
Modern Game Engine - Theory and Practice

• Many questions are asked in Wechat groupchat, Github discussion. We replied over 200 questions 

during the past week, please keep asking questions!

• We are working on a document which contains questions been asked before, please keep asking us 

questions no matter how fundamental the questions are, this will help everyone in the community

Voice from Communities



Modern Game Engine - Theory and Practice

• Q1: Why does Piccolo Engine use Vulkan as graphics API? It is quite difficult, any recommendations 

on references?

• Next-gen graphics API

• Cross-platform compatibility, supporting Windows, Linux, macOS, Android, and iOS

• Recommended references:

• https://vulkan-tutorial.com/

• https://www.vulkan.org/learn

• Q2: Is there an open-source plan for MetaParser?

• In the up-coming update!

• Q3: How to configure development environment for newbies?

• Instructions in README.md

• Detailed instructions in Document of Programming Assignment 1

https://cdn.boomingtech.com/games104_static/upload/GAMES104_PA01.pdf

• Feel free to ask questions!

Q&A about Piccolo Engine

https://vulkan-tutorial.com/
https://www.vulkan.org/learn
https://cdn.boomingtech.com/games104_static/upload/GAMES104_PA01.pdf


Modern Game Engine - Theory and Practice

• Editor

- load / save level

- add/delete/move/rotate/scale objects

- Play In Editor (PIE)

• Renderer

- forward shading

- shadow

- RHI

• Animation

- simple skeleton animation

- blending

• Collision

- integrated Jolt physics

Piccolo Engine Features

• Character/Camera

- first / third-person camera

• Motor

- eight-direction moving + sprinting

• Single-threaded object-based ticking

• Resource manager

• Windows, Linux, and macOS compatible

• More features are on the way…



WANG XI GAMES 104 2022

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Lecture 13

Tool Chains



Modern Game Engine - Theory and Practice

Foundation of Tool Chains

• What is Game Engine Tool Chains

• Complicated Tool GUI

• How to Load Asset - Deserialization

• How to Make a Robust Tools

• How to Make Tool Chain

• What You See is What You Get 

• One More Thing - Plugin

Applications & Advanced Topic

• Common Game Production Workflow

• Common Editors

• Reflection

• Collaborative Editing

Outline of Tool Chains



What is Game Engine Tool Chain



Layer Between Users and Engine Runtime



Modern Game Engine - Theory and Practice

Bridge Between DCC Tools and Game Engine

Game Engine

Game

DCC

Asset 

Conditioning 

Pipeline 



Let Huge Different Mindset Users Work Together

For Designers

• Iterate the gameplay quickly

• Implement game logic prototype 

quickly even without programming

• Edit massive data easily 

For Artists

• The quality of the result

• Convenient workflow 

• What you see is what you get 

(WYSIWYG)



Modern Game Engine - Theory and Practice



Complicated Tool GUI



Modern Game Engine - Theory and Practice

Graphics User Interface (GUI)

GUI is getting more and more complex

• Fast iteration

• Separation of design and implementation

• Reusability

• ...



Modern Game Engine - Theory and Practice

Immediate Mode (1/2)

Immediate Mode

• The client calls cause rendering of graphics 

objects to the display.

• the data to describe rendering primitives is 

inserted frame by frame directly from the client

into a command list.



Immediate Mode (2/2)

Characteristic
• Lightweight

• Procedural programming

• Widgets don’t maintain any data or state 

Pros
• Straightforward

• Simple

• Quick prototype

Cons
• Poor scalability

• Poor performance

• Poor maintainability

Examples
• Unity UGUI

• Omniverse GUI

• Piccolo GUI



Modern Game Engine - Theory and Practice

Retained Mode (1/2)

Retained Mode

• The graphics library, instead of the client, 

retains the scene to be rendered.

• The client calls into the graphics library do not 

directly cause actual rendering, but make use 

of extensive indirection to resources, managed 

by the graphics library.



Modern Game Engine - Theory and Practice

Retained Mode (2/2)

Pros

• High scalability

• High performance

• High maintainability

Cons

• Complex for developers

• Message queue / callbacks

• Synchronization between GUI and 

application

Characteristic

• Object-oriented   

• Widgets contain their own state and data

• Draw widgets as needed

• Complicated effects (animation et.al.)

Examples

• Unreal UMG

• WPF GUI

• QT GUI



Modern Game Engine - Theory and Practice

Design Pattern – MVC

Model: The central component of the 

pattern, responsible for managing the data 

of the application.

View: Any representation of information 

such as a chart, diagram or table.

Controller: Accepts input and converts it to 

commands for the model or view.

Invented by Trygve Reenskaug in 1978, to bridge the gap between the human user's mental model and 

the digital model that exists in the computer.

Model

View Controller

Usersees uses

manipulatesupdates



Modern Game Engine - Theory and Practice

Design Pattern – MVP

The evolution of the MVC design pattern,wherein the controller is replaced by the presenter.

Model: An interface defining the data to be displayed or otherwise acted upon in the user interface.

View: A passive interface that displays data (the model) and routes user commands (events) to the 

presenter to act upon that data.

Presenter: Acts upon the model and the view. It retrieves data from repositories (the model), and 

formats it for display in the view.



Modern Game Engine - Theory and Practice

Design Pattern – MVVM (1/3)

A variation of Model/View/Controller (MVC)

In MVVM,View is the responsibility of a designer rather than a classic developer.  

The designer is generally a more graphical,artistic focused person, and does less 

classic coding than a traditional developer.



Modern Game Engine - Theory and Practice

Design Pattern – MVVM (2/3)
View ViewModel Model

Binding

View: using a WYSIWYG tool such as Dreamweaver,VS Blend and save as html/xaml , view state 

that MVC encodes in its View classes is not easy to represent.

Binding: bind View Data to the Model ,no more code in View classes.

ViewModel - Model of View: The Model is very likely to have a data types that cannot be mapped 

directly to controls,ViewModel contains data-transformers that convert Model types into View types.



Modern Game Engine - Theory and Practice

Design Pattern – MVVM (3/3)

Pros

• Independent development

• Easy to maintain and test

• Easy to reuse components

Cons

• For simple UI, MVVM can be overkill

• Data-binding  is declarative and harder to debug



Load & Save



Modern Game Engine - Theory and Practice

Serialization and Deserialization

Serialization is the process of translating a 

data structure or object state into a format 

that can be stored (for example, in a file or 

memory data buffer) or transmitted (for 

example, over a computer network) and 

reconstructed later.

Deserialization is the opposite operation, 

extracting a data structure from a series of 

bytes.



Modern Game Engine - Theory and Practice

Text Files

• Unity Editor(optional): subset of 

YAML

• Piccolo: Json

• Cryengine: XML / Json (optional)

Engine applications:

• Save data as text files

• Example: TXT, Json, YAML, XML …

• Can read by common text editors

TXT Json



Modern Game Engine - Theory and Practice

Binary Files

• Unity Runtime, Unity Editor (optional)

• CryEngine (optional)

• Unreal: UAsset

Engine applications:

• Save data as bytes stream

• Need additional tools for read/write

• Example: UAsset, FBX Binary ...

UAsset

Byte 0-20

Kaydara FBX 

Binary

Byte 21-22

Byte 23-26

Version Number

Object Record

Footer

FBX Binary



Modern Game Engine - Theory and Practice

Storage Comparison -Text vs. Binary

Text vs. Binary FBX Binary

Name Type Size

FBX Text



Modern Game Engine - Theory and Practice

Assert Data Repeatance

Meshes which in the red boxes are redundant data.

How do game developers solve the problem?



Modern Game Engine - Theory and Practice

Asset Reference

Layout.ast courtyard.object.ast

Assets Reference is a way to separate redundant data into asset files and complete association by 

establishing reference relationships.



Modern Game Engine - Theory and Practice

Object Instance in Scene

Data instance is a way to create a parent data that you can use

as a base to make a wide variety of different children and can

also be used directly.

object.ast

stones.material.ast

Instance



Modern Game Engine - Theory and Practice

Layout.ast

Ground2.mesh.ast

Ground1.mesh.ast

stone texture

castle stone texture

Object Instance Variance

How to change the texture of Ground1 

from stone to castle stone?



Modern Game Engine - Theory and Practice

Build Variance by Copying

Stones_Material.ast Castle_Stone.material.ast

copy

Modify

Intuitive way: make a copy of instance data, modify the copy

• add lots of reduntant data



Modern Game Engine - Theory and Practice

Build Variance by Data Inheritance

Stones_Material.ast

inheritance

override

Data Inheritance: Inherit the data of the inherited object and allow overriding assignments to the 

data defined in its data structure.



How to Load Asset - Deserialization



Modern Game Engine - Theory and Practice

Parse Asset File

<field-value> 

tree

instantiate 

empty object A

keep reference 

to B

copy data from 

dictionary to A

Deserialize B 

when needed

for every 

field in 

dictionary

How to know how to instantiate A or fields?——Store the type of A and fields

Serialized 

data

simple type

reference

Deserialize fieldcustom type



Modern Game Engine - Theory and Practice

Build Key-Type-Value Pair Tree

Human

(type: Actor)

name

(type: string)

transform

(type: Transform)

geometry

(type: Geometry)
… …

position

(type: Vector3)

rotation

(type: Quaternion)

scale

(type: Vector3)

mesh

(type: Mesh)

bbox

(type: BoundingBox)

… … … … … … … … … …

<field-value> tree



Modern Game Engine - Theory and Practice

Binary vs. Text

shape1

shape2

box1

Header

Name offset type

shape1 15 RigidBodyShape

shape2 25 RigidBodyShape

box1 35 Box

top

top+15

top+25

top+35

top+50

Name type data

local_transform Transform ... ...

geometry Box box1

Binary

Where to store the objects and fields type?

• Text: store in asset

• Binary: store in a table

Text



Modern Game Engine - Theory and Practice

Endianness

e.g. 0x1234567

Big Endian: 
begin with most significant byte

end with least significant byte

Little Endian: 
begin with least significant byte

end with most significant byte

Endianness vary among different processors

Unreal

Processor Endianness

PowerPC (PPC) Big Endian

Sun Sparc Big Endian

IBM S/390 Big Endian

Intel x86 (32 bit) Little Endian

Intel x86_64 (64 bit) Little Endian

ARM Bi (Big/Little) Endian

Binary – Endianness



Modern Game Engine - Theory and Practice

Asset Version Compatibility

old

serializer

origin

class

new

serializer

updated

class

old

data?



Modern Game Engine - Theory and Practice

Add or Remove Field updated class 1

origin class

old data

updated class 2



Modern Game Engine - Theory and Practice

• Load asset: check if field exists then load data

• Save asset: write all data to asset file

Unreal: add version to asset

Solve Compatibility by Version Hardcode



Modern Game Engine - Theory and Practice

class info

binary filedata

writer loader

generate

• Every field has a unique number, never change the number.

• Serialization:

1. For every field, generate a “key” (fixed size) according to 

its field number and type.

2. Store field data with key, key is stored in the first few bytes.

• Deserialization:

1. Field not in schema but in data: 

key would not be recognized, skip the field.

2. Field in schema but not in data: set default value.

Google protocol buffers:

unique number for field

Solve Compatibility by Field UID



How to Make a Robust Tools



Modern Game Engine - Theory and Practice

Undo & Redo



Modern Game Engine - Theory and Practice

Crash Recovery



Modern Game Engine - Theory and Practice

Command

• Abstract all user operations 

to atomic commands which 

can invoke, revoke and 

serialize, deserialize.



Modern Game Engine - Theory and Practice

Command – Definition

• ICommand<TData> provide a basic abstraction of the 

command.

• Every system (which want to support undo/redo/crash 

recory ...) needs to implement the system related 

commands inherantanced from ICommand<TData>.



Modern Game Engine - Theory and Practice

Command UID

• Monotonic increase over time

• Unique identification  

Commands need strictly follow the sequence when recovery from disk.



Modern Game Engine - Theory and Practice

Command Serialize and Deserialize

• Provide functions to serialize command instance 

to data and deserialize data to command instance.

• TData type needs to provide serialize and 

deserialize interface.



Modern Game Engine - Theory and Practice

• Add

• Data: Usually data is a copy of the runtime instance

• Invoke: Create a runtime instance with data

• Revoke: Delete the runtime instance

• Delete

• Data: Usually data is a copy of the runtime instance

• Invoke: Delete the runtime instance

• Revoke: Create a runtime instance with data

• Update

• Data: Usually data is the old and new values of the modified properties of the runtime instance and 

their property names

• Invoke: Set the runtime instance property to the new value

• Revoke: Set the runtime instance property to the old value

Three Key Commands



Modern Game Engine - Theory and Practice

How to Make Tool Chain



Modern Game Engine - Theory and Practice

Various Tools for Different Users

UI Editor

Logical Editor

Shader Editor

Animation Editor

Level Editor

• Different viewes for different 

tools

• Each tool has it's owner data 

structure

• Same data may have 

different view for different 

user 

Static Mesh Editor



Modern Game Engine - Theory and Practice

Develop all Tools Seperately?

Simplest Way

• No Scalability

• No maintainbility



Find Common Building Blocks

Any complex structure is made up of simple structures, we just need a standard language to 

describe it.



Modern Game Engine - Theory and Practice

Schema - A Description Structure

A data schema is the formal description of the structures your system is working with.

Float x;

Float y;

Float z;

Float r;

x

z

y

r

Standardizing the world description 

language

• Unified the data processor

• Normalized data between different 

tools

• Ability to automatically generate 

standardized UI



Modern Game Engine - Theory and Practice

Schema – Basic Elements

Abstraction of the basic building block of the world

• Atomic Types: Int, Float, Double ...

• Class Type: Use atomic types to present complex data structure

• Containers: Array, Map ...



Schema – Inheritance

Abstraction of the inheritance relationship of the world

In the code,it is easy for a programmer.



Schema – Data Reference

Abstract of the reference relationship of the world

In the code, we need to read the data through the file path and instantiate it into the corresponding file class.



Modern Game Engine - Theory and Practice

Schema – 2 Definition Ways

Standalone schema definition file Defined in code



Schema – 2 Definition Ways

Standalone schema definition file

Pros

• Comprehension easily

• Low coupling

Cons

• Ease to mismatch between engine 

version and schema version

• Difficult to define function in the 

structure

• Need to implement complete syntax

Defined in code

Pros

• Ease to accomplish Function reflection 

• Natural support for inheritance relationships

Cons

• Difficult to understand

• High coupling



Modern Game Engine - Theory and Practice

Three Views For Engine Data



Modern Game Engine - Theory and Practice

Runtime View

Focus:

• Read at a faster speed

• Calculate at a faster speed



Modern Game Engine - Theory and Practice

Storage View

Focus:

• Write at a faster speed

• Occupies less hard disk space



Modern Game Engine - Theory and Practice

Tools View

Focus:

• More understandable form

• The need for multiple editing modes

Other Point：

Tool data does not generally exists. Usually, 

special processing is done when the UI 

interface is generated.



Modern Game Engine - Theory and Practice

Tools View  – Understandable 

Euler angle is your friend！Radian is not.



Modern Game Engine - Theory and Practice

Tool View – Various Editor Modes

Different edit mode for groups with different needs

Beginer Mode Expert Mode



What You See is What You Get 

(WYSIWYG)



Modern Game Engine - Theory and Practice

User Friendly for Artists



Modern Game Engine - Theory and Practice

User Friendly for Designer



Modern Game Engine - Theory and Practice

Stand-alone Tools

Stand-alone Tools is a kind of tool that can 

run independently of the engine.

Pros

• Suitable for use as a DCC tool plug-in

• Easy to start developing tools

Cons

• Difficult to achieve WYSIWYG



Modern Game Engine - Theory and Practice

In Game Tools

In Game Tools is a kind of tool based on engine 

runtime system work.

Pros

• Access to all engine data directly

• Easy to preview the game in the editor

• Easy to make live in-game editing

Cons

• Complex engine architecture

• Requires a complete engine UI system to make 

the editor UI

• When the engine is crashing, the tools become 

unusable as well



Modern Game Engine - Theory and Practice

In Game Tools – Editor Mode

Editor UI

modify editor data

Editor Scene

convert data to 
runtime structure

Runtime

Editor Mode: Support to modify and preview scene data 

• Real time preview of scene data modification

• Logic systems do not tick, so there are more hardware resources to display more scene details

• ...



Modern Game Engine - Theory and Practice

Play in Editor (PIE)

PIE: Directly play game in editor, no need to close editor and start game mode

• Save loading time

• The continuity of creation is maintained

• Quickly test modifications

• ...

Two implemation ways

• Play in editor world: Start gameplay systems tick in editor world and play in it

• Play in PIE world: Duplicate editor world to create a PIE world and play in it



Modern Game Engine - Theory and Practice

PIE Mode - Play in Editor World

Pros

• Easy architecture tools layer

• Quick state change

Cons

• Game mode may cause data changes

Example

• Piccolo



Modern Game Engine - Theory and Practice

PIE Mode - Play in PIE World

Pros

• Data separation

• Easy to instantitate multiple game instances

Cons

• Architecture complex

Example

• Unreal



One More Thing - Plugin



Modern Game Engine - Theory and Practice

Different games need 

different customization of 

engine tools.

Engine tools use plug-in

mechanism to satisfy the 

needs.

Extensibility



Modern Game Engine - Theory and Practice

Plug-in - Showcases



Modern Game Engine - Theory and Practice

Plug-in – Framework (1/2)

Plug-in : A software component that adds a specific feature to an existing computer program.

API

Interface

Editor Plugin

call implement by

implement by call



Plug-in – Framework (2/2)

PluginManager: Manage plugin loading and unloading.

Interface: A series of abstract classes provided to plug-ins, plug-ins can choose to instantiate different

classes to realize the development of corresponding functions.

API: A series of functions exposed by the engine, plug-ins can use functions to execute the logic what

we want.



Modern Game Engine - Theory and Practice

Plug-in – Add a Toolbar Button 

pluginAPI & Interface editor

pluginManagerModule



Modern Game Engine - Theory and Practice

In StartupModule()  call RegisterMenus()

Implement interface

Plug-in – Add a Plug-in Menu in Unreal5



Modern Game Engine - Theory and Practice

Plug-in – Summary

The meaning of plug-in framework

• Extend editor functionality

• Ease to hot update as decoupling

• Facilitate the construction of engine 

development ecology

Plug-in framework requirements

• Full API support

• Common interface support

API example: unreal slate



Modern Game Engine - Theory and Practice

References



Modern Game Engine - Theory and Practice

• Tools Tutorial Day: A Tale of Three Data Schemas, Ludovic Chabant, GDC 

2018:https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc18-tools-tutorial-day-a-tale-of-

three-data-schemas.pptx

• Creating a Tools Pipeline for 'Horizon: Zero Dawn', Dan Sumaili, Sander van der Steen, GDC 2017: 

https://www.guerrilla-

games.com/media/News/Files/GDC2017_Sumaili_VanDerSteen_CreatingAToolsPipelineForHorizonZeroD

awn.pdf

• Unreal Engine UProperties:https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperties/

• Command Pattern:https://www.tutorialspoint.com/design_pattern/command_pattern.htm

• Unreal Plugins:https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/Plugins/



Modern Game Engine - Theory and Practice

• Model–view–controller:https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

• Trygve Reenskaug:https://en.wikipedia.org/wiki/Trygve_Reenskaug

• MVC:https://developer.mozilla.org/en-US/docs/Glossary/MVC

• MVC:https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

• Benefits and Drawbacks of MVC Architecture:https://shreysharma.com/benefits-and-drawbacks-of-mvc-

architecture/

• Model–view–presenter:https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

• Model–view–viewmodel:https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel



Modern Game Engine - Theory and Practice

Lecture 13 Contributor

- Wood

- 霓虹甜心

- 新之助

- BOOK

- 阿甘

- 爵爷

- 令狐冲

- 大喷

- Qiuu

- Adam

- Arthas

- 喵小君

- 小鲤鱼

- 布鲁布鲁

- kaiwei

- 33

- 小明

- 蓑笠翁

- 晨晨

- 怡宝



Q&A

Modern Game Engine - Theory and Practice



Enjoy;)

Coding

Course Wechat

Please follow us for 

further information

Modern Game Engine - Theory and Practice


