modern Game Engine - Theory and Practice

Expansion

Expansion

• One or more new child nodes are added to selected node,

according to the available actions

• The value of child node is unknown

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/20/1

Untried Action Set in Selected State

Action1 Action2 Action3

... ...

Modern Game Engine - Theory and Practice

Simulation and Backprogation

… …

2/6
7/12

1/3

0/2

2/5

0/2
2/4

5/7

4/5 1/21/4

Untried Action Set in Selected State

Action1 Action2 Action3

... ...
0/1 1/1 0/1

Modern Game Engine - Theory and Practice

The End Condition

Computational budget

• Memory size (the number of nodes)

• Computation time

Current

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Repeat

Modern Game Engine - Theory and Practice

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

How to Choose the Best Move？

The “best” child node of current state node

• Max child: Select the root child with the highest Q-value

• Robust child: Select the most visited root child

• Max-Robust child: Select the root child with both the

highest visit count and the highest reward. If none exist,

then continue searching until an acceptable visit count is

achieved

• Secure child: Select the child which maximises a lower

confidence bound (LCB)

Output

• The action to the

best state from

current state

Current state

L𝐶𝐵𝑗 =
𝑄𝑗

𝑁𝑗
− 𝐶 ∙

2 ln 𝑁

𝑁𝑗

Modern Game Engine - Theory and Practice

Conclusion

Pros:

• MCTS agent behaves diverse

• Agent makes the decision totally by itself

• Can solve the problem of large search space

Cons:

• The action and state are hard to design for most real-time games

• It is hard to model for most real-time games

Modern Game Engine - Theory and Practice

Machine Learning Basic

Modern Game Engine - Theory and Practice

67

Machine Learning

Modern Game Engine - Theory and Practice

Four Types of Machine Learning

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning

Modern Game Engine - Theory and Practice

ML Types: Supervised Learning

• Learn from labeled data

Modern Game Engine - Theory and Practice

ML Types: Unsupervised Learning

• Learn from unlabeled data

Modern Game Engine - Theory and Practice

ML Types: Semi-supervised Learning

• Learn from a lot of unlabeled data and

very scarce labeled data.

Modern Game Engine - Theory and Practice

ML Types: Reinforcement learning

• Learn from an interaction process with

environment

Modern Game Engine - Theory and Practice

Reinforcement Learning

Reinforcement learning (RL) is an area of

machine learning concerned with how intelligent

agents ought to take actions in an environment

in order to maximize the notion of cumulative

reward

• Trial-and-error search

• The learner must discover which actions

yield the most reward by trying them

• Delayed reward

• Actions may affect the immediate reward, the

next situation and all subsequent rewards

Modern Game Engine - Theory and Practice

74

• Agent

The learner and decision maker

• Environment

The thing the agent interacts with, comprising

everything outside the agent

Markov Decision Process - Basic Elements (1/4)

Modern Game Engine - Theory and Practice

75

State is the observation of the agent, and the data structure is designed by human

Markov Decision Process - State (2/4)

State s (this frame)

Modern Game Engine - Theory and Practice

76

Action is the minimal element the agent could behave in the game

It is also designed by human

Markov Decision Process - Action (3/4)

Action a ∈ {left, right, up}

Modern Game Engine - Theory and Practice

77

A special signal the agent receives at each time

step passing from environment to the agent

Markov Decision Process - Reward (4/4)

Reward R

• Collect a coin:

• Win the game:

• Touch a Goomba:

(game over)

• Nothing happens:

R = +1

R = +10000

R= -10000

R = 0

Modern Game Engine - Theory and Practice

MDP Mathematical Model

• Probability of transition

The probability of transition from s to s' after taking action a

• Policy

A mapping from states to probabilities of selecting each possible action

• Total reward

The cumulative reward it receives in the long run

𝑝 𝑠′ 𝑠, 𝑎 = 𝑃 𝑆𝑡 = 𝑠′ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎

𝜋 𝑎 𝑠 = 𝑃 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯

Modern Game Engine - Theory and Practice

Policy

A mapping from states to probabilities of selecting each possible action

Policy 𝜋

• 𝜋 𝑎 𝑠 is the probability of taking action 𝐴 = 𝑎
given state 𝑠

• Upon observing state 𝑆 = 𝑠, the agent's action

𝐴 can be random

• For example:

𝜋 𝑎 𝑠 = 𝑃 𝐴 = 𝑎 𝑆 = 𝑠

𝜋 left s = 0.2

𝜋 right s = 0.1

𝜋 up s = 0.7

Modern Game Engine - Theory and Practice

Build Advanced Game AI

Modern Game Engine - Theory and Practice

Why Game AI needs Machine Learning

It is notable that all previous methods actually

need human knowledge to design (include the

cost of GOAP)

But players always expect AI to be able to both

deal with complicated game world and behave

naturally and diversely

• Traditional methods is in limited space

• Machine Learning create infinite possibilities

Modern Game Engine - Theory and Practice

Machine Learning Framework in Game

The framework of deploying a neural network to play an agent

Observation

Observation:

• The Game State the AI could observe

• Vector feature

• Unit information

• Environment information

• Etc.

• Image

• …

Action

Game Environment

Trained NN policy

Modern Game Engine - Theory and Practice

83

DRL Example — Model the Game

A DRL design process should contain:

• State

• Action

• Reward

• NN design

• Training Strategy

Modern Game Engine - Theory and Practice

84

DRL example — State

Modern Game Engine - Theory and Practice

85

Heights

Visibility: fog of war

Creep

Entity owners

Alerts

Pathable

Buildable

States (1/2) — Maps

Modern Game Engine - Theory and Practice

86

Unit type

Owner

Status

Display type

Position

Number of workers

Cool down

Attributes

Unit attributes

Cargo status

Building status

Resource status

Order status

Buff status

States (2/2) — Units Information

For each unit in a frame

Modern Game Engine - Theory and Practice

87

Actions

For a unit it should have actions like

• What

• move

• attack

• build

• Who

• Where

• When next action

Modern Game Engine - Theory and Practice

88

Direct reward from game

• Win : +1

• Lose: -1

Pseudo-reward output along with

critic network:

• the distance of agent's

operation and human data

statistic z

Rewards (1/2)

Modern Game Engine - Theory and Practice

89

Reward is much denser in OpenAI Five at Dota2

Different reward settings could help us to train different styles of agent

• Aggressive

• Conservative

• ...

Rewards (2/2)

Modern Game Engine - Theory and Practice

NN architectures AlphaStar NN Architecture

Encoder

Decoder

Modern Game Engine - Theory and Practice

DRL example — Multi-Layer Perceptron (MLP)

• Classical and easy to implement

• Flexible definition of the dimensions of inputs and outputs

Scalar feature example

• Race

• Owned Resource

• Upgrade

• Etc.

Modern Game Engine - Theory and Practice

DRL example — Convolutional Neural Network (CNN)

Sensitive to image data

Modern Game Engine - Theory and Practice

DRL example — Transformer

• Introduce attention mechanisms

• Uncertain length vector

• Well represent the complex feature like multi agents

Modern Game Engine - Theory and Practice

DRL example — Long-Short Term Memory (LSTM)

Enable AI to remember or forget earlier data

Modern Game Engine - Theory and Practice

DRL example — NN Architecture Selection

NN Architecture selection for different type of feature

• Fixed length vector feature

• Multi-Layer Perception

• Uncertain length vector feature

• Long-Short Term Memory

• Transformer

• Image feature

• ResNet

• Raycast

• Mesh

Modern Game Engine - Theory and Practice

Training Strategy — Supervised learning

AlphaStar is trained via both supervised learning and reinforcement learning. It firstly

learned a policy by supervised learning from human expert data

z is a statistic summary of a strategy

sampled from human data (for example, a

build order)

Minimize the distance (KL divergence) of

agent policy and human decision distribution

sampled from z

Modern Game Engine - Theory and Practice

Training Strategy — Reinforcement learning

Secondly, it took RL technique to improve the SL policy

TD(λ), V-trace, UPGO are specific Reinforcement learning

methods to improve actor network and critic network.

The KL degree towards old SL policy would also be

considered

These tricks improved the policy and made it more human-

like

Modern Game Engine - Theory and Practice

Train the Agent — Self Play & Adversarial

In AlphaStar three pools of agents attend training initialized from SL policy

• Main agents [MA]

• Goal: most robust and output

• Self-play (35%)

• Against past LE and ME agents(50%)

• Against past MA agents(15%)

• League exploiters[LE]

• Goal: find weakness of past all agents (MA, LE, ME)

• Against all past agents (MA, LE, ME)

• Main exploiters [ME]

• Goal: find weakness of current MA agent

• Against current MA agent

Modern Game Engine - Theory and Practice

RL or SL? —— SL analysis

• It behaves like human

• But may not outperform human

expert data

• Human data is unbalanced

• Sometimes there is not enough

data

Supervised Learning needs high quality data, and sometimes behaves well too

Modern Game Engine - Theory and Practice

RL or SL? —— RL analysis

• Training a RL model is tough

• The model is hard to converge

• The game environment for training is

also a huge development project

• The data collection process could be

slow

• And the behavior maybe unnatural

Reinforcement Learning is usually considered as the optimal solution, however

Modern Game Engine - Theory and Practice

RL or SL? —— Dense reward

What makes a good problem for RL

Dense reward Sparse reward

Modern Game Engine - Theory and Practice

RL or SL? —— Summary

Situation for RLSituation for SL

• Easy to get data

• Needs to perform like human

• Needs to outperform the master level

• Enough budget

• Data is unavailable

• Dense reward

Modern Game Engine - Theory and Practice

Hybrid

Machine Learning is powerful.

But it cost much too. For example, DeepMind

spends 250 million dollars to finish alpha

star and a replication needs 13 million

dollars

We often need to make a tradeoff that place

DNN on the human-like points(a part of the

whole combat).

Micro Macro

DNN

FSM/BT

FSM/BT

DNN

Ages of Empire IV

Navigation for ships Evaluation for a combat

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

HTN

• Humphreys T. Exploring HTN planners through example, Game AI Pro 360. CRC Press,

2019: 103-122.

https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter12_Exploring_HTN_Plann

ers_through_Example.pdf

• An overview of hierarchical task network planning. Georgievski I, et al. arXiv preprint

arXiv:1403.7426, 2014. https://arxiv.org/abs/1403.7426

• Advanced Real-Time Hierarchical Task Networks: A New Approach. Tomohiro M, et al.

Square enix. GDC 2021. https://gdcvault.com/play/1027232/AI-Summit-Advanced-Real-

Time

https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter12_Exploring_HTN_Planners_through_Example.pdf
https://arxiv.org/abs/1403.7426
https://gdcvault.com/play/1027232/AI-Summit-Advanced-Real-Time

Modern Game Engine - Theory and Practice

GOAP

• Enhanced NPC behaviour using goal oriented action planning. Long E. Master's Thesis,

School of Computing and Advanced Technologies, University of Abertay Dundee, Dundee,

UK, 2007.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf

• Goal-oriented action planning: Ten years old and no fear! Chris C, et al. Crystal Dynamics.

GDC 2015. https://gdcvault.com/play/1022019/Goal-Oriented-Action-Planning-Ten

• AI Action Planning on Assassin's Creed Odyssey and Immortals Fenyx Rising. Simon G.

Ubisoft. GDC 2021. https://gdcvault.com/play/1027004/AI-Action-Planning-on-Assassin

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf
https://gdcvault.com/play/1022019/Goal-Oriented-Action-Planning-Ten
https://gdcvault.com/play/1027004/AI-Action-Planning-on-Assassin

Modern Game Engine - Theory and Practice

MCTS

• A survey of monte carlo tree search methods. Browne C B, et al. IEEE Transactions on

Computational Intelligence and AI in games, 2012, 4(1): 1-43.

https://www.researchgate.net/publication/235985858_A_Survey_of_Monte_Carlo_Tree_

Search_Methods

• Enhancements for real-time Monte-Carlo tree search in general video game playing.

Soemers D, et al. 2016 IEEE Conference on Computational Intelligence and Games

(CIG). IEEE, 2016: 1-8. https://ieeexplore.ieee.org/abstract/document/7860448/

• Action guidance with MCTS for deep reinforcement learning. Kartal B, et al. Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.

2019, 15(1): 153-159. https://ojs.aaai.org/index.php/AIIDE/article/view/5238

https://www.researchgate.net/publication/235985858_A_Survey_of_Monte_Carlo_Tree_Search_Methods
https://ieeexplore.ieee.org/abstract/document/7860448/
https://ojs.aaai.org/index.php/AIIDE/article/view/5238

Modern Game Engine - Theory and Practice

Machine Learning (1/2)

• Great Chinese tutorial on reinforcement learning: Easy-RL, 人民邮电出版社, 2022,

https://github.com/datawhalechina/easy-rl

• Classic English textbook on reinforcement learning: Reinforcement Learning: an

introduction, MIT press, 2018,

https://web.Stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

• Classic course on reinforcement learning: Stanford Course CS234:

https://web.Stanford.edu/class/cs234/

• Key papers on reinforcement learning selected by OpenAI:

https://spinningup.openai.com/en/latest/spinningup/keypapers.html

https://github.com/datawhalechina/easy-rl
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/cs234/
https://spinningup.openai.com/en/latest/spinningup/keypapers.html

Modern Game Engine - Theory and Practice

Machine Learning (2/2)

• Classic handbook on deep learning: https://github.com/janishar/mit-deep-learning-

book-pdf

• An introduction to convolutional neural networks, O'Shea K, et al. arXiv preprint

arXiv:1511.08458, 2015. https://arxiv.org/pdf/1511.08458.pdf

• Understanding LSTM – a tutorial into long short-term memory recurrent neural

networks, Staudemeyer R C, et al. arXiv preprint arXiv:1909.09586, 2019:

https://arxiv.org/abs/1909.09586

• Attention is all you need. Vaswani A, et al. Advances in neural information processing

systems, 2017, 30. : https://arxiv.org/abs/1706.03762

https://github.com/janishar/mit-deep-learning-book-pdf
https://arxiv.org/pdf/1511.08458.pdf
https://arxiv.org/abs/1909.09586
https://arxiv.org/abs/1706.03762

Modern Game Engine - Theory and Practice

Machine Learning Game Applications (1/2)

• Atari: Mnih V, et al. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013. https://arxiv.org/pdf/1312.5602.pdf

• Honor of Kings : Ye D, et al. Mastering complex control in moba games with deep

reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence.

2020, 34(04): 6672-6679. https://ojs.aaai.org/index.php/AAAI/article/view/6144

• Dota2: Berner C, et al. Dota 2 with large scale deep reinforcement learning. arXiv

preprint arXiv:1912.06680, 2019. https://arxiv.org/pdf/1912.06680.pdf

• Starcraft2: Vinyals O, et al. Grandmaster level in StarCraft II using multi-agent

reinforcement learning[J]. Nature, 2019, 575(7782): 350-354.

https://www.nature.com/articles/s41586-019-1724-z.pdf

https://arxiv.org/pdf/1312.5602.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6144
https://arxiv.org/pdf/1912.06680.pdf
https://www.nature.com/articles/s41586-019-1724-z.pdf

Modern Game Engine - Theory and Practice

Machine Learning Game Applications (2/2)

• DRL for navigation: Deep Reinforcement Learning For Navigation. Maxim P, et al. Ubisoft.

GDC 2021. https://gdcvault.com/play/1027382/Machine-Learning-Summit-Deep-

Reinforcement

• Machine Learning in game engine: It's Complicated: Getting ML inside a AAA Engine.

Adrien L, et al. Ubisoft. GDC 2022. https://gdcvault.com/play/1027851/Machine-Learning-

Summit-It-s

• Age of Empires IV: ‘Age of Empires IV’: Machine Learning Trials and Tribulations. Guy L, et

al. Microsoft. GDC 2022. https://gdcvault.com/play/1027936/AI-Summit-Age-of-Empires

• Imitation Learning case: Buffing Bots with Imitation Learning. Niels J, et al. modl.ai. GDC

2022. https://gdcvault.com/play/1027942/AI-Summit-Buffing-Bots-with

https://gdcvault.com/play/1027382/Machine-Learning-Summit-Deep-Reinforcement
https://gdcvault.com/play/1027851/Machine-Learning-Summit-It-s
https://gdcvault.com/play/1027936/AI-Summit-Age-of-Empires
https://gdcvault.com/play/1027936/AI-Summit-Age-of-Empires
https://gdcvault.com/play/1027936/AI-Summit-Age-of-Empires
https://gdcvault.com/play/1027942/AI-Summit-Buffing-Bots-with

Modern Game Engine - Theory and Practice

Lecture 17 Contributors

- 一将

- yunhe

- 大喷

- 普普

- Olorin

- 灰灰

- 喵小君

- 蓑笠翁

Q&A

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for

further information

Enjoy ;)

Coding

Course Wechat

