Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Homework Submission Extended

« Will extend Homework #2 and Homework #3 deadline to Aug 31t

Homework #2 : Rendering Homework #3 : Animation and Physics

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Voice from Community

« Some submissions are reported lost

sy “322” CRERRUER A ol BL s “Be™
e \We've tested the submission System after TELE: HOUDSE IEROCHE, WAL HEBIRE, KRSV R “AJ L.
received the reports RS FHREENE, 10 1)
« We noticed one critical step may easily be omitted #& AR | WEARSBRIER.
* We have highlighted the critical step and updated file upload title (homework_submit_test txt txt

our submission guide

* Please refer: =

https://cdn.boomingtech.com/games104 static/upl
oad/GAMES104 SmartChair Submission Guide.
pdf , Page 9

https://cdn.boomingtech.com/games104_static/upload/GAMES104_SmartChair_Submission_Guide.pdf

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Q&A about Piccolo Engine

* Q1: Is script system in Piccolo Engine’s roadmap? Which script language will Piccolo Engine
support?

* Q2: Why did Piccolo Engine use CMake as meta build system instead of XMake?

* Q3: Why some source code will be recompiled even no code is modified?

Modern Game Engine - Theory and Practice BORHMG T GAMES104

R ER

Lecture 15

Gameplay

Gameplay Complexity and Building Blocks

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Outline of Gameplay System

@4 024 X

Gameplay Complexity and
Building Blocks

* Overview

 Event Mechanism

» Script System

» Visual Script

* Character, Control and Camera

ARTIFICIAL INTELLIGENCE

Modern Game Engine - Theory and Practice

BOOMING -
TECH GAMES104

Challenges in GamePlay(1/3)

Cooperation among multiple systems

Street Fighter
Attack Feedback

003212

Interface Devices

Modern Game Engine - Theory and Practice

BOOMING
TECH GAMES104

Challenges in GamePlay (2/3)

Diversity of game play in the same game

The Witcher 3: Wild Hunt
Combat Gameplay

.,(.m?..u' ..Q‘
e gprorof L e s
v!

t
i’!. \L\‘. 3

JQ-_H sa

o op“’(\(mo 3

Sl oo MY

The Witcher 3: Wild Hunt
Card-playing Mechanic

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Challenges in GamePlay (3/3)

Rapid iteration

FORTNITE

SAVE = WORLD

\ \I‘
p:

: ff'r‘;‘:

Fortnite: Save the World Fortnite: Battle Royale
TPS,tower defense, survival battle royale

Epic acknowledged that within the Fortnite fundamentals, they could also do a battle royale
mode, and rapidly developed their own version atop Fortnite in about two months.

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Event Mechanism

BOOMING

TECH

- GAMES104
_

Let Objects Talk

Soldier

void Bomb:explode()

{

switch(go_type)

{

case GoType.humen_type:
{

/* process soldier x/

}
case GoType.drone_type:
{

/* process drone x/

}
case GoType.tank_type:
{

/* process tank x/

}
case GoType.stone_type:
{

/* process stone x/

}
default:
{
break;
}

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Event/Message Mechanism

* Abstract the world communication to messages
« Decoupling event sending and handling

void Bomb:explode()
Soldier {

sendExplodeEvent(go_id)

Tank

Modern Game Engine - Theory and Practice

BOOMING -
BOOMING * | GAMES104

Publish-subscribe Pattern

« Publisher categorizes published messages (events) into classes

« Subscriber receive messages (events) that are of interest without knowledge of which publishers

—— o Even

Dispatcher
®

Events

Different publishers send
different type of events

Different subscribers receive
events of thier interest

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

3 Key Components of Publish-subscribe Pattern

2

Event Definition Callback Registration Event Despatching

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Event Definition

Event Type

’
5. "EVENT_TYPE_BOMB_EXPLOSION"

Event Argument

Key-value Table of Event Arguments

Key Type Value
"radius” float 3.5
"damage" int 40

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Event Definition

Type and Arguments

class BombExplosionEvent : public Event

{
Point m_center; 1555 BulletHitEvent : public Event
float m_damage; {
float m_radius; float m_final speed;
}s float m_damage; | class MissileHitEvent : public Event
}s5 {

float m_damage;

¥

Impossible for
hardcode

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Event Definition

Type and Arguments
- Editable

class BombExplosionEvent
public Event

{

float m_damage;

float m_radius;

s

Hardcode

B Call Bomb Explostion Event é

D D
Target]self]
Reflection) Damage [00]
Radius [0.0 |
View in Editor
Details X [# Components
Q
Inputs
COde Please press the + icon above to add parameters
G e n e rator Copy signature from

Variable

Default Value

Bomb Explostion Event

BOOMING -
BOOMING | GAMESIO4

Callback Registration

Callback (function)

« Any reference to executable code that is passed as an argument to another piece of code

function invoke(call back function)
{
/] ...
call back function()
}
funcA funcB

Call funcA() Call funcB()

1 1

invoke invoke

T I timeline

Event A Event B

BOOMING
TECH GAMES104

Object Lifespan and Callback Safety

Time points of registration and execution differs

Timepoint of registration Timepoint of execution

registerFunction(funcA) call funcA

timeline

Modern Game Engine - Theory and Practice BOOMING -

TECH

GAMES104

Object Lifespan and Callback Safety

Callback
Registration

"EVENT_TYPE_ . _ .
BOMB_EXPLOSTON" D%‘ Soldier::BombExplosionCallbackFunction

Event
Dispatcher

// callback function registration
bomb_explosion callback func =
(soldier->bomb_explosion_callback function)

//Oo.
// when EVENT_TYPE_BOMB_EXPLOSION event comes

invok bomb_explosion_callback_func)

What if soldier already destroyed?
Wild pointer! Crashed!

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Object Strong Reference

"EVENT_TYPE_

BOMB_EXPLOSTON" Soldier::BombExplosionCallbackFunction

Event
Dispatcher

Make sure to
unregister callback
function before
delete objects,
otherwise it will
cause memory leak!

Prevent object from de-allocation as
long as callback function still registered

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Object Weak Reference

"EVENT_TYPE_

BOMB EXPLOSION" D#EI Soldier::BombExplosionCallbackFunction

Event
Dispatcher

B

Object could be de-allocated, and will
check callback function if valid

Modern Game Engine - Theory and Practice BOOMING

TECH

- GAMES104
_

Event Dispatch

« Send event to appropriate destination

>_

CallBackFuncB

>_

Dispatch

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Event Dispatch : Immediate

callback

. parent function returns
function

after callback function

parent
function

time

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Event Dispatch : Immediate

« Deep well of callbacks
When a bomb explodes near others......

EventManager: :sendEvent()

Bomb: :explode()

Bomb: :onEvent() -
EventManager: :sendEvent() f.

®
(Z
Bomb: :explode() .

b e 2
Bomb: :onEvent() Recursively call f. .f. f.
EventManager: :sendEvent() these functions 5"*"‘.
Bomb: :explode() (2
Bomb: :onEvent() .
EventManager: :sendEvent()
Bomb: :explode()

Deep GameWorld::updateObjects()
Callstack Engine::gamelLoop()
main()

Modern Game Engine - Theory and Practice

BOOMING ~ = GAMES104

TECH
Event Dispatch : Immediate
Problem The bleeding effe_ct s_houl_d be Ioz_:lded
but cost plenty of time in this function call
« Blocked by function
EventManager: :sendEvent()
EffectSystem: :addEffect() @ Blocked Soldier begin

EffectSystem: :onEvent()
EventManager: :sendEvent()
AttributeSystem: :updateHealth()
AttributeSystem: :onEvent()
EventManager: :sendEvent()
CombatSystem: :calculateDamage()
CombatSystem: :onEvent()
GameWorld: :updateSystem()
Engine: :gamelLoop()

main()

BulletHitEvent —

LowHealthEvent «-

bleeding after hitted

Combat

— DamageEvent
System

Attribute
System

Effect
System

BOOMING
TECH v GAMES104

Event Dispatch : Immediate

Problem

 Difficult for parallelization

EffectSystem
AttributeSystem

CombatSystem

AmmoSystem
timeline

LT LT LT T
= D) D] D) O] 5] DRl B D B D

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Event Queue

Basic Implementation

« Store events in queue for handling at an arbitrary future time

Event Queue

post event

Subscriber 1

Publisher 1 Eie

publish event

Publisher 2 - i

post event

scheduled for later

parent
function

time 0 ° .

N
ﬁﬁﬁﬂ
W

callback
function

> Subscriber 2

Subscriber 3

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Event Serializing and Deserializing

» To store various types of events

XX

Event Buffer
Serializing Deserializing

Modern Game Engine - Theory and Practice

BOOMING -

TECH

»

GAMES104

Event Queue
Ring buffer

Ox12

Ox00

B0%0

S_'b
&

read pointer (x00
write pointer Qxi0o0

2020

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Event Queue
Batching

> - - - > NetEventManager

Net Event Queue

> - - » CombatEventManager

Combat Event Queue

& ---- » AnimationEventManager

Animation Event Queue

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Problems of Event Queue (1/2)

« Timeline not determined by publisher

- Create Bullet
Update Ammo Count
@ Add Fire Effect

Fire a bullet
- Add Fire Sound

(Parallel Processing)

Seqguence of Sequence of
Event Sent Event Processed

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Problems of Event Queue (2/2)

* One-frame delays

Combat Event Queue

One-frame l

|
oo o om -

NetSystem:: AttributeSystem:: | CombatSystem:: | AmmoSystem:: CombatSystem:: AmmoSystem::
update() update() processEvent() update() | | 7 ProcessEvent() Update()
Frame 1 Frame 2

Sequence of System timeline

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Game Logic

Modern Game Engine - Theory and Practice

BOOMING

BOOMING | GAMESIO4

Early Stage Game Logic Programming

void Player::tick(Float delta)

I
L

Compiled language(mostly C/C++)
« Compiled to machine code with high performance

« More easier to use than assembly language

updateDirection();

if (isKeyPressed(MOUSE_LEFT))

I
L

fire();
b

it (isKeyDown(KEY_W))
{
moveForward(delta);
b
else if (isKeyDown(KEY_S))
{
moveBackward(delta);
¥
it (isKeyDown(KEY_A))
r
L
moveleftward(delta);
b
else if (isKeyDown(KEY_D))
{
moveRightward{delta);
}

Modern Game Engine - Theory and Practice

BOOMING -

TECH

GAMES104

Problem of Compiled Languages

Game requirements get complex as hardware evolves

* Need quick iterations of gameplay logic

Issues with compiled language
* Need recompilation with even a little modification

« Program can easily get crashed with incorrect codes

Modern Game Engine - Theory and Practice

BOOMING
TECH

_ . GAMES104

Glue Designers and Programmers

« Get rid of inefficient communication between designers and programmers
« Designers need direct control of gameplay logic

« Atrtists need to quickly adjust assets at the runtime environment

= / DESIGNER
_/\r PROGRAMMER
AN . &

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Scripting Languages

Support for rapid iteration
function tick(delta)

o Easy to learn and write if input_system.isKeyDown(KeyCode.W) then
self:moveForward(delta)

» Support for hot update elseif input_system.isKeyDown(KeyCode.S) then
self:moveBackward(delta)

« Stable, less crash by running in a sandbox end

if input_system.isKeyDown(KeyCode.MouselLeft) then
self:fire(delta)
end

end

Lua Script Example

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

How Script Languages Work

Script is converted to bytecode by a compiler first, then run on a virtual machine

Script Text { Compiler } Bytecode { M]

Instruction | Opcode Description Script: print(36 + 15)

NUM 0x00 Push a literal number _
Bytecode: 0x00 | 0x24 | Ox00 | OxOF | 0x01 | 0x02

Pop two numbers and push

ASE O0x01 the result of addtion

Instruction: NUM 36 NUM 15 ADD PRT

PRT 0x02 Pop a value and print

Instruction Set Example Bytecode Example

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Object Management between Scripts and Engine (1/2)

Obiject lifetime management in native engine code
» Need to provide an object lifetime management mechanism

» Not safe when script uses native objects (may have been destructed)

@ @ @ Object, 'Object, [Object

Native Script

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Object Management between Scripts and Engine (2/2)

Object lifetime management in script
» The lifetime of objects are auto managed by script GC
* The time when object is deallocated is uncontrolled (controlled by GC)

« Easy to get memory leak if reference relations get complex in script

Object, 'Object, [Object @ @ @

Native Script

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Architectures for Scripting System (1/2)

Native language dominants the game world
« Most gameplay logic is in native code
« Script extends the functionality of native engine code

« High performance with compiled language

. Native Engine Cal :

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Architectures for Scripting System (2/2)

Script language dominants the game world
« Most gameplay logic is in script
« Native engine code provides necessary functionality to script

* Quick development iteration with script language

Call - -
Tick N Native Engine
Code

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Advanced Script Features - Hot Update

L : : : : Function Address
Allow maodifications of script while game is running

* Quick iteration for some specific logic OXOLAD

Func
« Enable to fix bugs in script while game is online OxBC80
Ox01AO0: x

A troublesome problem with hot update

_ _ x function Func()
« All variables reference to old functions should var =var + 1

end
be updated too v
local var = 0
7y OxBC80:

function Func()
var=var + 3
end

A

Hot update workflow example

Modern Game Engine - Theory and Practice

BOOMING
TECH

_ . GAMES104

Issues with Script Language

The performance is usually lower than compiled language
« Weakly typed language is usually harder to optimize when compile
* Need a virtual machine to run the bytecode

« JIT is a solution for optimization
Weakly typed language is usually harder to refactor

Normalized Results for Time and Memory
M Time B Memory

71.64

56.64
7.16 7.20
1.00 1.00 2.68 2.80 I 444. I

C+HG++ 12.1.0) Go(Go 1.18.3) Java(OpenlDK 18.0.1) CH#(.Net 6.0.301) Python(Pyston 3.8.12) lua(lua 5.4.4)

N-body problem benchmark of popular languages

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Make a Right Choice of Scripting Language

Things need to be considered
« Language performance

« Built-in features, e.g. object-oriented programming support

Select the proper architecture of scripting
* Object lifetime management in native engine code or script

* Which one is dominant, native language or script

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Popular Script Languages (1/2)

Lua (used in World of Warcraft, Civilization V)
* Robust and mature
* Excellent runtime performance

« Light-weighted and highly extensible

Python (used in The Sims 4, EVE Online)
« Reflection support
« Built-in object-oriented support

« Extensive standard libraries and third-party modules

Modern Game Engine - Theory and Practice

BOOMING
BOOMING . GAMES104

Popular Script Languages (2/2)

C# (to bytecode offline, used in Unity)

« Low learning curve, easy to read and understand

 Built-in object-oriented support

« Great community with lots of active developers

Time(ms)

1416

803
599

196 141 195
- 2.5 16

Binary tree (depth 15) N-body(500,000 steps) Hello world

M Lua(LuallT 2.1.0) M Python(Pyston 3.8.12) W C#(Mono 6.12.0)

Binary tree (depth 15)

Peak Memory(MB)

73.8

55.1

2.4 2.2

N-body(500,000 steps) Hello world

M Lua(LualiT 2.1.0) M Python(Pyston 3.8.12) W C#(Mono 6.12.0)

Benchmark of 3 popular script languages

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Visual Scripting

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Why We Need Visual Scripting

» Friendly to non-programmers, especially designers and artists

» Less error-prone with drag-drop operations instead of code writing

v > B 1o debug object selected+
Clas: al

ults Simulation Play Debug Filter

Unreal Blueprint Unity Visual Scripting

Modern Game Engine - Theory and Practice

BOOMING
BooM GAMES104

Visual Script is a Program Language

Visual script is also a programming language, which usually needs

Variable

Statement and Expression
Control Flow

Function

Class (for object-oriented programming language)

class Class
{
public:

int m_a;

}s

void Function(int a)

{ .
!!HEEI!II\ﬂaHabRE

—if (a »= 9) _
{ Expression

c.m a =|3 * a + 4

Control | 3

—

Flow else

lc.m_a = 0;| Statement

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Variable
Complex type
Preserve the data to be processed or output struct [Complex
© Type { int al;
- Basic type, e.g. integer, floating Basic type [float| [b} Member Variable
« Complex type, e.g. structure char Ch
« Scope s
» Local variable void Example()
* Member variable {

double d; Local Variable

Modern Game Engine - Theory and Practice

BOOMING -

TECH

GAMES104

Variable Visualization - Data Pin and Wire

Use data wires through data pins to pass variables (parameters)

« Each data type uses a unigue pin color

Bool

Integer O»

: | GetActorLocation
Float O» Pass Data

I “self] Return Value j{@
@) ’

e 1
Transform ® Add pin +
:) " Location Offset @~
Vector L)

Linear Color

Rotator O

| SetActorRotation

D i Output Pin p

Target | self]

_ Mew Rotation
(3 —_——y ————
=[x 00][v 00](z 0.0]

Teleport Physics [

Input Pins

Return Value

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Statement and Expression

Control how to process data void Example()

{
« Statement: expresses some action to be carried out
« Assignment Statement Assignment Statement
: int a = 3;
 Function Statement ?
Function Statement
* doSomething();
» EXxpression: to be evaluated to determine its value Function Expression
: : int b = |getValue()];
« Function Expression & U
_ Math Expression
« Math Expression int sum = @ + bj;

Modern Game Engine - Theory and Practice

BOOMING -
BooM GAMES104

Statement and Expression Visualization - Node

Use nodes to represent statements and expressions

« Statement Node

» Expression Node

J GetActorLocation

larget is Acito

Target [self] Return Value @

\ = : =
.

L ® Add pin 4

" Location Offset @

Expression Nodes

Target | self | Sweep Hit Result

~ New Location Return Value
“ X 00][v 00][z 00|

sweep ()

Teleport ()

Statement Nodes

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Control Flow

void Example()

T
L

Control the statement execution order

first();
« Sequence then(); | S€QUeNce
» By default statements are executed one by one : .
if (condition)
r
. " g
Conditional doLFTrue()
« Next statement is decided by a condition }1 Conditional
2l15e
« Loop {
doIfFalse();
» Statements are executed iteratively until the }
condition is not true for (int 1 = @; 1 < loop_count; ++1)
{
dolteration();
h
h

Loop

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Control Flow Visualization - Execution Pin and Wire

Use execution wires through execution pins to make statements sequence

* Use control statement nodes to make different control flow

Z== OVDOT‘hfIV‘“H — “& Do Iteration
G |: : FEIPIETEIE .© For Loop Sl .
Target [self] Target [self] O First Index 0] Index O» Target [self]

O» Lastindex [0] ~ Completed 3
Sequence \ e
D T T T T T :

Target [self]

~ Branch

Loop

Target [self]

Conditional

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Function

A logic module which take in data, process it and return result(s)
* Input Parameter

» The data required input to be processed
Input Parameter

float functionExample(float input
« Control how to process data {

» Function Body

« Return value(s) dosomething();
float result = calculateResult();

return result;| Return value

 The data to be returned

Function Body

Modern Game Engine - Theory and Practice

BOOMING -
TECH GAMES104

Function Visualization - Function Graph

Use a graph with connected nodes to make a function

Function Body | ——

SET

» —»

O Health [0.0] O
B Take Damage T Branch ‘
» | True

Target | self]

= -y Condition False [
Input BT
Parameter

=l

@ Health O

Example: Define a Function with Graph

B Return Node
Is Dead [

Return

B Return Node
Is Dead [}

Modern Game Engine - Theory and Practice

BOOHMIFG GAMES104
Class
A prototype for a kind of objects
. class ClassExample
* Member Variable [
oh I . . : blic:

« The lifetime is managed by the object instance . i;t sum()
« Member Function ‘ return m_a + m_b; Member Function

« Can access member variables directly '

Maybe overrided by derived classes

private:
int m_a;

int m_b; | Member Variables

};

Modern Game Engine - Theory and Practice

BOOMING -
BOOMING | GAMES104

Class Visualization - Blueprint

Use blueprint to define a class that inherits from a native class

Event Callback Functions
Member Functions

Member Variables

M 1y Elueprint B8 Viewport m= Event Graph

+Add New> o 1 @ :

Event Callbh .

FuncUonS“**“*—“**“*—“*

* ConstructionScript
f Add
f TakeDamage

Functions

+*
+*

, Member
IsRunning Varlab I eS

MName
Damage Target | self
IsDead

Event Dispatchers

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Make Graph User Friendly

* Fuzzy finding

« Accurate suggestions by type

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Visual Script Debugger

Debug is an important step among development

« Provide user-friendly debug tools for visual scripting

!! "" > S No debug object selected v
55 Defaults Simulation Play

Debug Filter

f Get Control Rotation

Target [self] Retum Value @ —

— S s —_—
~Z Break Rota - f Get Forward Vector
; ® inRot Retum Value

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Issues with Visual Scriping (1/2)

Visual script is hard to merge for a team work

Usually a visual script is stored as a binary file

Manually reorder script graph is inefficient and error-prone even with a merge tool

niGraph
Removed Node "Get Value'
= :

Removed Link from ‘Print
CONFLICT: R Link
Rem
R

k from
fded Link from

F° switchon nt

© Event Tick f Print String ~
-) —
In String

Printto (7]
Printto Log)

ment Ofly
A

£* Switchonnt

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Issues with Visual Scriping (2/2)

The graph can get pretty messy with complex logic

* Need uniform graph layout rules for a team work

'© Handle Move Touch

Se==-0
e Target

Modern Game Engine - Theory and Practice

BOOMING -
BooM GAMES104

Script and Graph are Twins

¥ Move Forward

function moveForward(delta_seconds)
local location = self:getlocation()
local direction = self:getForward()
local speed = self.speed
local movement = delta_seconds * speed * direction
selfisetLocation(location + movement)
end

4

Script Graph [Graph | Bytecode

Delta Seconds @

" f GetActorLocation

Target [self]

J Get Forward

- : .’
Speed @— ——— @

Direction @

@

lAdd pin 4

Return Value @

@
@

Compiler

f
L

VM

“f SetActorLocation
» o

Target [self] Sweep Hit Result

@ New Location Return Value

\ e / sweep O

+ Teleport ()
Add pin +

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

“3C" in Game Play

It takes two

Modern Game Engine - Theory and Practice

BOOMING -

TECH

-

GAMES104

What is 3C?

3C: Character, Control & Camera
3C is the primary element that determines the gameplay experience

Grindstone Orig|

JH- 25

!
: For all types
K Jrcnt e

i

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Character

In-game character, both player and npc.

Include character movement, combat, health,
mana, what skills and talents they have, etc.

One most basic element of a character is
movement.

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Character: Well-designed Movement

Movement looks simple, but it's hard to do well.

In AAA games, every basic state of action needs to be
broken down into detailed states.

several state changes in a few seconds

Idle Start Walk Accelerate Run Brake

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Extended Character: More complex and varied states

Hanging Skating Diving

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Extended Character: Cooperate with other systems

Game effects, sound, environment
interaction.

Modern Game Engine - Theory and Practice BOOMING = GAMES104

v

Extended Character: More realistic motion with Physics

Airflow
Inertia tensor
Torque

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Movement State Machine
— u' | B ~ i | 1delHandPunch

= -
T YA IHendEnordReady Idefight D —_——— Id el aceiit
Banfeady 1HendSncedlsb _,_'*' (
YA 3 }f YA YA \\ ldlaReadyloak
i 1HandSwardReady Tranzinn tdlerighe 1d efroathick

LHandon oot ock -
—

WerardOverhaad

Bowales

EonAendyTranutnn

e

IHandSnvardldie

e .
Bowidle A \
1deCometiare IdeKanph ok //

- - —
< ~ </ H
\. , IdeReady
. WizardZhandThraw
-
,.

tdlaChear \ / /’\ >
+ —) \

B e —
e - PistelReadyTranshion
D IdlaCin

1desad B /7""// |/ 4 | 5
‘ \.@% =7 \ 1deOcdgeriaht

IdePendyCrouch

WizardlhandThraw

Wizarotlock

PisteiReady

IdeWakTramabcn A -
— J e -
o - ~ -
[dleWak IdleStrafeRightTransbion IdeNcarter AT 1deDodpaleft
PiriciReioad
- g - IdeRunTranuton
// 5
IdleStrafeleftTransbon :
IdlaStrateRight Pistellnetant -
- - - Patofire
Neapanitand
\\‘Q 1dePun + AurDve
IdleStrafelatt [dle PO DagTurripht NesponReadyTranmabion Y4
f 1
Y‘ Any State Rurdump

Y/

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Control

Different input device
Different game play

100 100

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

A Good Example of Control

Modern Game Engine - Theory and Practice

BOOMING
BOOMING . GAMES104

From Input to Game Logic

Aim

\

Input signal Events

Shoot

Input device Action

Game logic

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Control: Zoom in and out

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Control: Aim Assist

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Control: Feedback

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Control: Context Awareness

Context-sensitive controls
* The same input button produces different effects in different game scenarios.

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Control : Chord &Key Sequences

Chords
« when pressed at the same time, produce a unique
behavior in the game

Key Sequences

« Gesture detection is generally implemented by
keeping a brief history of the HID actions performed by
the player

[2 TEAM [KARI WARRIORS

C P
\ s 48 RALF JONES

O EmMT © =z==T D whEEMT

&~ —ERBMANR [] ==

E EXENT

WSS R 1SR

® JA(FRAbAYENY
D «or= + w

& ANYRARS12
Do + x

EEiz8:]

® S)\T7+vs@E
NI E+ &

® SLIFYY (FTAVHN)
R R R

© zoE@EwSET
O MAXE—RR®

M MAXKEG

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Camera: Subjective Feelings

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Camera Basic: POV & FOV world space

-1‘
4

- Y

POV (point of view)
« determines the position of the player to observe

N

FOV (field of view)
« determines the size of the player's viewing Angle

Modern Game Engine - Theory and Practice BOOMING = GAMES104
v

Camera Binding

Using POV and rotation to bind.

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Camera Control

focusing

Spring Arm FOV&distance Curve

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Camera Track

1dow Tools Build Select Actor Help

Q Platforms v

Import Content...
Quixel Bridge
Unreal Marketplace

5 Content Browser >

Basic
Lights
Shapes

5 Cinematic

+ Visual Effects
Volumes

=« Cine Camera Actor
Ts« Camera Rig Crane

8¢ Camera Rig Rail

All Classes g5 Level Sequence Actor ::

+ Place Actors Panel

Camera Track Scene Editor

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Camera Effects

Provide the camera with more post-visual effects, such as filters and shake.

Camera Shake Camera Filter

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Many Cameras : Camera Manager

Camera Switch

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Camera: Subjective Feelings

Complex effects are often achieved by multiple base adjustments.
To create a sense of speed as an example, we can do:

« Add lines in the speed direction

* The character falls backwards

« The dynamic fuzzy

« Zoom in FOV (to speed up changes in screen content)

Speed
Motion blur, magnify FOV

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Camera: Subjective Feelings

loose feeling Cinematic

 Relax camera movement filter, motion, sound, narrator,
model, animation, camera
movement,...

LEAD ARTIST
CHRISTIAN NAKATA

LEAD. BENVIRONMENT ARTIST
ANDRES RODRIGUEZ AVILA

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Camera

8 Update Camera FOV

For artists and designers to optimize the effect: T e

* Inheritable classes
« Function that can be accessed by Blueprint e R TT——TT e
« Adjustable parameters ., o O - s e

FovSPeed @ f FinterpTo

—— @ Alpha
Current Distance Alpha @ / @ Current Return Value O

(T ———— @ Target
f Get World Delta Seconds
@ Delta Time
Return Value @
@ Interp Speed

[®{ Actor Component l > G IEEeaE ' All Actions for this Blueprint Context Sensitive Post Process
Q
A Scene Component is a component that has : Camera
transform and can be attached to other s] J Deproject Screen to World
J Get Camera View (FollowCamera) al Reg 00
ALL CLASSES J Get View Projection Matrix - STE

500.0

A Scene Component

O\ J Project World to Scree 5 00

- . - § Ratio (FollowCamera) ez 3
@ CameraModifier_CameraShake ST o

ect Ratio (FollowCamera) ar Blur Size 150

v @ CameraShakeBase] Field Of View (FollowCamera)
@} DefauliCameraShakeBase 5 Ortho Far Clip Plane (FollowCamera)

(.;;} MatineeCameraShake Ortho Near Clip Plane (FollowCamera)
e Ortho Width (FollowCamera)

AW o ol 1)
@} LhﬂObPhY:&lCﬂlMﬂtEllal g Post Process Blend Weight (FollowCamera)

&%) CheatManager f Set Projection Mode (FollowCamera)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Lecture 15 Contributor

. g _ m - B _ QIUU
- BEY - Jason - SRuE - Cf&
- Mo Ef - WH - B - FR
- E#k - BOOK - Shine - P RE
- IZNETR - MANDY - PH - CC
R - Unicorn - Judy PN

- Hoya - IR - Leon - R

Modern Game Engine - Theory and Practice BOOMING GAMES1I04

&A

Modern Game Engine — Theory and Practice TecH '~ GAMESIO4

Course Wechat

Follow us for
further information

