
Modern Game Engine - Theory and Practice

• Currently Programming Assignment 3 is still open for submission. We have received

more than 400 submissions. After our teaching assistants finished reviewing all the

submissions, we will sort the problems in them and provide answers. Meanwhile, we

are making the FAQ manual to help your studying progress.

• To address overdue submissions, we will reopen Programming Assignment

submission later. Practicing is the fastest way for studying. We hope no matter when

you enter the course, you can join the practice in Programming Assignments. Come

to practice and discuss in the community!

Voice from Communities

Modern Game Engine - Theory and Practice

• Q1: Why does Piccolo Engine use custom asset format instead of universal formats such as glTF

or FBX?

• DCC formats are not suitable for game engines

• Data organization needs to be optimized for runtime performance

• Many formats are not open-sourced. SDKs are required to be integrated to use them

• Q2: Why does Piccolo Engine use MoltenVK on macOS instead of Metal API?

• MoltenVK maps Vulkan to native Metal API on macOS

• Currently we use Vulkan for cross-platform compatibility

• Native graphic APIs will be supported in the future

• Q3: When does Programming Assignment 3: animation and physics due?

• 18 July 23:59:59

Q&A about Piccolo Engine

WANG XI GAMES 104 2022

Applications & Advanced Topic

Modern Game Engine - Theory and Practice

Lecture 14

Tool Chains

Modern Game Engine - Theory and Practice

Foundation of Tool Chains

• What is Game Engine Tool Chains

• Complicated Tool GUI

• How to Load Asset - Deserialization

• How to Make a Robust Tools

• How to Make Tool Chain

• What You See is What You Get

• One More Thing - Plugin

Applications & Advanced Topic

• Glance of Game Production

• Architecture of A World Editor

• Plugin Architecture

• Design Narrative Tools

• Reflection and Gameplay

• Collaborative Editing

Outline of Tool Chains

Modern Game Engine - Theory and Practice

Glance of Game Production

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Adapt to Different Game Genres

Modern Game Engine - Theory and Practice

Challenges from Real Production

• Massive various data from DCC

and engine tools

• Artist, designer and programmer

with different mindsets

• WYSIWYG is must for high

quality production

Modern Game Engine - Theory and Practice

World Editor
- A hub for everything to build the world

Content

Browser

Levels

Toolbar

Layers

Sequence

Recorder

Details

Outliner

Viewport

Modern Game Engine - Theory and Practice

Editor Viewport : A Special Version of Game Engine

• Main window of interaction between

designers and game world

• Powered by a full game engine in special

“editor” mode

• Provides a variety of special gadgets and

visualizers for editing

WARNING: Editor-only code must be moved out of released game!

Modern Game Engine - Theory and Practice

Everything is an Editable Object

• The editing requirements of all objects in the editor world are mostly the same, such as

moving, adjusting parameters, etc

Modern Game Engine - Theory and Practice

Different Views of Objects

• Display all of the objects within the scene

• Organize objects in different views for user conveniences

Categories and groupsTree view

Modern Game Engine - Theory and Practice

• Displays all of the editable properties

for the selected objects

• Beyond schema, we can define

some customized editing utilities for

different types

Schema-Driven Object Property Editing

Modern Game Engine - Theory and Practice

• Provide intuitive thumbnail of all assets

• Share asset among different projects

• Evolution of asset management from static file folder to content “ocean”

Content Browser

Modern Game Engine - Theory and Practice

Editing Utilities in World Editor

Modern Game Engine - Theory and Practice

Mouse Picking

Ray Casting

Pros:

• No cache required

• Can support multiple objects on selected rays

Cons:

• Poor query performance

RTT

Pros:

• Easy to implement range queries

• Ability to complete queries quickly

Cons:

• Need to draw an extra picture

• Obstructed objects cannot be selected

Modern Game Engine - Theory and Practice

Object Transform Editing

Modern Game Engine - Theory and Practice

Terrain

Landform

• Height map

Appearance

• Texture map

Vegetation

• Tree instances

• Decorator distribution

map

Modern Game Engine - Theory and Practice

Height Brush

• Draw height map to adjust terrain mesh

• Height change needs to be natural and

smooth

• Can be easily adjusted to the desired

results

• Customized brush

Modern Game Engine - Theory and Practice

Instance Brush

Pros:

• Instance position is fixed

• Available to further modification

Cons:

• Large amount of data

Modern Game Engine - Theory and Practice

Environment

• Sky

• Light

• Roads

• Rivers

• …

From up to down, environment

around us present a live world to the

player. Edit these environment

elements would also be important.

Modern Game Engine - Theory and Practice

Rule System in Environment Editing

There are various realistic rules when we build the environment:

• No trees on the road.

• No decorators on the road.

• Road should fit the terrain.

• Stones usually lay on road sides.

• …

Road system would infect the data of other environment systems.

Modern Game Engine - Theory and Practice

Environment — Rule System

Placement_Object

Placement_Trees

Placement_Water

Placement_Roads

Tree Result

Rules:

Tree will not grow beside objects.

Tree will not grow in water.

Tree will not grow on roads.

Conclusion:

• Rule system handling data changes.

• Decoupled Environment systems.

Modern Game Engine - Theory and Practice

Environment — Spline

Modern Game Engine - Theory and Practice

Editor Plugin Architecture

Modern Game Engine - Theory and Practice

Examples of Plug-in Module in Commercial Softwares

ChromeQTCreator Unreal

Modern Game Engine - Theory and Practice

Any system and object type could be plug-ins to Editors

A Cross Matrix between Systems and Objects

Modern Game Engine - Theory and Practice

Combination of Multiple Plugins (1/2)

Covered

• Only execute the newly registered logic, skip

the original logic

• Ex. Terrain editing overwrite

Distributed

• Each plugin will be executed, and if there is an

output, the results will eventually be merged

• Ex. Most special system editing seperately

Modern Game Engine - Theory and Practice

Combination of Multiple Plugins (2/2)

Onion rings

• On the basis of the pipeline, the core logic of

the system is in the middle, and the plug-in pays

attention to the logic of entering and exiting at

the same time

• Ex. Road editing plugin with terrain plugin

Pipeline

• Input and output are connected to each other,

generally input and output are the same data

type

• Ex. Asset preprocessing, geometry for physics

Modern Game Engine - Theory and Practice

One More Thing – Version Control

A certain version relationship is required between the plug-in and the host application to ensure

that they can work together normally.

• Plug-in use the same version number with the host application

• Plug-in use the version number of the plug-in interface

• This is more recommended because the update frequency of the plug-in interface and the

software may be different

Modern Game Engine - Theory and Practice

Design Narrative Tools

Storytelling in Games

Modern Game Engine - Theory and Practice

Time

Storytelling in Game Engine

Play sound

Play effect

Play animation

Ajust light

...

Time point 2 3 4 5 6 7 8

Control many parameters variance in the timeline

1

Modern Game Engine - Theory and Practice

Sequencer

• Track: In order to reference actors in your sequence. Any character, prop, camera, effect, or other

actors can be referenced and manipulated in Sequencer

• Property Track: Property of reference actors in track

• Timeline: A line describing time in discrete frames

• Key Frame: The key fames can manipulate properties. Upon reaching a key frame in the timeline,

the track's properties are updated to reflect the values you have defined at that point

• Sequence: Sequencer's data

加一个sequencer界面图

=Track

=Property Track

=Timeline

=Key Frame

=Sequence

Modern Game Engine - Theory and Practice

Sequencer –Bind Objects to Track

How to let the sequencer control

my “chick”

• Bind the “chick” to Track

Modern Game Engine - Theory and Practice

Sequencer – Bind Object Property to Property Track

How to control the moving

position of the “chick”

• Bind position property to

property track

Modern Game Engine - Theory and Practice

Sequencer – Set Key Frame

How to make an “chick” reach

a specified position

Modern Game Engine - Theory and Practice

Sequencer – Set Key Frames

A

C

A,B,C,D are key frames.

How “chick” go from A to

B to C to D
B

D

Modern Game Engine - Theory and Practice

Similar to animation, set key frames

Sequencer – Interpolate Properties along Key Frames

Modern Game Engine - Theory and Practice

Reflection and Gameplay

Modern Game Engine - Theory and Practice

Any data in game engine can be bind into track based on reflection system

Reflection is Foundation of Sequencer

“chick” transform Sequencer property track

Modern Game Engine - Theory and PracticeComplexity of Game Play

Modern Game Engine - Theory and Practice

Visual Scripts system

Visual Scripting System

Modern Game Engine - Theory and Practice

Hard Code Method for More Feature (1/2)

Modern Game Engine - Theory and Practice

Hard Code Method for More Feature (2/2)

Modern Game Engine - Theory and Practice

A Common Solution - Reflection

Java Reflection

In computer science, reflective programming or reflection is the ability of a process to examine, introspect,

and modify its own structure and behavior.

Modern Game Engine - Theory and Practice

Reflection Build the Bridge between Code and Tools

Once and for all！

Using reflection to generate a code meta information

map

class_name, func_name and para_name

generate accessor and invoker

Modern Game Engine - Theory and Practice

How to Implement Reflection in C++

• Collect type info from code

• Generate code to provide accessors for fields and methods

• Manage all accessors with a <string,accessor> map

Modern Game Engine - Theory and Practice

How to Get Type Info from Code(1/2)

General Programming Language(GPL) Compilation Process

Modern Game Engine - Theory and Practice

How to Get Type Info from Code(2/2)

Abstract Syntax Tree(AST): An abstract representation of the syntax structure of source code. It

represents the syntax structure of programming language in the form of a tree, and each node in the tree

represents a construct in the source code.

Modern Game Engine - Theory and Practice

Why Piccolo Use Clang

One of Clang's main goals is to provide a library-based

architecture, so that the compiler could interoperate with

other tools that interact with source code.

Modern Game Engine - Theory and Practice

Generate Schema From AST

• Parsing AST, such as type name, field name, field type, etc.

• Build a temporary schema of data in memory

Modern Game Engine - Theory and Practice

Precise Control of Reflection Scope

In the actual scenario, we need to add a lot of tag information to identify the purpose of the type.

Modern Game Engine - Theory and Practice

Use Marco to Add Reflection Controls

Add tags by __attribute__

• __attribute__ is a source code annotation provided by clang. In the code, the required data types can be

captured by using these macros.

• Define a “CLASS” macro to distinguish between precompile and compile.

• When precompiling, define “_REFOECTION_PARSER_” macro in meta_parser to make the

attribute information effective

Modern Game Engine - Theory and Practice

Reflection Accessors

Generate reflection accessors using schemas

• For classes, we need to generate type info getters

• For fields, we need to generate setters and getters that can access them

• For functions, we need to generate invoker that can invoke tem

Modern Game Engine - Theory and Practice

Code Rendering (1/2)

The same type of business code structure is the same

…

Modern Game Engine - Theory and Practice

Code Rendering (2/2)

Code Rendering is the process of collecting data (if any) and loading related templates (or

sending output directly). The collected data is then applied to the associated template. The final

output is sent to the user.

Pros:

• Strong separation of code and data

Modern Game Engine - Theory and Practice

Code Rendering – Mustache

Mustache is a web template system.

It is named "Mustache" because of heavy use of braces, {{ }}, that resemble a sideways moustache.

Modern Game Engine - Theory and Practice

Use Mustache to Code Generation

• Implementing business logic using mustache templates

• Generate code through mustache rendering

Modern Game Engine - Theory and Practice

Collaborative Editing

Modern Game Engine - Theory and Practice

Bottlenecks in Large Projects

• Lots of people work with lots of

assets

• Assets version management is

very difficult

Modern Game Engine - Theory and Practice

Merging Conflicts is The Biggest Problem

Work Flow

• Everyone needs to spend a lot of

time on merging conflicts when

updating or uploading assets

Modern Game Engine - Theory and Practice

How to Reduce Conflicts

• Split assets into smaller parts to reduce the probability of conflicts

• Layering the world

• Divide the world

• One file per actor(OFPA)

• All people work in the same scene to completely eliminate the conflict

Modern Game Engine - Theory and Practice

Split Assets – Layering the World (1/2)

• Split the world into many layers, each of which is

stored in an asset file

• Different people work at different levels

Modern Game Engine - Theory and Practice

Split Assets – Layering the World (2/2)

Pros

• Appropriate layers would decrease

edit confliction

• Layer-based logic available

Cons

• Layer logic may dependents on another layer

• Difficult to reasonably split layers when the world is

very complex

Modern Game Engine - Theory and Practice

Split Assets– Divide the World (1/2)

• The world is divided into fixed size blocks, and

each block is saved in an asset file

• Different people work at different blocks

Modern Game Engine - Theory and Practice

Split Assets – Divide the World (2/2)

Pros

• Location based splitting makes it easy to dynamically

expand the world

• Space separating is more intuitive to operator

Cons

• Difficult to deal with objects across multiple blocks

Modern Game Engine - Theory and Practice

One File Per Actor

A splitting method proposed by unreal5

• reduces overlap between users by saving data for instances of Actors in external files,

removing the need to save the main Level file when making changes to its Actors

• All Actors are embedded in their respective Level files when cooked

level

Actor 0 ……Actor 1 Actor nActor 2

Modern Game Engine - Theory and Practice

A Special Way to Split Assets – OFPA

Pros

• Fine-grained scene division, fewer edit

confliction

• Only need to save objects modified

Cons

• Massive files to manage, more burden for version

control

• Cook will be slow down while embedding many

OFPA files to level file

Modern Game Engine - Theory and Practice

Coordinate Editing in One Scene

Connect multiple instances of world editor together to work collaboratively in a shared editing session,

building a single virtual world together with your teammates and colleagues in real time

Session1
Session1
Session1

Session n

Editor on windows

Coordinate Editing

server
Editor on mac

Editor on VR
Editor on linux

Modern Game Engine - Theory and Practice

How to Synchronize My Operations with Others

Do you remember command system?

• Serialize my commands and send them to

server

• Receive commands from server and

deserialize them

• Invoke commands

Session1
Session1
Session1

Session n

Editor on windows

Coordinate Editong

server Editor on mac

Editor on VR
Editor on linux

Command A Command A’

Command A’ Command A’

Modern Game Engine - Theory and Practice

There is A Very Big Challenge

Undo/Redo Operation Merge

How to ensure the consistency of distributed operations?

Merge

Modern Game Engine - Theory and Practice

Two Users Cannot Edit The Same Instance at The Same Time

Instance lock: Avoid multiple people

modifying the same instance at the same time

Modern Game Engine - Theory and Practice

Two Users Cannot Edit The Same Asset at The Same Time

Asset lock: Avoid multiple people

modifying the same asset at the same

time

Modern Game Engine - Theory and Practice

But Lock is not Omnipotent (1/2)

If there are three users working in the same world, and now User2 presses the undo

button, what do we expect to happen? If he presses the redo button next?

Command

D

Command

B

Command

C

History

Command

A

Command

A

Command

B

Command

C

Command

D

User1

User2

User3

Modern Game Engine - Theory and Practice

How to Solve These Problems Thoroughly

Operation Transform(OT): Abstract the operation into an operation sequence consisting of an

enumerable N atomic operation types

Conflict-free Replicated Data Type(CRDT): A data structure that is replicated across multiple

computers in a network, with the following features:

• The application can update any replica independently, concurrently and without coordinating with other

replicas

• An algorithm (itself part of the data type) automatically resolves any inconsistencies that might occur

• Although replicas may have different state at any particular point in time, they are guaranteed to

eventually converge

Modern Game Engine - Theory and Practice

Traditional Workflow vs. Collaborative Editing Workflow

Traditional Workflow Collaborative Editing Workflow

Modern Game Engine - Theory and Practice

Server is the Most Important Role

Client

• Crash

• Maloperation

Server

• Crash

• The server retains

each session until

the user who created

the session

expressly deletes it,

or until the server

itself is shut down.

• Save session

records to disk.

Session1
Session1
Session1

Session n

Editor on windows

Coordinate Editing

server
Editor on mac

Editor on VR
Editor on linux

Modern Game Engine - Theory and Practice

Homework 4(available since 28 June)

• You are supposed to…

• Comprehend the use of reflection tags

• Add attributes to the existing system and make them reflect correctly

• Display new attributes in the detail panel

• Make them really work in the system(advanced)

• Write a report document that contains screenshots of your results

• Download at

• Course-site:

https://games104.boomingtech.com/sc/course-list/

• Github:

https://github.com/BoomingTech/Piccolo/tree/games104/homework04-tool-chains

https://games104.boomingtech.com/sc/course-list/
https://github.com/BoomingTech/Piccolo/tree/games104/homework04-tool-chains

Modern Game Engine - Theory and Practice

References

Modern Game Engine - Theory and Practice

• C++ Reflection, Austin Brunkhorst, 2016:https://austinbrunkhorst.com/cpp-reflection-part-1/

• Clang:https://en.wikipedia.org/wiki/Clang

• Reflective programming:https://en.wikipedia.org/wiki/Reflective_programming

• Unreal Blueprints Visual Scripting:https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-

in-unreal-engine/

• Unreal Engine UProperties:https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperties/

• GPU-Based Run-Time Procedural Placement in 'Horizon: Zero Dawn', Jaap van Muijden, GDC

2017:https://www.gdcvault.com/play/1024700/GPU-Based-Run-Time-Procedural

• Ray casting:https://en.wikipedia.org/wiki/Ray_casting

• Level (video games):https://en.wikipedia.org/wiki/Level_(video_games)

Modern Game Engine - Theory and Practice

• Unreal One File Per Actor:https://docs.unrealengine.com/5.0/en-US/one-file-per-actor-in-unreal-

engine/

• Uses of layers in Unity:https://docs.unity3d.com/Manual/use-layers.html

• Unreal World Partition:https://docs.unrealengine.com/5.0/en-US/world-partition-in-unreal-engine/

• How Figma’s multiplayer technology works, Evan Wallace, 2019:https://www.figma.com/blog/how-

figmas-multiplayer-technology-works/

• Unreal Multi-User Editing:https://docs.unrealengine.com/4.27/en-

US/ProductionPipelines/MultiUserEditing/

• Conflict-free Replicated Data Types, Marc Shapiro,Nuno Preguiça, Carlos Baquero, Marek Zawirski,

2011:https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf

Modern Game Engine - Theory and Practice

• Operational Transformation Frequently Asked Questions and

Answers:https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/

• Unreal Sequencer Overview:https://docs.unrealengine.com/4.27/en-

US/AnimatingObjects/Sequencer/Overview/

• Unity Timeline:https://docs.unity3d.com/Packages/com.unity.timeline@1.7/manual/index.html

• Plug-in (computing):https://en.wikipedia.org/wiki/Plug-in_(computing)

Modern Game Engine - Theory and Practice

Lecture 14 Contributor

- Wood

- 霓虹甜心

- 新之助

- BOOK

- 阿甘

- 爵爷

- 令狐冲

- 大喷

- Qiuu

- Adam

- Arthas

- 喵小君

- 小鲤鱼

- 布鲁布鲁

- kaiwei

- 33

- 小明

- 乐酱

- 晨晨

- 怡宝

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for

further information

Enjoy ;)

Coding

Course Wechat

