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- Voting results for T-shirt style: 53% vs. 47% 

(119 total)

- We will make Style 1 T-shirts as souvenirs

- Please comment under “Lecture 17” 

@Bilibili before 24:00 this Sunday 

7/31 about your great ideas of what 

souvenirs you want for Piccolo 

- We will give out 10 T-shirts for 

the best comments 

Rewarding list for last event:

@吃饭睡觉打逗逗2, @地地地瓜瓜大王, @Rivers小何,

@微夏丿风, @亻Biu, @红魔族第一的程序猿,

@川明177, @Quincy-1, @宠花上天, @AsEiif

Voices from Community – T-shirt Style Voting 
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- If you have other lecture notes, creative 

ideas, or any interesting projects, we can 

help you to release in our community 

• contact email:

@主题歌的一天

- Really appreciated for sharing 

notes and making contributions to 

Piccolo community

Voices from Community – Great Lecture Notes 

• piccolo-gameengine@boomingtech.com
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• Q1: What’s your opinion on AI reading operating instructions from players directly?

• Q2: What’s the budget of computation of AI behaviors?

• Q3: Is it feasible to distribute the computation of AI agents over the network to alleviate performance 

pressure from AI systems?

Q&A
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AI Basic

• Navigation

• Steering

• Crowd Simulation

• Sensing

• Classic Decision Making Algorithms

Advanced AI

• Hierarchical Tasks Network

• Goal-Oriented Action Planning

• Monte Carlo Tree Search

• Machine Learning Basic

• Build Advanced Game AI

Outline of Artificial Intelligence Systems
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Hierarchical Tasks Network
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Transformers fall of cybertron(2012)

HTN assumes there are many Hierarchical tasks

Overview
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Make a Plan Like Human

Prepare the 

material

Go to the 

classroom

Learn

Q&A after class

Search on 

Internet

Download and 

Print

Take a class

Hierarchical:

• people in real world usually make their plan hierarchically

Find Books in 

Library

Borrow Books

Decompose

Select

Method 1

Method 2
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HTN Framework (1/2)

World state

• Contains a bunch of properties

• Input to planner, reflect the status of 

world

• It’s a Subject World View in AI Brain

Sensors

• Perceive changes of environment and 

modify world state

• It’s more like Perception

Planner HTN Domain

Plan Runner

Task

Task

Task

Task

Task Task Task Task Task Task

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Hierarchical 

Tasks
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HTN Framework (2/2)

HTN Domain

• Load from asset

• Describe the relationship of 

hierarchical tasks

Planner

• Make a plan from World State and 

HTN Domain

Plan Runner

• Running the plan

• Update the world state after the task

Planner HTN Domain

Plan Runner

Task

Task

Task

Task

Task Task Task Task Task Task

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Hierarchical 

Tasks
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HTN Task Types

Two types of Tasks

• Primitive Task

• Compound Task

Primitive Task1 Compound Task1
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Primitive Task (1/2)

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition 1

Effect 1

Precondition 2

Effect 2

…

…

Primitive Task 2

• Preconditions

• Determine whether an action could be executed

• Check whether properties of game world being satisfied

• Action

• Determine what action the primitive task executes

• Effects

• Describe how the primitive task modify the game world 

state properties
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Primitive Task （2/2）

Consume potion

Potion available

Recover from poisoning

Use Potion Task

Consume panacea

Panacea available

Use Panacea Task

Recover from sleeping

Recover from poisoning

Potion -1

Panacea -1
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Compound Task (1/2)

Compound Task 1

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

… Primitive Task1

Compound Task2

Method 2

Primitive Task1

Method 1

Compound Tasks

• Contain several methods

• Methods have different priority

• Each method has preconditions

Method

• contains a chain of sub-Tasks

• Sub-task could be a primitive 

task or a compound task

…

or

or

Priority

High

Low
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Compound Task (2/2)

Make potion

Materials -5

Make Potion Task

Potion +1

Use potion

Has Potion

Recover from poisoning

Use Potion Task

Potion -1

Detoxify Task

Method 1

Has enough materials

Method 2

Has enough gold

or

Make potion

Method 1

Use potion

Buy potion

Method 2

Use potion

x5
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HTN Domain (1/2)

Root Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

…

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…
Primitive Task

Compound Task

Method 1

…

Method 2 …
Method N …
…

Action

Precondition

Effect

Primitive Task

or

or

or
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Make potion

Make potion…

Use potion

Buy potion

Buy potion…

Use potion

HTN Domain (2/2)

Find Potion…

Make potion…

Buy potion…

Root Task

Detoxify
Use potion

Find potion…

Use panacea…

Recover Task

or

or

or

Run away

Attack

…

…

or

or
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Planning (1/7)

Step 1

• Start from the root task

• Choose the method satisfying 

the precondition in order

Root Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

Method N

Precondition

…
World State

property

property

property

property

property

Priority

High

Low

Select according 

to priority and 

precondition

or

or
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Planning (2/7)

Step 2

• Decompose the method to tasks

• Check precondition in order

• Decompose the task if it is a compound task

Method 1

Primitive Task1

Compound Task2

Method 1

…

Decompose

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

or

or
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Planning (3/7)

Step 2 (For primitive tasks)

• Assume all action will be succeed, update “world state” in temporary memory

• World state has a duplicated copy in planning phase for scratch paper

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 1

…

Action 1

Precondition

Effect

Primitive Task 1

World State

property

property

property
Update 

Property

or

or Temporary Memory
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Planning (4/7)

Step 2 (For primitive tasks)

• go back and select a new method if precondition is not satisfied 

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 2

…

Action 1

Precondition

Effect

Primitive Task 1

×

or

Try Next Method 
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Planning (5/7)

Step 2 (For compound task)

• select the next method if precondition is not satisfied 

Compound Task

Method 1

Precondition

Method 2

Precondition 1

Precondition 2

…

…

Primitive Task1

Compound Task2

Method 1

…

Compound Task

Method 1

Precondition 1

Method 2

Precondition 2

×

×

or

or

or
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Planning (6/7)

Step 3

• Repeat step 2 until no more task needs to be 

done

• The final plan contains only primitive tasks

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition

Effect

Primitive Task 2

Plan

Action N

Precondition

Effect

Primitive Task N

……
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Make potion

Make potion…

Use potion

Buy potion

Buy potion…

Use potion

Planning (7/7)

Find Potion…

Make potion…

Buy potion…

Root Task

Detoxify

Recover Task

Use potion

Find potion…

Use panacea…

or

or

or

Run away

Attack

… …

or

or

× ×
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Run plan

Run plan

• Execute tasks in order 

• Stop until all tasks succeed, or one task failed

Execute task

• Check precondition and return failure if not satisfied

• Execute action

• if succeed -> update world state and return success 

• if failed -> return failure

Action 1

Precondition

Effect

Primitive Task 1

Action 2

Precondition

Effect

Primitive Task 2

Plan

Action N

Precondition

Effect

Primitive Task N

……



Modern Game Engine - Theory and Practice

Replan

There are three situations that the agent 

could start plan

• Not have a plan

• The current plan is finished or failed

• The World State changes via its 

sensor

Re-plan and chose 

attack task

Root Task

Detoxify

or

or

Run away

Attack
…

Failed because there 

was no escape
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Conclusion

Pros:

• HTN is similar with BT, and it is more high-level

• It outputs a plan which has long-term effect

• It would be faster compared to the BT in the same case

Cons:

• Player’s behavior is unpredictable, so the tasks may be easy to fail

• The World state and the effect of tasks are challenging for designers
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Goal-Oriented Action Planning
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Goal-Oriented Action Planning (GOAP)

• GOAP is more automated

• It takes backward planning rather than 

forward

Assassins Creed Odyssey
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Structure

Planner

Plan Runner

Action

Action

Action

Action

Action Action Action Action Action Action

World State

property

property

property

property

property

Sensors

Sensor Sensor Sensor Sensor

Goal Set

Action Set

Sensors and World State

• Similar to HTN

Goal set

• All available goals

Action set

• All available actions

Planning

• Output sequence of actions

Select 

Goal

Make 

Plan
Execute
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Goal Set

• Precondition decides witch goal will be 

selected

• Priority decide witch goal should be 

selected among all the possible goals

• Each goal can be presented as a Collection 

of States
Goal

Precondition

State

Goal

Precondition 1

State 1

Precondition 2

…

State 2

…

Unsatisfied states 

Goal Set

Goal 1

Goal 2

Goal N

…Priority

High

Low

World State

property

property

property

property

property
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Goal Selection

Unsatisfied states 

Goal Set

Detoxify

Defend

Attack

Priority

High

Low

Detoxify

Run away

Attack
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Action Set

Action in GOAP is with precondition, effect and cost

• Precondition: in which state, character can do this action

• Effect: after the action is done, how does the world state 

changes

• Cost: defined by developer, used as a weight to make the 

plan which has the lowest cost

Action 1

Precondition

Effect

Action 2

Precondition 1

Effect 1

Precondition 2

Effect 2

…

…

Cost

Cost

Unsatisfied states 

Action Set

Action 1

Action 2

Action N
…
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Backward Planning Like a Human

• When making a plan, start 

from goal state

Current world State

Goal

…
 ...

Action N

Action 2

Action 1

how to detoxify? 

Is in poison how to have a 

potion?

buy a potion

use potion

visit the shop and 

give him money

Planning

how to buy a

potion?

!
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Planning (1/4)

Step 1

• Check goals according to priority

• Find the first goal of which precondition is satisfied

World State

property

property

property

property

property
Unsatisfied states 

Goal Set

Goal 1

Goal 2

Goal N

…Priority

High

Low

Goal 1

Precondition 1

State 1

Goal 2

Precondition 2

State 1

××

State 2
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Planning (2/4)

Step 2

• Compare the target state with world state to find 

unsatisfied goal

• Set all unsatisfied states of the goal into a stack

Goal 2

Precondition 2

State 1

State 2

World State

Property 1

Property 2

Property 3

Property N

×
State 2 and state 3 

is not satisfied, 

push it into stack

Stack of 

Unsatisfied States 

State 2

State 3

State 3 ×
…
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Planning (3/4)

Step 3

• Check the top unsatisfied state from the stack

• Select an action from action set which could satisfy the chosen state

• Pop the state if it is satisfied by the selected action

State 3

Unsatisfied states 

Action Set

Action 1

Action 2

Action N

…

Action 3
Action 3

Precondition

Set State 3
Cost

Stack of 

Unsatisfied States 

State 2

State 3

Precondition
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Planning (4/4)

Step 4

• Push action to plan stack

• Check precondition of corresponded action

• If precondition is not satisfied, push state to stack of unsatisfied states

Action 3

Precondition 6

Satisfy State 3
Cost

Precondition 5

×

World State

Property 5

Property 6

Property N

Stack of 

Unsatisfied States 

State 2

State 6

Plan stack

Action 3
…
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Build States-Action-Cost Graph

Can be turned into a path planning problem

• Node：Combination of states

• Edge：Action

• Distance : Cost

Search direction

• Start node : states of  the goal

• End node : current states

Current
Find the shortest path from goal state to current state

Goal

4

2

2

2

5

6

A

B

C

D

E

F

9

3

5

3

8

7
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The Lowest Cost Path

c

c

Current… …

Use a potion

Cost 1

Use a panacea

Cost 5

Buy a panacea

Cost 10 

Buy a potion

Cost 3

Make a potion

Cost 2

Can use A* or other shortest path algorithms

• Heuristics can be represented with number of unsatisfied states

Goal
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Conclusion

Pros: 

• Compared with HTN, GOAP plans is more dynamic

• Decoupling goals and behaviors

• HTN can easily make precondition/effect mismatching mistakes

Cons:

• In a single AI system, the runtime planning would be slower than 

BT/FSM/HTN

• Also needs a well-represented world state and action effect
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Monte Carlo Tree Search
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Monte Carlo Tree Search

MCTS is another automated planning, and it 

behaves more diversely
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Monte Carlo Tree Search

Like playing chess, simulate millions 

possible moves in mind and choose the 

“best” step

“I will win after 

a few steps！”
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Monte Carlo Method

Monte Carlo Method
• A broad class of computational 

algorithms that rely on 

repeated random sampling 

to obtain numerical results

A typical Monte Carlo method to calculate π

Monte Carlo Tree Search
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Monte Carlo Tree Search

Current State

Possible Actions

…

What is the

"best move"？
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State

• The state of game

• Represented by a node

Action

• One step operation of AI

• Represented by an 

edge

Edge = Action

Node = State

States and Actions
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States Transfer

Transfer state from A to B by action

Action

B

A

ActionState A State B
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…

…

…

A Tree Structured State Space :

The set of states that can be reached 

from the current state after a 

possible sequence of actions

State Space

Current State:

State Space

… …
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Current State

Output

• The action to the best 

state from current state

Current state

…

…

…

… …

…

…

…

… …

NOTICE: Rebuild the State Space for Each Move
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Simulation : Playing a Game in Mind Quickly

Simulation
• Run from the state node according to the Default Policy 

to produce an outcome

In the case of Go

• Apply random moves from the state until the game is 

over

• Return 1 (win) or 0 (loss) depending on the result

Default Policy

• A meaningful but quick rule or neural network to play 

the game

1

…

Random Move

1 Win！

Simulation of Go
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How to evaluate the states? 

Evaluation Factors

• Q: Accumulation of Simulation Results

• N: Number of simulations

…
Random Move

1 Win

Q/N 

0/0 1/1

0+1=1

0+1=1

…

0 Lose

1+0=1

1+1=2
1/2

Evaluation Factors

Maybe not direct simulation but from child nodes
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Backpropagate

Propagate influence of child state back parent state

• Q𝐹𝑎𝑡ℎ𝑒𝑟𝑁𝑜𝑑𝑒 = Q𝐹𝑎𝑡ℎ𝑒𝑟𝑁𝑜𝑑𝑒 + Q𝐵𝑎𝑐𝑘𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒

• 𝑁𝑛𝑜𝑑𝑒 = 𝑁𝑛𝑜𝑑𝑒 + 1
• Repeat it until reaching the root

…

1 Win！

Simulation

1/1

1/1

2/2

0/1

1/2

3/4

0/1

0/2

1/1

2/2

3/3

0/1

1/2

4/5

0/1

0/2

+1/+1

+1/+1

+1/+1

Backpropagation
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Iteration Steps

Four steps are applied per search iteration

Current

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Selection : select the most urgent “expandable” node

Expansion : expand the tree by selecting an action

Simulation : simulate from the new node and produce an outcome

Backpropagate : backpropagate the outcome of simulation from the new node

Repeat
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Generally impossible to traverse the state space

• We prioritize exploring the most promising regions in state space

• Pre-set a computational budget and stop exploring the state space when the budget is reached

Search in “Infinite” State Space 
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Selection — Expandable Node 

Select the most urgent “expandable” node

“expandable” node

• Nonterminal state and has unvisited children

• Example:

The Current State Before First Iteration The State has unvisited children

Which one is the most 

urgent expandable 

node?
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Selection — Exploitation and Exploration

What is most promising 

child node？

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Exploration

• Look in areas that have not been well sampled yet

• Select the child which has low number of visits

Exploitation

• Look in areas which appear to be promising

• Select the child which has high Q/N value

2/6 6/9 1/3

2/6 6/9 1/3

9/18
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UCB (Upper Confidence Bounds)

How to balance exploration and exploitation?

• Use UCB (Upper Confidence Bounds) formula

𝑈𝐶𝐵𝑗 =
𝑄𝑗

𝑁𝑗
+ 𝐶 ∙

2 ln 𝑁

𝑁𝑗

• 𝑈𝐶𝐵𝑗 : the UCB value of the node j

• 𝑄𝑗 : the total reward of all playouts that passed through node j

• 𝑁𝑗 : the number of times node j has been visited

• 𝑁 : the number of times the parent node of node j has been visited

• 𝐶 : a constant, adjusted to lower or increase the amount of exploration performe

Exploitation Exploration

The smaller the Nj, the larger the value

value

𝑁𝑗

𝑄/𝑁

𝑄
𝑗𝑄1/𝑁1 𝑄2/𝑁2 𝑄𝑗/𝑁𝑗

… …
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Selection

Expandable

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

0/1

How to select the most urgent expandable node

• Always Search from the root node

• Find the highest UCB value child node (promising child) of current node

• Set promising child as current node

• Iterate above steps until current node is expandable. Set current node as selected node
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Expansion 

Expansion 

• One or more new child nodes are added to selected node, 

according to the available actions

• The value of child node is unknown

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/20/1

Untried Action Set in Selected State 

Action1 Action2 Action3

... ...
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Simulation and Backprogation

… …

2/6
7/12

1/3

0/2

2/5

0/2
2/4

5/7

4/5 1/21/4

Untried Action Set in Selected State 

Action1 Action2 Action3

... ...
0/1 1/1 0/1
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The End Condition

Computational budget 

• Memory size (the number of nodes)

• Computation time

Current

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

Repeat



Modern Game Engine - Theory and Practice

…

… …

2/6
6/9

1/3

0/2

1/2

0/2
2/4

5/7

4/5 1/2

…

…

How to Choose the Best Move？

The “best” child node of current state node

• Max child: Select the root child with the highest Q-value

• Robust child: Select the most visited root child

• Max-Robust child: Select the root child with both the 

highest visit count and the highest reward. If none exist, 

then continue searching until an acceptable visit count is 

achieved 

• Secure child: Select the child which maximises a lower 

confidence bound (LCB)

Output

• The action to the 

best state from 

current state

Current state

L𝐶𝐵𝑗 =
𝑄𝑗

𝑁𝑗
− 𝐶 ∙

2 ln 𝑁

𝑁𝑗
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Conclusion

Pros:

• MCTS agent behaves diverse 

• Agent makes the decision totally by itself

• Can solve the problem of large search space

Cons:

• The action and state are hard to design for most real-time games

• It is hard to model for most real-time games
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Machine Learning Basic
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67

Machine Learning
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Four Types of Machine Learning

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning
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ML Types: Supervised Learning

• Learn from labeled data
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ML Types: Unsupervised Learning

• Learn from unlabeled data
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ML Types: Semi-supervised Learning

• Learn from a lot of unlabeled data and 

very scarce labeled data.
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ML Types: Reinforcement learning

• Learn from an interaction process with 

environment
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Reinforcement Learning

Reinforcement learning (RL) is an area of 

machine learning concerned with how intelligent 

agents ought to take actions in an environment 

in order to maximize the notion of cumulative 

reward

• Trial-and-error search

• The learner must discover which actions 

yield the most reward by trying them

• Delayed reward

• Actions may affect the immediate reward, the 

next situation and all subsequent rewards
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74

• Agent

The learner and decision maker

• Environment

The thing the agent interacts with, comprising 

everything outside the agent

Markov Decision Process - Basic Elements (1/4)
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75

State is the observation of the agent, and the data structure is designed by human

Markov Decision Process - State (2/4)

State s (this frame)
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76

Action is the minimal element the agent could behave in the game

It is also designed by human

Markov Decision Process - Action (3/4)

Action a ∈ {left, right, up}
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77

A special signal the agent receives at each time 

step passing from environment to the agent

Markov Decision Process - Reward (4/4)

Reward R

• Collect a coin: 

• Win the game: 

• Touch a Goomba:

(game over)

• Nothing happens:

R = +1

R = +10000

R= -10000

R = 0
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MDP Mathematical Model

• Probability of transition

The probability of transition from s to s' after taking action a

• Policy

A mapping from states to probabilities of selecting each possible action

• Total reward

The cumulative reward it receives in the long run

𝑝 𝑠′ 𝑠, 𝑎 = 𝑃 𝑆𝑡 = 𝑠′ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎

𝜋 𝑎 𝑠 = 𝑃 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯
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Policy

A mapping from states to probabilities of selecting each possible action

Policy 𝜋

• 𝜋 𝑎 𝑠 is the probability of taking action 𝐴 = 𝑎
given state 𝑠

• Upon observing state 𝑆 = 𝑠, the agent's action 

𝐴 can be random

• For example:

𝜋 𝑎 𝑠 = 𝑃 𝐴 = 𝑎 𝑆 = 𝑠

𝜋 left s = 0.2

𝜋 right s = 0.1

𝜋 up s = 0.7
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Build Advanced Game AI
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Why Game AI needs Machine Learning

It is notable that all previous methods actually 

need human knowledge to design (include the 

cost of GOAP)

But players always expect AI to be able to both 

deal with complicated game world and behave 

naturally and diversely

• Traditional methods is in limited space

• Machine Learning create infinite possibilities
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Machine Learning Framework in Game

The framework of deploying a neural network to play an agent

Observation

Observation:

• The Game State the AI could observe

• Vector feature

• Unit information

• Environment information

• Etc.

• Image

• …

Action

Game Environment

Trained NN policy 
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DRL Example — Model the Game

A DRL design process should contain:

• State

• Action

• Reward

• NN design

• Training Strategy
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DRL example — State
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Heights

Visibility: fog of war

Creep

Entity owners

Alerts

Pathable

Buildable

States (1/2) — Maps
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Unit type

Owner

Status

Display type

Position

Number of workers

Cool down

Attributes

Unit attributes

Cargo status

Building status

Resource status

Order status

Buff status

States (2/2) — Units Information

For each unit in a frame
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Actions

For a unit it should have actions like

• What

• move

• attack

• build

• Who

• Where

• When next action
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Direct reward from game

• Win : +1

• Lose: -1

Pseudo-reward output along with 

critic network:

• the distance of agent's 

operation and human data 

statistic z

Rewards (1/2)



Modern Game Engine - Theory and Practice

89

Reward is much denser in OpenAI Five at Dota2

Different reward settings could help us to train different styles of agent

• Aggressive

• Conservative

• ...

Rewards (2/2)
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NN architectures AlphaStar NN Architecture

Encoder

Decoder
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DRL example — Multi-Layer Perceptron (MLP)

• Classical and easy to implement

• Flexible definition of the dimensions of inputs and outputs

Scalar feature example

• Race

• Owned Resource

• Upgrade

• Etc.
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DRL example — Convolutional Neural Network (CNN)

Sensitive to image data
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DRL example — Transformer

• Introduce attention mechanisms

• Uncertain length vector

• Well represent the complex feature like multi agents
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DRL example — Long-Short Term Memory (LSTM)

Enable AI to remember or forget earlier data
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DRL example — NN Architecture Selection

NN Architecture selection for different type of feature

• Fixed length vector feature

• Multi-Layer Perception

• Uncertain length vector feature

• Long-Short Term Memory

• Transformer

• Image feature

• ResNet

• Raycast

• Mesh
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Training Strategy — Supervised learning

AlphaStar is trained via both supervised learning and reinforcement learning. It firstly 

learned a policy by supervised learning from human expert data

z is a statistic summary of a strategy 

sampled from human data (for example, a 

build order)

Minimize the distance (KL divergence) of 

agent policy and human decision distribution 

sampled from z
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Training Strategy — Reinforcement learning

Secondly, it took RL technique to improve the SL policy

TD(λ), V-trace, UPGO are specific Reinforcement learning 

methods to improve actor network and critic network.

The KL degree towards old SL policy would also be 

considered

These tricks improved the policy and made it more human-

like
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Train the Agent — Self Play & Adversarial

In AlphaStar three pools of agents attend training initialized from SL policy

• Main agents [MA] 

• Goal: most robust and output

• Self-play (35%)

• Against past LE and ME agents(50%)

• Against past MA agents(15%)

• League exploiters[LE]

• Goal: find weakness of past all agents (MA, LE, ME)

• Against all past agents (MA, LE, ME)

• Main exploiters [ME]

• Goal: find weakness of current MA agent

• Against current MA agent
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RL or SL? —— SL analysis

• It behaves like human 

• But may not outperform human 

expert data

• Human data is unbalanced

• Sometimes there is not enough 

data 

Supervised Learning needs high quality data, and sometimes behaves well too
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RL or SL? —— RL analysis

• Training a RL model is tough

• The model is hard to converge

• The game environment for training is 

also a huge development project

• The data collection process could be 

slow

• And the behavior maybe unnatural

Reinforcement Learning is usually considered as the optimal solution, however
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RL or SL? —— Dense reward

What makes a good problem for RL

Dense reward Sparse reward
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RL or SL? —— Summary

Situation for RLSituation for SL

• Easy to get data

• Needs to perform like human 

• Needs to outperform the master level

• Enough budget

• Data is unavailable

• Dense reward
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Hybrid

Machine Learning is powerful.

But it cost much too. For example, DeepMind

spends 250 million dollars to finish alpha 

star and a replication needs 13 million 

dollars

We often need to make a tradeoff that place 

DNN on the human-like points(a part of the 

whole combat).

Micro Macro

DNN

FSM/BT

FSM/BT

DNN

Ages of Empire IV

Navigation for ships Evaluation for a combat
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