
Modern Game Engine - Theory and Practice

Pick Your T-shirt – Style 1

• Piccolo Souvenir T-shirt

• Style 1

• Piccolo Digital World

Series

• Key elements

• Piccolo Logo P

surrounded by Piccolo

codes, representing the

digital world created by

Piccolo

Game-Engine Explorer

Modern Game Engine - Theory and Practice

Pick Your T-shirt – Style 2

• Piccolo Souvenir T-shirt

• Style 2

• Piccolo Pro Series

• Key elements

• Code between

Programmers

(DDDD) +Equation

of quaternion

function,

representing

professional

Game-Engine Explorer

Modern Game Engine - Theory and Practice

• How to get?

• Please comment under《Lecture16》@Bilibili before 10:00

am next Monday 7/25

• we will give out 10 T-shirts for the best comments

• Reward List for Naming Event

• otaku小许、张茂、Frozen、核桃、王十一、李同学、蝈蝈、

塞伦斯、鄙姓金名聪、家子颜

Get Your Own T-shirt

Modern Game Engine - Theory and Practice

• Q1: Is component-based architecture best suited for gameplay logic?

• Q2: How could Blueprint System support collaborative editing?

• Q3: Will Event System consider priority of events？

Q&A

WANG XI GAMES 104 2022

Basic Artificial Intelligence

Modern Game Engine - Theory and Practice

Gameplay Systems

Lecture 16

AI Basic

• Navigation

• Steering

• Crowd Simulation

• Sensing

• Classic Decision Making Algorithms

Advanced AI

• Planning and Goals

• Machine Learning

Outline of Artificial Intelligence Systems

Modern Game Engine - Theory and Practice

Navigation

Modern Game Engine - Theory and Practice

Navigation In Games

Find paths from a location to another in an automatic manner

Assassin's Creed: Odyssey

Modern Game Engine - Theory and Practice

Navigation Steps

Map representation Path finding Path smoothing

start

goal

start

goal

Modern Game Engine - Theory and Practice

• We need to tell AI agents where they can walk – Walkable area

• Walkable area of players is determined by character motion capabilities

• Physical Collision

• Climbing slope/height

• Jumping distance

• …

• Simulating movement of AI agents as players costs too much

• AI agents are still expected to have the same walkable area as players

Map Representations – Walkable Area

Modern Game Engine - Theory and Practice

• Waypoint Network

• Grid

• Navigation Mesh

• Sparse Voxel Octree

Map Representations - Formats

Modern Game Engine - Theory and Practice

Waypoint Network (1/3)

• Network connecting critical points (waypoints) from

the map

• Waypoint sources:

• Designed important locations

• Corner points to cover walkable area

• Internal points to connect near-by waypoints

adding flexibility to navigation

World of Warcraft

Modern Game Engine - Theory and Practice

Waypoint Network (2/3)

Usage of waypoint network is similar to subway system

• Find the nearest points to get on and off the network

• Plan the path on the waypoint network

start

goal

waypoint network path on waypoint network

Modern Game Engine - Theory and Practice

Waypoint Network (3/3)

Pros:

• Easy to implement

• Fast path finding, even for large maps

Cons:

• Limited flexibility: must go to the nearest point in

the network before navigation

• Waypoint selection requires manual intervention

start

goal

Modern Game Engine - Theory and Practice

Grid (1/3)

• Intuitive discretization of map

• Uniform subdivision into small regular grid shapes

• Common grid shapes

• Square

• Triangle

• Hexagon
Sid Meier's Civilization IV

Sid Meier's Civilization V

Modern Game Engine - Theory and Practice

Grid (2/3)

Grid property could be modified in runtime to reflect dynamic environmental changes

Modern Game Engine - Theory and Practice

Grid (3/3)

Pros:

• Easy to implement

• Uniform data structure

• Dynamic

Cons:

• Accuracy depends on grid resolution

• Dense grid lowers pathfinding performance

• High memory consumption

• Hard to handle 3D map 3D overlapping walkable surface

Modern Game Engine - Theory and Practice

Navigation Mesh (NavMesh)

• Solves the problem of representing

overlapped walkable areas

• Approximates the walkable area of character

controller based on physical collision and

motion capabilities

• Lowers network density to boost pathfinding

performance

Original 3D bridge

3D bridge on NavMesh

Modern Game Engine - Theory and Practice

NavMesh Example

Neighboring 3D convex polygons to represent walkable areas

original mesh NavMesh Top-down view of NavMesh

Modern Game Engine - Theory and Practice

Convex Polygon of NavMesh

Why convex polygon?

• Pathfinding generates a series of polygon

(Polygon Corridor) need to walk through

• Convexity guarantees the final path is limited in

the polygon and two adjacent polygons have only

one common edge (Portal)

convex polygon concave polygon

polygon corridor

Modern Game Engine - Theory and Practice

NavMesh Pros and Cons

Pros:

• Support 3D walkable surface

• Accurate

• Fast in pathfinding

• Flexible for selection of start/destination

• Dynamic

Cons:

• Complex generation algorithm

• Not support 3D space

Death Stranding

Modern Game Engine - Theory and Practice

Sparse Voxel Octree

• Represents “flyable” 3D space

• Similar to spatial partitioning

• Finest level voxels represents complicated

boundary

• Coarser-level voxels represents uniform

regions

Warframe

Modern Game Engine - Theory and Practice

Distances in map representations can be abstracted as edge costs in graph

Path Finding (1/2)

grid NavMeshwaypoint

Modern Game Engine - Theory and Practice

Pathfinding can be abstracted as shortest path problem in non-directional graph

Path Finding (2/2)

start

goal

start

goal

Modern Game Engine - Theory and Practice

Depth-First Search

Expand most recently added

Modern Game Engine - Theory and Practice

Breadth-First Search

Expand least recently added

Modern Game Engine - Theory and Practice

27

Dijkstra Algorithm (1/3)

Modern Game Engine - Theory and Practice

Dijkstra Algorithm (2/3)

Modern Game Engine - Theory and Practice

29

Dijkstra Algorithm (3/3)

Modern Game Engine - Theory and Practice

A Star (A*)

• Expand lowest cost in list

• Distance is known distance from source + heuristic

• Greedy: stops when reaches the goal

Modern Game Engine - Theory and Practice

A* – Cost calculation

Cost calculation: 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

• 𝑔(𝑛): the exact cost of the path from the start to node 𝑛

• ℎ(𝑛): the estimated cost from node 𝑛 to the goal

current node

Modern Game Engine - Theory and Practice

A* – Heuristic On Grids

• For 4 directions of movement, we can use Manhattan distance

• 𝐷1: cost for moving to the adjacent node

• ℎ 𝑛 = 𝐷1 ∙ (𝑑𝑥 + 𝑑𝑦)

• 𝑑𝑥 = 𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙 , 𝑑𝑦 = 𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙

current node

𝒅𝒙

𝒅𝒚

𝒙𝒏, 𝒚𝒏

𝒙𝒈𝒐𝒂𝒍, 𝒚𝒈𝒐𝒂𝒍

start

end

Modern Game Engine - Theory and Practice

A* – Heuristic On NavMesh (1/2)

Multiple choices when evaluating cost on NavMesh

• Using polygon centers or vertices usually over-estimate the cost

• Using hybrid method introduces too many points to check

• Midpoints of edges – a good balance

polygon centers midpoints of edgespolygon vertices hybrid

Modern Game Engine - Theory and Practice

A* – Heuristic On NavMesh (2/2)

• On a navigation mesh that allows any angle of

movement, use a straight line distance

• Use midpoint of the edge entering the current

node as node cost calculation point

• 𝐷: the cost for moving unit distance in any

direction

• ℎ 𝑛 = 𝐷 ∙ 𝑑𝑥 ∙ 𝑑𝑥 + 𝑑𝑦 ∙ 𝑑𝑦

• 𝑑𝑥 = 𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙 , 𝑑𝑦 = 𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙

start

goal

Modern Game Engine - Theory and Practice

A* – NavMesh Walkthrough

Modern Game Engine - Theory and Practice

A* – Heuristic

• ℎ(𝑛) controls A*’s behavior:

• With 100% accurate estimates, get shortest paths quickly

• Too low, continue to get shortest paths, but slow down

• Too high, exit early without shortest path

• Balance between pathfinding speed and accuracy

high ℎ(𝑛) low ℎ(𝑛)

Modern Game Engine - Theory and Practice

• Why we need path smoothing

• Zigzag, many unnecessary turns

• “String Pulling” – Funnel Algorithm

Path Smoothing

start

goal

start

goal

Modern Game Engine - Theory and Practice

Path Smoothing – Funnel Algorithm (1/2)

• The scope of the funnel is the possible scope of the path

• Narrow the funnel if necessary to fit the portal

Modern Game Engine - Theory and Practice

Path Smoothing – Funnel Algorithm (2/2)

Terminate when the goal is in the funnel

Modern Game Engine - Theory and Practice

NavMesh Generation – Voxelization

Sample collision scene by voxelization

Modern Game Engine - Theory and Practice

NavMesh Generation – Region Segmentation (1/4)

• Calculate the distance of each voxel to border

• Mark border voxels by AgentRadius to avoid clipping

Mark border voxels

D
is

ta
n
c
e
 to

 th
e
 b

o
rd

e
r

max

0

Modern Game Engine - Theory and Practice

NavMesh Generation – Region Segmentation (2/4)

Watershed Algorithm

• Gradually “flood” the “terrain”

• Form “watershed” (dividing ridge) when “pools” meet

Modern Game Engine - Theory and Practice

NavMesh Generation – Region Segmentation (3/4)

Segment the “neighboring” voxels into regions to provide a good basis for polygon mesh

Modern Game Engine - Theory and Practice

NavMesh Generation – Region Segmentation (4/4)

Regions don’t have overlapping voxels in 2D

Top-down view of regions

Modern Game Engine - Theory and Practice

NavMesh Generation – Mesh Generation

Generate NavMesh from segmented regions

Modern Game Engine - Theory and Practice

NavMesh Advanced Features – Polygon Flag

Useful for marking terrain types: plains, mountain, water, etc.

• “Paint colors” to add user-defined regions

• Polygons generated from user-defined regions have special flag

Modern Game Engine - Theory and Practice

NavMesh Advanced Features – Tile
• Fast for responding to dynamic objects

• Avoid rebuilding the entire NavMesh

• TileSize – trade-off between pathfinding and dynamic rebuilding performance

Death Stranding

Modern Game Engine - Theory and Practice

NavMesh Advanced Features – Off-mesh Link

Allow agents to jump or teleport

without off-mesh link with off-mesh link jump in Death Stranding

Modern Game Engine - Theory and Practice

Steering

Modern Game Engine - Theory and Practice

From Path to Motion

• Cars cannot follow planned path exactly

• Motion of cars are limited by theirs motion abilities:

• Linear acceleration (throttle/brake)

• Angular acceleration (steering force)

• Motion needs to be adjusted according to the limits

Reasonable Path

Output of Pathfinding

Modern Game Engine - Theory and Practice

Steering Behaviors

Seek / Flee

Velocity Match

Align

Modern Game Engine - Theory and Practice

Seek / Flee

Steer the agent towards / away from the target

• Position matching in the nature

• Accelerate with max acceleration towards /

away from the target

• Will oscillate around the target

• Input:

• Self position

• Target position

• Output:

• Acceleration

Modern Game Engine - Theory and Practice

Seek / Flee Variations

Modifying the target in runtime can generate new steering behaviors

Pursue

Wander

Path Following

Flow Field Following

Modern Game Engine - Theory and Practice

Velocity Match

Matches the target velocity

• Calculate acceleration from matching

time and velocity differences

• Clamp the acceleration by maximum

acceleration of agents

• Input:

• Target velocity

• Self velocity

• Matching time

• Output:

• Acceleration Arrive

Modern Game Engine - Theory and Practice

Align

Matches target orientation

• Input:

• Target orientation

• Self orientation

• Output:

• Angular acceleration

Target orientation

Alignment angle

Slow-down angle

Modern Game Engine - Theory and Practice

Crowd Simulation

Modern Game Engine - Theory and Practice

Crowd

A large group of individuals share information in the same environment alone or in a group

• Collision avoidance

• Swarming

• Motion in formation

• ……

Modern Game Engine - Theory and Practice

Crowd Simulation Models

• Started from “Boids” system of Reynolds

• Three families of models:

• Microscopic models

• “Bottom-Up”

• Focus on individuals

• Macroscopic models

• Crowd as a unified and continuous entity

• Mesoscopic models

• Divide the crowd into groups C. W. Reynolds

Flocks, Herds, and Schools: A Distributed

Behavioral Model

Modern Game Engine - Theory and Practice

Microscopic Models – Rule-based Models

Flock dynamics of animal crowds as an emergent behavior by modeling motion of

each individuals with simple predefined rules:

• Separation: to steer away from all of its neighbors

• Cohesion: to steer towards the “center of mass”

• Alignment: to line up with agents close by

Separation Cohesion Alignment

Modern Game Engine - Theory and Practice

Microscopic Models – Rule-based Models

Easy to implement, but not suitable to simulate complex behavior rules

Modern Game Engine - Theory and Practice

Macroscopic Models

Simulate crowd motion from a macro perspective

• Treat the crowd as a unified and continuous entity

• Control motions with potential field or fluid dynamics

• Does not consider interactions between individuals

and the environment in individual level

Flow Field In UE5 MassAI

Modern Game Engine - Theory and Practice

Mesoscopic Models

Simulate crowd motion taking care of both details

and the whole

• Divide the crowd into groups

• Deals with interactions between groups and

individuals in each group

• combinations of microscopic models and

formation rules or psychological models

Modern Game Engine - Theory and Practice

Collision Avoidance – Force-based Models

• A mixture of socio-psychological and physical forces influencing the behavior in a crowd

• The actual movement of an individual depends on the desired velocity and its interaction

with the environment

• Can simulate dynamical features of escape crowd panic

Modern Game Engine - Theory and Practice

Collision Avoidance – Force-based Models

Pros:

• can be extended to simulate more emergent behaviors of human crowds

Cons:

• Similar to physics simulation, simulation step should be small enough

Modern Game Engine - Theory and Practice

Collision Avoidance – Velocity-based models

Consider the neighbor information to make decisions in velocity space

• able to simulate in local space

• applied to collision avoidance

Reciprocal Velocity obstacle methods – Current standard collision

avoidance algorithms

• Velocity Obstacle (VO)

• Reciprocal Velocity Obstacle (RVO)

• Optimal Reciprocal Collision Avoidance (ORCA)

Modern Game Engine - Theory and Practice

Velocity Obstacle (VO)

• Calculate its own dodge velocity, assuming

other agent is unresponsive

• Appropriate for static and unresponsive

obstacles

• Overshoot

• Causes oscillation between two agents

attempting to avoid each other

Modern Game Engine - Theory and Practice

Reciprocal Velocity Obstacle (RVO)

• Assuming the other agent is using the

same decision process (mutually

cooperating)

• Both sides move half way out of the way of

a collision

• Only guarantees no oscillation and

avoidance for two agents

Optimal Reciprocal Collision Avoidance (ORCA)

Modern Game Engine - Theory and Practice

Sensing

Modern Game Engine - Theory and Practice

Sensing or Perception

Modern Game Engine - Theory and Practice

• Information of the agent itself

• Position

• HP

• Armor status

• Buff status

• …

• Can be accessed freely

Internal Information

Modern Game Engine - Theory and Practice

Static Spatial Information

Navigation Data

Smart Object

Tactical Map

Cover Point

Modern Game Engine - Theory and Practice

Dynamic Spatial Information (1/2) – Influence Map

Influence Map
Sight Area

Marks on navigation data

Modern Game Engine - Theory and Practice

• Information being sensed from a character

• Multiple character information can exist for a single character

as it can be sensed by multiple agents

• Usually contains:

• Game Object ID

• Visibility

• Last Sensed Method

• Last Sensed Position

Dynamic Spatial Information (2/2) – Game Objects

Modern Game Engine - Theory and Practice

• Light, sound, and odor travels in space

• Have max traveling range

• Attenuates in space and time with different patterns

• Sight is blocked by obstacles

• Smelling ranges shrinks over time

• Radiating field can simulate sensing signals

• Can be simplified as Influence Map

• Agents covered by the field can sense the information

Sensing Simulation

Modern Game Engine - Theory and Practice

Classic Decision Making

Algorithms

Modern Game Engine - Theory and Practice

Decision Making Algorithms

• Finite State Machine

• Behavior Tree

• Hierarchical Tasks Network

• Goal Oriented Action Planning

• Monte Carlo Tree Search

• Deep Learning

Modern Game Engine - Theory and Practice

Finite State Machine

• Change from one State to another according to some Conditions

• The change from one state to another is called a Transition

STATE 1 STATE 2

Condition 1→2

Condition 2→1

Transition

Transition

Modern Game Engine - Theory and Practice

Finite State Machine

A FSM for Pacman

ghost close &

not powerful

ghost gone

ghost gone

ghost close &

powerful
not powerful

powerful

Eating Avoiding

Chasing

Modern Game Engine - Theory and Practice

Finite State Machine – Pros & Cons

Pros

• Easy to implement

• Easy to understand

• Very fast to deal with simple case

Cons

• Maintainability is bad, especially add or remove state

• Reusability is bad, can’t used in other projects or

characters

• Scalability is bad, hard to modify for complicated

case

For Complicated Case

For Simple Case

Modern Game Engine - Theory and Practice

Hierarchical Finite State Machine (HFSM)

Tradeoff between reactivity and modularity

• Reactivity: the ability to quickly and efficiently react to changes

• Modularity:the degree to which a system’s components may be separated into building

blocks, and recombined

FSM with High Rreactivity Hierarchical Finite State Machine (HFSM)

Reactivity

Modularity

Modern Game Engine - Theory and Practice

Behavior Tree (BT)

Modern Game Engine - Theory and Practice

Behavior Tree

Similar to human thinking:

• If ghost close，run away

• But if I'm powerful, chase it

• Otherwise, eating

A FSM for Pacman

Avoid

Ghost

Ghost

Close

?

?

Eat Pills

Is

Powerful

Chase

Ghost

A BT for Pacman

ghost close &

not powerful

ghost gone

ghost gone

ghost close

&

powerful

not powerful

powerful

Eating Avoiding

Chasing

Focus on state abstraction and

transition conditions

Modern Game Engine - Theory and Practice

Behavior Tree – Execution Nodes

Self states or perceptions

Return true or false

Actions

Return success or failure，running

Execution node (leaf node)

• Condition node

• Action node

Avoid Ghost

Ghost Close？

?

?

Eat Pills

Powerful？ Chase Ghost

Ghost

Close？

Powerful？

Eat Pills

Chase

Ghost

Modern Game Engine - Theory and Practice

Behavior Tree – Control Nodes

Control flow node (internal node)

• Control flow determined by the return value of

child nodes

• Each node has a return value which is success,

failure or running

Avoid Ghost

Ghost Close？

?

?

Eat Pills

Powerful？ Chase Ghost

?

Sequence

δ

Selector

Parallel

Decorator

Classical control flow nodes

Modern Game Engine - Theory and Practice

Control Node – Sequence (1/2)

• Order

• Execute children from left to right

• Stop Condition and Return Value

• until one child returns Failure or Running，
then return value accordingly

• or all children return Success，then return

Success

• If Stop and Return Running

• the next execution will start from the running

action

Child 1 Child 2 Child NChild 2 ...

Modern Game Engine - Theory and Practice

Unlock

Door

Control Node – Sequence (2/2)

Sequence

• Allows designers to make a “plan”

Open Door
Pass

Through
Is Door

Locked

Modern Game Engine - Theory and Practice

Control Node – Selector (1/2)

• Order

• Execute children from left to right

• Stop Condition and Return Value

• until one child returns Success or Running，
then return value accordingly

• or all children return Failure，then return

Failure

• If Stop and Return Running

• the next execution will start from the running

action

?

Child 1 Child 2 Child NChild 2 ...

Modern Game Engine - Theory and Practice

Control Node – Selector (2/2)

Selector

• Could select one action to do response to

different environment

• Could do the right thing according to priority

?

Attack Chase

Patrol

Is Enemy in

Range

Is Enemy in

Sight
Running

Running

Running

Modern Game Engine - Theory and Practice

Control Node – Parallel (1/2)

Child 1 Child 2 Child N... ...

• Order

• Logically execute all children

simultaneously

• Stop Condition and Return Value

• Return Success when at least M child

nodes (between 1 and N) have succeeded

• Return Failure when at least N - M + 1

child nodes (between 1 and N) have failed

• Otherwise return Running

• If Stop and Return Running

• the next execution will start from the

running actions

Modern Game Engine - Theory and Practice

Control Node – Parallel (2/2)

Parallel

• Could do multiple things "at the same time"

Move to

Target
Shoot

Modern Game Engine - Theory and Practice

Behavior Tree

Execution nodes

• Action

• Condition

Control flow nodes

• Sequence

• Selector

• Parallel

Node Type Symbol Succeeds Fails Running

Sequence If all children succeed If one child fails If one child returns Running

Selector If one child succeeds If all children fail If one child returns Running

Parallel If ≥ M children succeed If ＞ N - M children fail else

Condition Upon completion If impossible to complete During completion

Action If true If false Never

?

text

text

Modern Game Engine - Theory and Practice

Tick a Behavior Tree

• The tick of BT is like thinking

• Every tick start from root node

• Go through different nodes from

up to down, left to right

• Each node must return failure,

success or running

Avoid Ghost

Ghost Close

?

?

Eat Pills

Is Powerful Chase Ghost

1

2

3
4

5

6

7

8
9

10

11

12

Modern Game Engine - Theory and Practice

Behavior Tree – Decorator (1/2)

Decorator

• A special kind of control node with a single

child node

• Usually some behavior pattern which is

commonly used

• For example, some common policies:

• Loop execution

• Execute once

• Timer

• Time Limiter

• Value Modifier

• Etc.

δ

Child

Policy

Examples of Decorator Nodes

Modern Game Engine - Theory and Practice

Behavior Tree – Decorator (2/2)

Decorator

• Example: Use timer to implement "patrol"

δ

Move to A

Wait 1s δ

Move to B

Wait 1s

Wait 1s Move to A Wait 1s Move to B

Modern Game Engine - Theory and Practice

Behavior Tree – Precondition

?

Ghost Close？

?

Is Powerful？

Chase Ghost
Avoid Ghost

Eat Pills

Action
Preconditions

Control Node

Preconditions

Avoid

Ghost

Ghost

Close？

?

?

Eat Pills

Is

Powerful？
Chase

Ghost

Simplify behavior tree structure with preconditions

Modern Game Engine - Theory and Practice

Behavior Tree – Blackboard

? ?

Action 2
Action 2

Succeed?
Action 3

Blackboard

Read "Action 2 Result" tag

Write "Action 2 Result" tag

Blackboard

Key Value

“Action 1 Result” False

“Action 2 Result” True

“Action 3 Result” False

... ...

Action 1

Blackboard : the memory of behavior tree

Modern Game Engine - Theory and Practice

Behavior Tree – Pros (1/2)

• Modular, Hierarchical organization

• each subtree of a BT can be seen as a

module, with a standard interface given

by the return statuses

• Human readable

• Easy to maintain

• Modification only affect parts of tree

Find Ball Pick Ball Place Ball

Find Ball Place Ball

?

Approach

Ball
Ball

Close

?

Grasp

Ball

Ball

Grasped

Pick Ball

Modern Game Engine - Theory and Practice

Behavior Tree – Pros (2/2)

• Reactivity

• Think every tick to quickly change

behavior according to

environment

• Easy to Debug

• Every tick is a whole decision

making process, so taht it is easy

to debug

Modern Game Engine - Theory and Practice

Behavior Tree – Cons

Cons

• Each tick starts from root node which costs much more

• The more reactive, the more condition to be checked and

the more costs per tick

Modern Game Engine - Theory and Practice

Upcoming: AI Planning and Goals

To make the AI more deliberative, game designers introduced the AI Planning technique

to improve the planning ability of AI

AI Planning:

• Manage a set of actions

• A planner make a plan according to

the initial world state

AI Planning

Actions

World State

Planning Goals

Action

Preconditions Effect

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

Navigation

• Amit Patel’s fabulous website with animated demonstration of pathfinding algorithms:

http://theory.stanford.edu/~amitp/GameProgramming/

• In-depth explanation of Detour Recast Navmesh generation algorithm:

http://critterai.org/projects/nmgen_study/

• AI Summit: 'Death Stranding': An AI Postmortem, Eric Johnson, Kojima Productions, GDC 2021:

https://gdcvault.com/play/1027144/AI-Summit-Death-Stranding-An

• Getting off the NavMesh: Navigating in Fully 3D Environments, Dan Brewer, Digital Extremes, GDC

2015: https://gdcvault.com/play/1022016/Getting-off-the-NavMesh-Navigating

• Mikko Mononen, Author of Recast Detour, blog on Funnel Algorithm :

http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html?m=1

http://theory.stanford.edu/~amitp/GameProgramming/
http://critterai.org/projects/nmgen_study/
https://gdcvault.com/play/1027144/AI-Summit-Death-Stranding-An
https://gdcvault.com/play/1022016/Getting-off-the-NavMesh-Navigating
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html?m=1

Modern Game Engine - Theory and Practice

Steering & Sensing

• Steering Behaviors For Autonomous Characters, Craig W. Reynolds, Sony Computer Entertainment

America:

https://www.researchgate.net/publication/2495826_Steering_Behaviors_For_Autonomous_Characters

• AI For Games, Ian Millington, 3rd Edition, CRC Press, 2019

• Knowledge is Power, an Overview of AI Knowledge Representation in Games, Daniel Brewer:

http://www.gameaipro.com/GameAIProOnlineEdition2021/GameAIProOnlineEdition2021_Chapter04_

Knowledge_is_Power_an_Overview_of_AI_Knowledge_Representation_in_Games.pdf

http://www.gameaipro.com/GameAIProOnlineEdition2021/GameAIProOnlineEdition2021_Chapter04_Knowledge_is_Power_an_Overview_of_AI_Knowledge_Representation_in_Games.pdf

Modern Game Engine - Theory and Practice

Crowd Simulation

• A review on crowd simulation and modeling, Shanwen Yang, Tianrui Li, Xun Gong, Bo Peng, Jie Hu:

https://www.sciencedirect.com/science/article/abs/pii/S1524070320300242

• Forced-Based Anticipatory Collision Avoidance in Crowd Simulations, Stephen Guy, Ioannis

Karamouzas, University of Minnesota, GDC 2015: https://www.gdcvault.com/play/1022465/Forced-

Based-Anticipatory-Collision-Avoidance

• RVO and ORCA How They Really Work, Ben Sunshine-Hill:

https://www.taylorfrancis.com/chapters/edit/10.1201/9780429055096-22/rvo-orca-ben-sunshine-hill

• RVO2 Library: Reciprocal Collision Avoidance for Real-Time Multi-Agent Simulation, Jur van den

Berg, et al.: https://gamma.cs.unc.edu/RVO2/

• Documentation of AI systems in Unreal Engine 5: https://docs.unrealengine.com/5.0/en-US/artificial-

intelligence-in-unreal-engine/

https://www.sciencedirect.com/science/article/abs/pii/S1524070320300242
https://www.gdcvault.com/play/1022465/Forced-Based-Anticipatory-Collision-Avoidance
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429055096-22/rvo-orca-ben-sunshine-hill
https://gamma.cs.unc.edu/RVO2/
https://docs.unrealengine.com/5.0/en-US/artificial-intelligence-in-unreal-engine/

Modern Game Engine - Theory and Practice

Classical Decision Making Algorithms

• Behavior Trees in Robotics and AI: an Introduction, Michele Colledanchise and Petter Őgre, 1st Edition,

CRC Press, 2018,

https://www.researchgate.net/publication/319463746_Behavior_Trees_in_Robotics_and_AI_An_Introd

uction

• The Behavior Tree Starter Kit, Alex Champandard, Philip Dunstan, Game AI Pro, 2013:

http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf

• FSM: Finite-State Machines: Theory and Implementation,

https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--

gamedev-11867

• Managing Complexity in the Halo 2 AI System, Damian Isla, Moonshot Games, GDC 2005:

https://www.taylorfrancis.com/chapters/edit/10.1201/9780429055096-22/rvo-orca-ben-sunshine-hill

https://www.researchgate.net/publication/319463746_Behavior_Trees_in_Robotics_and_AI_An_Introduction
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429055096-22/rvo-orca-ben-sunshine-hill

Modern Game Engine - Theory and Practice

Lecture 16 Contributor

- Olorin

- 新之助

- 大喷

- 普普

- 喵小君

- 一将

- Hoya

Q&A

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for

further information

Enjoy ;)

Coding

Course Wechat

