
Modern Game Engine - Theory and Practice

1

Voice from Communities

• Piccolo Game Engine Logo

• Piccolo is from Italian, meaning “short flute”. Although it’s small, Piccolo is the instrument with the
highest pitch, representing that despite our engine is small, with everyone’s joint efforts, it could
bring the biggest energy

• The hole of the flute looks like “0” and the body of flute, looks like “1”, representing the computing
world

• We are replacing Pilot with Piccolo in GitHub files, Piccolo website and BBS coming soon

• Thank you for staying with us, good luck with finals, graduation, work!

Modern Game Engine - Theory and Practice

2

Homework 3 Submissions

@翁同学

• Homework 3 due time, July 14th 00:00

Modern Game Engine - Theory and Practice

3

• Blend
• Weights need to be normalized
• The shortest path flag of NLerp

Notes on Animation Homework

Weights not be normalized The Shortest path flag error

Modern Game Engine - Theory and Practice

4

Notes on Animation Homework
• ASM

• Focus on the implementation of ASM logic
• May have sliding step problem due to limited animation resource

WANG XI GAMES 104 2022

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Lecture 12

Effects

Modern Game Engine - Theory and Practice

 Elden RingDevil May Cry 5

Final Fantasy XVI Sekiro: Shadows Die Twice

Modern Game Engine - Theory and Practice

History of Particle System

“A particle system is a collection of many many minute

particles that together represent a fuzzy object. Over a

period of time, particles are generated into a system,

move and change from within the system, and die from

the system.”

—William Reeves, "Particle Systems—A Technique for

Modeling a Class of Fuzzy Objects," ACM Transactions

on Graphics 2:2 (April 1983), 92.

Star Trek II: The Wrath of Khan
(first introduced particle system, 1982)

Modern Game Engine - Theory and Practice

Particle

A particle in game is usually a sprite or 3D model,

with the following attributes:

• Position

• Velocity

• Size

• Color

• Lifetime

……

Modern Game Engine - Theory and Practice

Particle's Life Cycle

Modern Game Engine - Theory and Practice

Particle Emitter

Particle Emitter is used to define the particles

simulation

• Specify the spawn rules

• Specify simulation logic

• Describe how to render particles

Modern Game Engine - Theory and Practice

Particle System

A particle system is a collection of individual emitters

Modern Game Engine - Theory and Practice

Particle System
A simple case, just combine different emitters

Modern Game Engine - Theory and Practice

Particle Spawn Position

Single position spawn Spawn based on area Spawn based on mesh

Modern Game Engine - Theory and Practice

Continuous
• variable spawn rate per frame
• time, distance based, etc.

Burst
• all particle spawn and simulated at once.

Particle Spawn Mode

Modern Game Engine - Theory and Practice

Simulate (1/5)
Common forces

Modern Game Engine - Theory and Practice

Simulate (2/5)

Simulate controls how the particles change over time

Frame1

Frame2
Frame3

Frame4
 Velocity

 Acceleration

 Position

Velocity
next frame

Each frame:
Acceleration updates Velocity
Velocity updates postion

Modern Game Engine - Theory and Practice

Simulate (3/5)

Simulate gravity Simulate gravity & rotation

Modern Game Engine - Theory and Practice

Simulate (4/5)

Simulate gravity & color Simulate gravity & size

Modern Game Engine - Theory and Practice

Simulate (5/5)

Without collision With collision

Modern Game Engine - Theory and Practice

Particle Type

• Billboard Particle
• Mesh Particle
• Ribbon Particle

Mesh Particle Ribbon ParticleBillboard Particle

Modern Game Engine - Theory and Practice

Billboard Particle

Each particle is a sprite

• Appears to be 3D

• Always face the camera

Modern Game Engine - Theory and Practice

Mesh Particle

Each particle is a 3D model.
• Rocks coming from a explosion

Modern Game Engine - Theory and Practice

A strip is created by connecting the particles and rendering quads between the adjacent particles.
• particles (represented as red dots)

Ribbon Particle

Ribbon Particle:Slash

Modern Game Engine - Theory and Practice

Ribbon Particle Case(1/3)

spawn

render

Modern Game Engine - Theory and Practice

Ribbon Particle Case(2/3)

Slash without smoothing

No smoothing shape
• with sharp angles

Modern Game Engine - Theory and Practice

Ribbon Particle Case(3/3)

smoothing with Centripetal Catmull-Rom

Smoothing with Centripetal Catmull-Rom interpolation
• add extra segments between particles
• can set the number of segments
• requires more CPU

Particle System Rendering

Modern Game Engine - Theory and Practice

Alpha Blending Order

Blend result of unsorted elements Blend result of sorted elements

Final color Source color Destination color

Modern Game Engine - Theory and Practice

Sorting mode

• Global

• Accurate, but large performance consumption

• Hierarchy: Per system -> Per emitter -> Within emitter

Sort rules

• Between particles: based on particle distance with camera

• Between systems or emitters: bounding box

Particle Sort

Per emitter sort

Global sort

Modern Game Engine - Theory and Practice

Per Emitter Sort

Modern Game Engine - Theory and Practice

Global Sort

Modern Game Engine - Theory and Practice

Full-Resolution Particles

• Costy

• Worst case as particles fill the screen

draw opaque

scene

render translucent

particles

Modern Game Engine - Theory and Practice

Low-Resolution Particles

result_color = dst_color * (1-src_alpha) + src_color * src_alpha
result_alpha = dst_alpha * (1-src_alpha)

材

Scene Color

Scene Depth

Particle Color(RGB)

Particle Alpha
Half-Res Depth

Render scene Render off-scene particle

Final image

Downsamplin
g

Bilateral upsampling

GPU Particle

Modern Game Engine - Theory and Practice

Processing Particles on GPU

Why use GPU?

• Highly parallel workload, suitable for simulation of large numbers of particles

• Free your CPU to do game code

• Easy to access depth buffer to do collision

Modern Game Engine - Theory and Practice

GPU Particles - Frame Overview

Compute shader provides high-speed

general purpose computing and takes

advantage of the large numbers of

parallel processors on the GPU

Modern Game Engine - Theory and Practice

Particle pool is a single buffer storage

containing all particles data

Initial State

The diagram on the right shows an empty

pool containing a maximum of 8 particles,

starting with all 8 slots in a DEAD usable

state

Modern Game Engine - Theory and Practice

Spawn Particles

The diagram on the right shows the emission of

5 particles

• Dispatch 5 compute shader threads to do

the spawn calculation

• Access to the dead list and the alive list

needs to be atomic

Modern Game Engine - Theory and Practice

Simulate
Calculate position, velocity, doing depth collision,

etc. And writing data back to particle pool

(right diagram shows if particle 6 is dead)

• Dispatch alive_count_0 threads

• Access to dead list and alive list 1 should be

atomic

Do frustum culling, and write calculated

distance to distance buffer

(right diagram shows if particle 5 is culled)

Modern Game Engine - Theory and Practice

Sort, Render and Swap Alive Lists

Sort alive list after culling according to distance buffer

Render particles in sorted alive list after culling

Swap alive list

Modern Game Engine - Theory and Practice

Parallel Mergesort

Modern Game Engine - Theory and Practice

Parallel Mergesort

One thread per source element

Each thread decides “Where do I go?”

Problem: writes are discontinuous

One thread per destination element

Each thread asks “Where do I come from?”

Method 1 Method 2 (Better)

Modern Game Engine - Theory and Practice

Depth Buffer Collision
1. Reproject particle position to previous frame screen

space texture coordinate

2. Read depth value from presious frame depth texture

3. Check if particle is colliding with the depth buffer, but

not completely behind it (where thickness value is

used)

4. If collision is happened, calculate surface normal and

bounce off the particle

Collision position

Modern Game Engine - Theory and Practice

Collision Demo

Advanced Particles

Modern Game Engine - Theory and Practice

 Crowd Simulation

Modern Game Engine - Theory and Practice

Animated Particle Mesh

Alpha (vertex_position.w) = Joint Index

Modern Game Engine - Theory and Practice

Particle Animation Texture

Modern Game Engine - Theory and Practice

Navigation Texture

Signed Distance Field Direction Texture (RG
channels)

Modern Game Engine - Theory and Practice

Crowds - Runtime Behavior
• Design target locations to guide the movement of crowds

• The desire moving towards the target location, pushing away from blocking geometry, all become forces

to influence the movement of crowds (if close enough, the camera also acts as a force)

Modern Game Engine - Theory and Practice

Advanced Particle Demos (1/2)

• Skeleton mesh emitter

• Dynamic procedural

splines

• Reactions to other players

……

Modern Game Engine - Theory and Practice

Advanced Particle Demos (2/2)
• Interacting with environment

Utilizing Particle System in Games

Modern Game Engine - Theory and Practice

Design Philosophy - Preset Stack-Style Modules

Cascade Particle System in Unreal Engine

Pros
• Fast to add behaviors as stacked modules
• Non technical artists have lots of control via a

suite of typical behaviors
• Easy to understand at a glance

Cons
• Fixed functions, new feature requires new

code
• Code-based, divergence in game team code
• Fixed particle data, data sharing is mostly

impossible

Modern Game Engine - Theory and Practice

Design Philosophy - Graph-Based Design
• Parameterizable and shareable graphs asset

• Less code divergence

• Provide modular tools instead of hardcoded features

Modern Game Engine - Theory and Practice

• Graphs give total control

• Stacks provide modular behavior and glance readability

Hybrid Design

• Encapsulate behaviors

(seen as "write

functions")

• Stack with each other

• Containers for modules

• Single purpose, reusable

• Holders of multiple

emitters into one "Effect"

Graph Stack Stack

Modules Emitters Systems

Unreal's Niagara System Design

Sound System

Modern Game Engine - Theory and Practice

Audio

• Entertains the player

• Enhances the realism

• Establishes atmosphere

Modern Game Engine - Theory and Practice

Without sound?

Modern Game Engine - Theory and Practice

With Sound

Modern Game Engine - Theory and Practice

 The amplitude of the sound wave

Volume

Modern Game Engine - Theory and Practice

Volume - Terminologies (1/2)

Sound Pressure (): Local deviation from the ambient atmospheric pressure caused by sound
wave, SI unit ()

Sound Intensity (): The power carried by sound waves per unit area in a direction perpendicular
to that area, SI unit:

Particle Velocity (): The velocity of a particle in a medium as it transmits a wave, SI unit
()

Modern Game Engine - Theory and Practice

Sound Pressure Level (): A logarithmic measure of the effective pressure of a sound
relative to a reference value, SI unit ()

Volume - Terminologies (2/2)

 : Reference sound pressure, the threshold of human hearing, commonly used in air is

(roughly the sound of a mosquito flying 3 m away)

Modern Game Engine - Theory and Practice

• Determines how high or
low the sound is

• Depends on the
frequency of the sound
wave

Pitch

Modern Game Engine - Theory and Practice

Combinations of overtones or harmonics

• frequencies
• relative intensities

Timbre

Modern Game Engine - Theory and Practice

Phase and Noise Cancelling

Same frequency, amplitude, but in different phase

Human Hearing Characteristic

• frequency range: 20-20KHz
• sound pressure level range (0-130db)

The audible sound of human ear

Modern Game Engine - Theory and Practice

Digital Sound

Modern Game Engine - Theory and Practice

Pulse-code Modulation (PCM)

Standard method for encoding a sampled
analog sound signal

• Sampling
• Quantizing
• Encoding

Modern Game Engine - Theory and Practice

Sampling

Sample Frequency：Samples per second(Hz)

Nyquist–Shannon Sampling Theorem: The minimum
sampling frequency of a signal that it will not distort
its underlying information, should be double the
frequency of its highest frequency component

Modern Game Engine - Theory and Practice

Quantizing
bit-depth：bit depth is the number of bits of information in each sample

Modern Game Engine - Theory and Practice

Audio Format

Format Quality Storage Multi-channel Patent

WAV(uncompressed) ★★★ ★ ★★★ ★★★

FLAC(lossless) ★★★ ★★ ★★★ ★★★

MP3(lossy) ★ ★★★ ★ ★

OGG(lossy) ★ ★★★ ★★★ ★★★

Modern Game Engine - Theory and Practice

3D Audio Rendering

Modern Game Engine - Theory and Practice

• a mono-phonic audio signal
• emanating from a specific position

3D Sound Sources

Modern Game Engine - Theory and Practice

A "virtual microphone"

• position
• velocity
• orientation

Listener

Modern Game Engine - Theory and Practice

Spatialization

The techniques used to orient the sound relative to a listener

• Panning
• Soundfield
• Binaural Audio

Modern Game Engine - Theory and Practice

Panning - Channel

Distribution of an audio signal into a new
stereo or multi-channel sound field

Done

Modern Game Engine - Theory and Practice

Panning (1/5) - Linear Panning

• Main idea: for a stereo signal with gain 1, the gains
of the left and right channels should sum to 1

Modern Game Engine - Theory and Practice

Panning (2/5) - Linear Panning

• Human perception of loudness is actually proportional to the power of a sound wave

• Power is equal to the square of the signal's amplitude

Modern Game Engine - Theory and Practice

Panning (3/5) - Linear Panning

• The power will drop when the sound is panned in the middle(x = 0.5)

Modern Game Engine - Theory and Practice

Panning (4/5) - Equal Power Panning
• Retain constant loundness by holding the power

constriant during the pan, instead of holding the
amplitude constant

• Thera are several possible solutions to this
equation, one is a sine/cosine equation

Modern Game Engine - Theory and Practice

Panning (5/5)

Attenuation

Volume will attenuate as the
listener moves away from it

In real world, the sound
pressure () of a spherical
sound wave decreases as
from the centre of the sphere:

Attenuation Shape - Sphere

Useful for most spot sounds as it models how sound propagates in the real world

Attenuation Shape - Capsule

Useful for things like water pipes, where the
sound doesn't want to appear to come from
a single, specific point in space — the sound
of gurgling water would follow the length of
the pipe

Attenuation Shape - Box

useful for things like room tones/ambiance
as you can define the shape of the box to
match that of the room

Attenuation Shape - Cone

Useful in situations when you want a
directional attenuation pattern — for
example, public address speakers

Modern Game Engine - Theory and Practice

Obstruction and Occlusion（1/2）

Modern Game Engine - Theory and Practice

Obstruction and Occlusion（2/2）

1. Cast a few divergent rays from listener to
sound with different angle

2. query the material properties of the
impacted surface to determine how much
of the sound’s energy it absorbs by the
count of the blocked rays

Modern Game Engine - Theory and Practice

In any environment containing sound-
reflective surfaces, a listener generally
receives three kinds of sound waves
from a sound source

• Direct (dry)
• Early reflections (echo)
• Late reverberations (tail)

Reverb (1/3)

Modern Game Engine - Theory and Practice

Reverberation Time: Measure of how fast the sound dies away in a given room. The size of
the room and the choice of materials determine the reverberation time

Absorption: Absorption coefficient of a material and material count determine the absorption

α: absorption coefficient
S: square
A: equivalent absorption area
V: volume in the room
T: reverberation time
0.16：proportionality factor, the time (in seconds) it takes for the
initial sound pressure level to be reduced by 60 dB

Reverb (2/3)

Modern Game Engine - Theory and Practice

Reverb (3/3)

Modern Game Engine - Theory and Practice

Reverb in Action - Reverb Effect Control from
Acoustic Parameters
Pre-delay(seconds): The delay that occurs before the signal enters the reverberation unit. A
longer pre-delay time can be used to simulate larger rooms where the first echoes take longer
to be heard.

HF ratio: A rolloff factor to control the reverberation time for high relative to low frequencies.

Wet level: Gain factor applied to reverberated sound.

Dry level: Gain factor applied to direct path sound.

Modern Game Engine - Theory and Practice

Sound in Motion: The Doppler Effect

The change in frequency of a wave in relation to an observer who is moving relative to the
wave source

Modern Game Engine - Theory and Practice

Sound in Motion: The Doppler Effect

• f: original frequency
• f': Doppler-shifted (observed) frequency

at the listener
• v: the speed of sound in air
• v0: the speed of the listener
• vs: the speed of the sound source

Spatialization - Soundfield

• Full-sphere surround sound
• Also known as ambisonics
• Used in 360 videos and VR

Modern Game Engine - Theory and Practice

Common Middlewares

Modern Game Engine - Theory and Practice

How does Audio Middleware Work?

Modern Game Engine - Theory and Practice

• Geometry and properties of the
surfaces and object

• Acoustic properties of the listening
spaces

Modeling Audio World

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Particle System
Programmable VFX with Unreal Engine’s Niagara – GDC 2018:
https://www.unrealengine.com/en-US/events/gdc2018/programmable-vfx-with-unreal-engine-s-niagara

The Destiny Particle Architecture – SIGGRAPH 2017:
https://advances.realtimerendering.com/s2017/Destiny_Particle_Architecture_Siggraph_Advances_2017.pptx

Frostbite GPU Emitter Graph System – GDC 2018:
http://www.gdcvault.com/play/1025132/Frostbite-GPU-Emitter-Graph

The inFAMOUS: Second Son Particle System Architecture – GDC 2014:
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle

Compute-Based GPU Particle Systems – GDC 2014:
https://www.gdcvault.com/play/1020002/Advanced-Visual-Effects-with-DirectX

The Visual Effects of inFAMOUS: Second Son – GDC 2014:
https://www.gdcvault.com/play/1020158/The-Visual-Effects-of-inFAMOUS

Mergesort - Modern GPU:
https://moderngpu.github.io/mergesort.html

A Faster Radix Sort Implementation – Nvidia:
https://developer.download.nvidia.cn/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf

https://www.unrealengine.com/en-US/events/gdc2018/programmable-vfx-with-unreal-engine-s-niagara
https://advances.realtimerendering.com/s2017/Destiny_Particle_Architecture_Siggraph_Advances_2017.pptx
http://www.gdcvault.com/play/1025132/Frostbite-GPU-Emitter-Graph
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle
https://www.gdcvault.com/play/1020002/Advanced-Visual-Effects-with-DirectX
https://www.gdcvault.com/play/1020158/The-Visual-Effects-of-inFAMOUS
https://moderngpu.github.io/mergesort.html
https://developer.download.nvidia.cn/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf

Modern Game Engine - Theory and Practice

Audio System
Designing the Bustling Soundscape of New York City in ‘Marvel’s Spider-Man’ – GDC 2019:
https://www.gdcvault.com/play/1026515/Designing-the-Bustling-Soundscape-of

An Interactive Sound Dystopia: Real-Time Audio Processing in ‘NieR:Automata’– GDC 2018:
http://www.gdcvault.com/play/1025132/Frostbite-GPU-Emitter-Graph

Game Audio Programming in C++ – CppCon:
https://www.youtube.com/watch?v=M8Bd7uHH4Yg

Spatialization Overview :
https://docs.unrealengine.com/5.0/en-US/spatialization-overview-in-unreal-engine/’

Sound Attenuation:
https://docs.unrealengine.com/5.0/en-US/sound-attenuation-in-unreal-engine/

A Wwise Approach to Spatial Audio – Part1 – Distance Modeling and Early Reflections:
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-1/

A Wwise Approach to Spatial Audio – Part1 – Diffraction:
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-2-diffraction/

A Wwise Approach to Spatial Audio – Part1 – Beyond Early Reflections:
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-3-beyond-early-reflections/

https://www.gdcvault.com/play/1026515/Designing-the-Bustling-Soundscape-of
http://www.gdcvault.com/play/1025132/Frostbite-GPU-Emitter-Graph
https://www.youtube.com/watch?v=M8Bd7uHH4Yg
https://docs.unrealengine.com/5.0/en-US/spatialization-overview-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/sound-attenuation-in-unreal-engine/
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-1/
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-2-diffraction/
https://blog.audiokinetic.com/zh/a-wwise-approach-to-spatial-audio-part-3-beyond-early-reflections/

Modern Game Engine - Theory and Practice

Lecture 12 Contributor

- 坤

- Uchihaxin

- 少年

- 嘉衡

- 小老弟

- 建辉

- 馨月

- 爵爷

- Jason

- 砚书

- BOOK

- MANDY

- 乐酱

- 灰灰

- 金大壮

- Leon

- 梨叔

- Shine

- 浩洋

- Judy

- 乐酱

- QIUU

- C佬

- 阿乐

- 靓仔

- CC

- 大喷

- 大金

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)
Coding

Course Wechat

Modern Game Engine - Theory and Practice

Please note that all videos and images and other media
are cited from the Internet for demonstration only.

