
Modern Game Engine - Theory and Practice

• Where to ask questions? 

• GitHub discussion is the best channel 

• WeChat group

• Will Mini Engine integrate a physics engine?

• Need more reference, links of papers and codes, or materials Course Team 

referred when preparing the PPT slides

• Would like to know the logic behind the topics. Why the Team choose those 
topics over others？

• Used same engine on different devices running the same code and same 

scenario of a still object, the outcome of rendering varies? 

Voice from Community



Modern Game Engine - Theory and Practice

Pilot Engine V0.0.6 Released – 31 May

New Feature

• Jolt Physics integration

Refactoring

• Rendering

• swap data context (finished)

Bugfixes

• Fixed bugs in mipmap level of color grading texture

• Fixed bugs in render system when reloading levels

Contributors



Modern Game Engine - Theory and Practice

Naming of Mini Engine - Piccolo

Rewarding List： (10)

家子颜 鄙姓金名聪 塞伦斯 蝈 蝈 李同学

王十一 核 桃 Frozen 张 茂 otaku小许



WANG XI GAMES 104 2022

Applications

Modern Game Engine - Theory and Practice

Physics System

Lecture 11



Basic Concepts

• Physics World

• Simulation

• Rigid Body Dynamics

• Collision Detection

• Collision Resolution

• Scene Query

• Miscellaneous

Applications

• Character Controller

• Ragdoll

• Destruction

• Cloth

• Vehicle

• Advanced: PBD/XPBD

Outline of Physics System



Modern Game Engine - Theory and Practice

Character Controller



Modern Game Engine - Theory and Practice

Character Controller vs. Rigid Body Dynamics

• Controllable rigid body interaction

• Almost infinite friction / No restitution

• Accelerate and brake change direction almost instantly and teleport

Character controller Dynamic actor



Modern Game Engine - Theory and Practice

• A lot of carefully tweaked values provide a good feeling

• Legacy code in the industry

Legacy Hack in Character Control



Modern Game Engine - Theory and Practice

Build a Controller in Physics System

• Kinematic Actor

• Not affected by physics rules

• Push other objects

• Shape: Humanoids 

• Capsule

• Box

• Convex



Modern Game Engine - Theory and Practice

Collide with environment

• Collision detection with environment

• Sweep test

• Auto slide with wall

• Calculate tangent direction 

• Move along tangent direction

Wall

Start



Modern Game Engine - Theory and Practice

Auto Stepping and its Problem

• Sweep with step offset

• Virtual gap



Modern Game Engine - Theory and Practice

Slope Limits and Force Sliding Down 

• Max climb slopes

• Slide down on steep slopes



Modern Game Engine - Theory and Practice

Controller Volume Update

• Change the controller volume size at runtime, 

e.g.  crouching

• Overlap test before update to avoid 

insertion inside objects



Modern Game Engine - Theory and Practice

Controller Push Objects

• Hit Callback when character controller 

collides with dynamic actor

• Apply force to dynamic actor 



Modern Game Engine - Theory and Practice

Standing on Moving Platform



Modern Game Engine - Theory and Practice

Ragdoll



Modern Game Engine - Theory and Practice

Die on the ground Die on the edge of a cliff Enable physics

Why Should We Use Ragdoll 



Modern Game Engine - Theory and Practice

Map Skeleton to Rigid Bodies

Bind key joints with rigid bodies

Active joint



Modern Game Engine - Theory and Practice

Human Joint Constraints

Constraints of Human Skeleton

Ball-and-socketHinge Pivot

CondyloidSaddle Gliding

Various constraints

• Ball-and-socket

• Hinge

• Pivot

• Condyloid

• Saddle

• Gliding

• …



Modern Game Engine - Theory and Practice

Importance of Joint Constraints

The constraints should match the anatomical skeleton

Result with correct constraints Weird result with free hinges only



Modern Game Engine - Theory and Practice

Constraints – Properties 

Case: Hinge Constraint

Hinge

Free Swing 45°Limited Swing 60°Limited Swing



Modern Game Engine - Theory and Practice

Carefully Tweaked Constraints

The rigid bodies should fit the mesh as much as possible

Correct result Incorrect result if not unfitting



Modern Game Engine - Theory and Practice

Animating Skeleton by Ragdoll

Update skeleton per frame

Intermediate joints

Active joints

Leaf joints

Bind Pose

Rigid Body Pose

Animation Pose



Modern Game Engine - Theory and Practice

Blending between Animation and Ragdoll

character state

destroyed

kinematic dynamicragdoll state:

deadcreated

Kinematic state ragdoll

• Rigid bodies are driven by animation

Dynamic state ragdoll

• Rigid bodies are simulated by physics



Modern Game Engine - Theory and Practice

Physics-animation BlendingAnimation only Ragdoll physics only

Blend between the animation pose and 

the physics pose

Powered Ragdoll – Physics-Animation Blending



Modern Game Engine - Theory and Practice

Clothing



Modern Game Engine - Theory and Practice

• Pipeline

• Animators produce the animation of bones

• Generate more animation data via DCC tools

• Engine replays the animation when running

• Pros

• Cheap

• Controllable 

• Cons

• Not realistic

• Could not interact with environment

• The designation of clothes is limited

Popular among mobile games

Animation-based Cloth Simulation



Modern Game Engine - Theory and Practice

• Pipeline

• The bones of cloth are bound with rigid 

bodies and constraints

• The effect are solved by physics engine

• Pros

• Cheap

• Interactive

• Cons

• Undetermined quality

• Work load for animators

• Not robust

• Needs physics engine with high performance 

Items like tails, special hair, and pendant

Rigid Body-based Cloth Simulation



Modern Game Engine - Theory and Practice

Mesh-based Cloth Simulation



Modern Game Engine - Theory and Practice

Render Mesh Physical Mesh

Render Mesh vs. Physical Mesh



Modern Game Engine - Theory and Practice

Add maximum radius constraints to each vertex

Paint Cloth Simulation Constraints



Modern Game Engine - Theory and Practice

Set Cloth Physical Material



Modern Game Engine - Theory and Practice

Δ  𝑥

• Spring force 

•  𝐹𝑠 = 𝑘springΔ  𝑥

• Spring damping force

•  𝐹𝐷 = −𝑘damping  𝑣

Cloth Solver – Mass-Spring system (1/3)



Modern Game Engine - Theory and Practice

Cloth Solver – Mass-Spring system (2/3)



Modern Game Engine - Theory and Practice

• For a vertex, we could apply force analysis on it

 𝐹𝑛𝑒𝑡
𝑣𝑒𝑟𝑡𝑒𝑥 𝑡 = 𝑀  𝑔 +  𝐹𝑤𝑖𝑛𝑑(𝑡) +  𝐹𝑎𝑖𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡 +  

𝑆𝑝𝑟𝑖𝑛𝑔𝑠∈𝑣

𝑘𝑠𝑝𝑟𝑖𝑛𝑔Δ  𝑥 𝑡 − 𝑘𝑑𝑎𝑚𝑝𝑖𝑛𝑔  𝑣 𝑡 = 𝑀  𝑎(𝑡)

 𝑥 𝑡 + ∆𝑡 = 2  𝑥 𝑡 −  𝑥(𝑡 − ∆𝑡) +  𝑎(𝑡) ∆𝑡 2

• Then, we just need to use integrator to calculate the next 

position. In the cloth simulation, Verlet is a good choice.

Cloth Solver – Mass-Spring system (3/3)



Modern Game Engine - Theory and Practice

• Recap Semi-Euler method

 
 𝑣 𝑡 + Δ𝑡 =  𝑣 𝑡 +  𝑎(𝑡) ∆𝑡

 𝑥 𝑡 + Δ𝑡 =  𝑥 𝑡 +  𝑣 𝑡 + Δ𝑡 ∆𝑡

Verlet Integration



Modern Game Engine - Theory and Practice

• Recap Semi-Euler method

 𝑥 𝑡 + ∆𝑡 = 2  𝑥 𝑡 −  𝑥(𝑡 − ∆𝑡) +  𝑎(𝑡) ∆𝑡 2

 

 𝑣 𝑡 + Δ𝑡 =  𝑣 𝑡 +  𝑎(𝑡) ∆𝑡

 𝑥 𝑡 + Δ𝑡 =  𝑥 𝑡 +  𝑣 𝑡 + Δ𝑡 ∆𝑡

 𝑥 𝑡 =  𝑥 𝑡 − Δ𝑡 +  𝑣 𝑡 ∆𝑡

Verlet integration does not need to consider about velocity when calculate, 

so it is faster

 
 𝑥 𝑡 + Δ𝑡 =  𝑥 𝑡 + (  𝑣 𝑡 +  𝑎(𝑡) ∆𝑡)∆𝑡

 𝑥 𝑡 =  𝑥 𝑡 − Δ𝑡 +  𝑣 𝑡 ∆𝑡

Verlet Integration



Modern Game Engine - Theory and Practice

Constrains Force Velocity Position

Constrains Position

Luckily, we have Position Based dynamics (PBD)

Basically, the simulation needs

Cloth Solver – Position Based Dynamics



Modern Game Engine - Theory and Practice

Self Collision

• As a kind of flexible material, cloth can fold and collide with itself

• This is pretty tricky in real-time game physics simulation



Modern Game Engine - Theory and Practice

d

• Make the cloth thicker • Use many substeps in one physics 

simulation step

Common Solutions for Self Collision (1/2)



Modern Game Engine - Theory and Practice

• Enforce maximal velocity • Introduce contact constraints and 

friction constraints 

Common Solutions for Self Collision (2/2)



Modern Game Engine - Theory and Practice

Destruction



Modern Game Engine - Theory and Practice

Destruction is Important

• Not only a visual effect

• Making the game world much more vivid and 

immersive

• A key mechanism in many games



Modern Game Engine - Theory and Practice

Chunk Hierarchy

• Organize the fractured chunks level by level

• Different damage threshold for each level

A B C

D

E

F

G
H



Modern Game Engine - Theory and Practice

Connectivity Graph

Construct connectivity graph for chunks at the deepest level

• One node per chunk

• One edge if two chunks share a face

• Update at runtime

D

E

F

G

H



Modern Game Engine - Theory and Practice

Connectivity Value

The value on each edge in the connectivity graph 

• How much damage needed to break the edge

• Update after each damage

• Break the edge when the value goes to 0



Modern Game Engine - Theory and Practice

Damage Calculation (1/2)

Calculate damage from impulse at the impact point

• 𝐼 : the applied impulse (e.g. by collision)

• 𝐻 : the material hardness of the rigid body

The damage at the impact point is

𝐷 =
𝐼

𝐻



Modern Game Engine - Theory and Practice

Damage Calculation (2/2)

Damage distribution

• 𝐷 : the damage at the impact point

• 𝑅𝑚𝑖𝑛 : the minimum damage radius

• 𝑅𝑚𝑎𝑥 : the maximum damage radius

• 𝑘 : the damage fall off exponent

The damage 𝐷𝑑 at distance 𝑑 is

Impact Point

Damage Range

𝐷𝑑 =

𝐷

𝐷 ∙
𝑅𝑚𝑎𝑥 − 𝑑

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

𝐾

0

𝑑 ≤ 𝑅𝑚𝑖𝑛

𝑅𝑚𝑖𝑛 < 𝑑 < 𝑅𝑚𝑎𝑥

𝑑 ≥ 𝑅𝑚𝑎𝑥

𝑑

𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥



Modern Game Engine - Theory and Practice

Destruction with/without Support Graph

Not connect with world Connect with world

Support Graph



Modern Game Engine - Theory and Practice

Build Chunks by Voronoi Diagram

A partition of a plane into regions close to each of seeds

Seed

Cell

Voronoi Cell

• the region for each seed

• Points in the cell are closer to the seed than to any other



Modern Game Engine - Theory and Practice

Fracturing with Voronoi Diagram - 2D Mesh

Pick N random points within the bounding rect of the mesh

• Construct the Voronoi diagram

• Intersect each Voronoi cell with the mesh to get all fractured chunks



Modern Game Engine - Theory and Practice

Similar to the 2D situation, but not trivial

• New triangles need to be generated for all fracture surfaces

Fracturing with Voronoi Diagram - 3D Mesh (1/2)



Modern Game Engine - Theory and Practice

Generate triangles for all fracture surfaces

• Usually by Delaunay Triangulation(is dual to Voronoi diagram)

• New texture and texture coordinates

New texture for fracture surfaces

A fracture surface Delaunay Triangulation and 
its dual Voronoi Diagram

Fracturing with Voronoi Diagram - 3D Mesh (2/2)



Modern Game Engine - Theory and Practice

Different Fracture Patterns with Voronoi Diagram

• Uniform random pattern

• Clustered pattern

• Radial pattern

• etc.

Uniform Random Pattern Clustered Pattern Radial Pattern



Modern Game Engine - Theory and Practice

Destruction in Physics System (2/2)

Handle destruction after collision

• New rigid bodies may be generated after destruction



Modern Game Engine - Theory and Practice

Make it more realistic

Fracture is not enough

• Sound effects

• Particle effects

• Navigation updated

Make path by destruction Fracture with Particle



Modern Game Engine - Theory and Practice

Issues with Destruction

Add destruction with caution

• Numerous debris may cause larger performance overhead

Empirical when artists design the destruction effect

• Many parameters to be tuned, e.g. fracture parameters

• Produce performance highly depends on the authoring tool

Some mesh fracture parameters

Performance overhead with 
numerous debris



Modern Game Engine - Theory and Practice

Popular Destruction Implementations (1/2)

NVIDIA APEX Destruction

• Widely used in games(supported in UE4)

• Official destruction authoring tool(PhysX Lab)

• Deprecated in 2017

NVIDIA Blast

• Successor of APEX

• Better performance, scalability and flexibility

Blast in NVIDIA Omniverse



Modern Game Engine - Theory and Practice

Popular Destruction Implementations (2/2)

Havok Destruction

• Widely used in games(supported in Unity)

• Good performance and various features

• High license fee

Chaos Destruction(Epic Games.)

• Complete tool chain supported

• Still beta in UE5

Havok Destruction in Battlefield Hardline

Chaos Destruction Demo



Modern Game Engine - Theory and Practice

Vehicle



Modern Game Engine - Theory and Practice

Stylized Realistic

Vehicle Implementation Spectrum



Modern Game Engine - Theory and Practice

• A rigid body actor

• Shapes for the chassis and wheels

• Scene query for the suspension simulation

Vehicle Mechanism Modeling



Modern Game Engine - Theory and Practice

• Get torque from a curve

• 𝑇 = 𝑇𝑒𝑛𝑔𝑖𝑛𝑒𝑋𝑔𝑋𝑑𝑛

• Calculate traction

•  𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑇

𝑅𝑤
𝑢

𝑢 :a unit vector which reflects vehicle heading

𝑇 :wheel torque

𝑇𝑒𝑛𝑔𝑖𝑛𝑒 :engine torque represented by curves

𝑋𝑔 :the gear ratio

𝑋𝑑 :the differential ratio

𝑛 :transmission efficiency and

𝑅𝑤 :wheel radius

engine
geardifferential

rear wheel

drive torque

rotation traction force

Traction Force



Modern Game Engine - Theory and Practice

• Apply on attachment points  of chassis and suspension

• Calculated independently for each wheel

•  𝐹𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑘(𝐿𝑟𝑒𝑠𝑡 − (𝐿ℎ𝑖𝑡 − 𝑅𝑤))

Terrain

Raycast
𝐿𝑟𝑒𝑠𝑡

𝐿ℎ𝑖𝑡
𝑅𝑤

𝑘 :spring stiffness
𝑅𝑤 :wheel radius
𝐿𝑟𝑒𝑠𝑡 :length of spring rest
𝐿ℎ𝑖𝑡 :distance of raycast hit

Suspension Force



Modern Game Engine - Theory and Practice

• Longitudinal force

• 𝐹𝑙𝑜𝑛𝑔 = 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑟𝑟

• Lateral force

• 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝐶𝑐 ∗ 𝛼

𝐹𝑟𝑟: rolling resistance

𝐶𝑐 : cornering stiffness

𝛼 : slip angle

𝐹𝑟𝑟

𝐹𝑑𝑟𝑎𝑔 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Wheel heading
wheel direction of travel

𝛼

𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙

Tire Forces



Modern Game Engine - Theory and Practice

Actor center

Center of mass

Center of mass offset

• Affects handling, acceleration, and traction 

• Should be a tunable value

Center of Mass (1/3)

𝑀1, 𝑀2 : the sprung masses

 𝑥1,  𝑥2 : the sprung mass coordinates in actor space

𝑀 : the rigid body mass

 𝑥𝑐𝑚 : the rigid body center of mass offset

𝑀 = 𝑀1 +𝑀2

 𝑥𝑐𝑚 =
𝑀1  𝑥1 +𝑀2  𝑥2

𝑀



Modern Game Engine - Theory and Practice

Affects the stability of the vehicle in the air

• front-heavy -> dive

• rear-heavy -> stabilize

Center of Mass (2/3)



Modern Game Engine - Theory and Practice

Affects vehicle steering control

• front-heavy -> understeering

• rear-heavy -> oversteering

Center of Mass (3/3)



Modern Game Engine - Theory and Practice

Affects the maximum traction force per wheel

•  𝐹𝑓 =
𝐿𝑓

𝐿
𝑀  𝑔 ∓

𝐻

𝐿
𝑀  𝑎

•  𝐹𝑟 =
𝐿𝑟

𝐿
𝑀  𝑔 ±

𝐻

𝐿
𝑀  𝑎

•  𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝜇  𝐹𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛

𝑀: mass of vehicle

𝜇 : friction coefficient of the tire

 𝑎

Weight Transfer



Modern Game Engine - Theory and Practice

• Same steering angle causes slipping

• Ackermann steering

• different steering angles

𝛼𝑙 = tan−1
𝐿𝑤𝑏

𝑅𝑡 +
𝐿𝑟
2

𝛼𝑟 = tan−1
𝐿𝑤𝑏

𝑅𝑡 −
𝐿𝑟
2

𝑅𝑡

𝐿𝑟

𝐿𝑤𝑏

𝛼𝑙𝛼𝑟

Center of turning circle

𝐿𝑤𝑏:length of wheel base

𝐿𝑟 :length of rear track

𝑅𝑡 :turn radius

Steering angles (1/2)



Modern Game Engine - Theory and Practice

Without Ackermann steering With Ackermann steering

Steering angles (2/2)



Modern Game Engine - Theory and Practice

Advanced Wheel Contact



Modern Game Engine - Theory and Practice

Advanced: PBD/XPBD



Modern Game Engine - Theory and Practice

• Modelling constraints based on Lagrangian

mechanics

• Collision constriaints

• Non-penetration

• Friction

• Restitution

• Cloth constraints

• Stretching

• Bending

Joseph-Louis Lagrange

(1736 - 1813)

Recap: Solving Constraints



Modern Game Engine - Theory and Practice

Circling Constraint

𝐶 𝐱 = 0Position constraint

Velocity constraint

𝐶 𝐱 = 𝐱 − 𝑟 = 0

𝑟
• Row Vector

• is perpendicular to

• Transforms velocity to velocity constraint

𝐉

𝐯
Jacobian

𝐉T
𝐉T ∙ 𝐯 = 0

d

d𝑡
𝐶 𝐱 =

d𝐶

d𝐱

d𝐱

d𝑡
= 0

𝐯𝐉



Modern Game Engine - Theory and Practice

Stretched Case

𝐱1

𝐱2

𝐱1
new

𝐱2
new

𝐱1

𝐱2

𝐱1
new

𝐱2
new

String Constraints

Compressed Case

𝐶𝑠𝑡𝑟𝑒𝑡𝑐ℎ 𝐱1, 𝐱2 = 𝐱1 − 𝐱2 − 𝑑



Modern Game Engine - Theory and Practice

𝐶 𝐗 𝑘 ′
+ Δ𝐗 ≈ 𝐶 𝐗 𝑘 ′

+ 𝛻𝐗𝐶 𝐗 𝑘 ′
∙ Δ𝐗 = 0

𝐗 𝑘 ′
=

𝐱1
𝑘 ′

⋮

𝐱𝑛
𝑘 ′

Δ𝐗 = 𝜆𝛻𝐗𝐶 𝐗 𝑘 ′

𝑘 = 0 : Integrated positions

𝑘 > 0 : position with correction 

from last iteration

PBD – Constraints Projection

𝜆

𝛻𝐗𝐶 𝐗 𝑘 ′



Modern Game Engine - Theory and Practice

𝐶 𝐗 𝑘 ′
+ Δ𝐗 ≈ 𝐶 𝐗 𝑘 ′

+ 𝛻𝐗𝐶 𝐗 𝑘 ′
∙ Δ𝐗 = 0

Δ𝐗 = 𝜆𝛻𝐗𝐶 𝐗 𝑘 ′

𝐶 𝐗 𝑘 ′
+ 𝛻𝐗𝐶 𝐗 𝑘 ′

∙ 𝜆𝛻𝐗𝐶 𝐗 𝑘 ′
= 0

𝜆 = −
𝐶 𝐗 𝑘 ′

𝛻𝐗𝐶 𝐗 𝑘 ′ 2 Δ𝐗 = −
𝐶 𝐗 𝑘 ′

𝛻𝐗𝐶 𝐗 𝑘 ′ 2 𝛻𝐗𝐶 𝐗 𝑘 ′

PBD – Constraints Projection



Modern Game Engine - Theory and Practice

Time step

Position Based Dynamics – Workflow (1/6) 



Modern Game Engine - Theory and Practice

Semi-implicit integration

Position Based Dynamics – Workflow (2/6) 



Modern Game Engine - Theory and Practice

• For collisions in this time step, 

generate constraints

• Structural constraints are initialized 

when starting the simulation

Position Based Dynamics – Workflow (3/6) 



Modern Game Engine - Theory and Practice

Solver interation

Position Based Dynamics – Workflow (4/6) 



Modern Game Engine - Theory and Practice

Update states after solver iterations

Position Based Dynamics – Workflow (5/6) 



Modern Game Engine - Theory and Practice

the velocities of colliding vertices are 

modified according to friction and 

restitution coefficients

Position Based Dynamics – Workflow (6/6) 



Modern Game Engine - Theory and Practice

• Projecting constraints to position corrections

• Fast, stable for most cases

• Hard to control constraint satisfaction

• Cannot prioritize collision constraints 

over others

• Commonly used for cloth simulation in 

games

• NVIDIA FleX

Advantages of PBD



Modern Game Engine - Theory and Practice

• Use compliances as inverse of constraint 

stiffness to handle infinite stiffness 

constraints (rigidbody)

• Reintroduce rigidbody orientation to XPBD 

for rigidbody simulation application

• Unreal Chaos physics engine

Extended Position Based Dynamics (XPBD)

𝑈 𝐗 =
1

2
𝑪 𝐗 T𝜶−1𝑪 𝐗

Block diagonal compliance matrix



Modern Game Engine - Theory and Practice

Homework 3 (available since 1 June)

• You are supposed to...

• Implement pose blend function in animation system

• Implement a simple logic of ASM

• Implement a simple character controller based on 

physics scene queries

• Add more features to the character controller that you 

like (advanced)

• Write a report document that contains screenshots of 

your results

• Download at

• Course-site:

https://games104.boomingtech.com/sc/course-list

• Github: 

https://github.com/BoomingTech/Pilot/tree/games104/homew

ork03-animation-physics

https://games104.boomingtech.com/sc/course-list
https://github.com/BoomingTech/Pilot/tree/games104/homework03-animation-physics


Modern Game Engine - Theory and Practice

References



Modern Game Engine - Theory and Practice

• Character Controllers Chapter in PhysX User’s Guide: 

https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/CharacterController

s.html

• Diablo 3 Ragdolls: How to smack a demon, Erin Catto, GDC 2012: 

https://box2d.org/files/ErinCatto_Ragdolls_GDC2012.pdf

• Physics Animation in 'Uncharted 4: A Thief's End', Michal Mach, Naughty Dog, GDC 2017: 

https://gdcvault.com/play/1024087/Physics-Animation-in-Uncharted-4

• Physics Driven Ragdolls and Animation at EA: From Sports to Star Wars, Jalpesh Sachania, Frostbite 

EA, GDC 2018: https://gdcvault.com/play/1025210/Physics-Driven-Ragdolls-and-Animation

• Physical Animation in 'Star Wars Jedi: Fallen Order', Bartlomiej Waszak, Respawn Entertainment, 

GDC Summit 2020: https://gdcvault.com/play/1026848/Physical-Animation-in-Star-Wars

Character Controller & Ragdoll

https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/CharacterControllers.html
https://box2d.org/files/ErinCatto_Ragdolls_GDC2012.pdf
https://gdcvault.com/play/1024087/Physics-Animation-in-Uncharted-4
https://gdcvault.com/play/1025210/Physics-Driven-Ragdolls-and-Animation
https://gdcvault.com/play/1026848/Physical-Animation-in-Star-Wars


Modern Game Engine - Theory and Practice

• Blowing from the West: Simulating Wind in 'Ghost of Tsushima', Bill Rockenbeck, Sucker Punch 

Productions, GDC 2021: https://www.gdcvault.com/play/1027124/Blowing-from-the-West-Simulating

• Cloth Self Collision with Predictive Contacts, Chris Lewin, Electronic Arts, GDC 2018: 

https://www.gdcvault.com/play/1025083/Cloth-Self-Collision-with-Predictive

• Machine Learning: Physics Simulation, Kolmogorov Complexity, and Squishy Bunnies, Daniel Holden, 

Ubisoft Montreal, GDC 2020: https://www.gdcvault.com/play/1026713/Machine-Learning-Physics-

Simulation-Kolmogorov

• Matt's Webcorner - Cloth - Stanford Computer Graphics, Stanford 2014 Course, 

https://graphics.stanford.edu/~mdfisher/cloth.html

• 从零开始学图形学：弹簧质点系统——Euler Method和Verlet Integration, 启思, 知乎专栏

https://zhuanlan.zhihu.com/p/355170943

Clothing

https://www.gdcvault.com/play/1027124/Blowing-from-the-West-Simulating
https://www.gdcvault.com/play/1025083/Cloth-Self-Collision-with-Predictive
https://www.gdcvault.com/play/1026713/Machine-Learning-Physics-Simulation-Kolmogorov
https://graphics.stanford.edu/~mdfisher/cloth.html
https://zhuanlan.zhihu.com/p/355170943


Modern Game Engine - Theory and Practice

• 游戏破坏系统简介，网易游戏雷火事业群，知乎 https://zhuanlan.zhihu.com/p/346846195

• Destructible Environments in 'Control': Lessons in Procedural Destruction, Johannes Richter, Remedy, 

GDC Summer 2020, https://www.gdcvault.com/play/1026820/Destructible-Environments-in-Control-

Lessons

• The Art of Destruction in 'Rainbow Six: Siege', Julien L'Heureux, Ubisoft, GDC 2016, 

https://www.gdcvault.com/play/1023307/The-Art-of-Destruction-in

• NVIDIA Blast official site, https://developer.nvidia.com/blast

• Voronoi Diagram, https://cs.brown.edu/courses/cs252/misc/resources/lectures/pdf/notes09.pdf

• Delaunay Triangulations, 

https://members.loria.fr/monique.teillaud/collab/Astonishing/2017_workshop_slides/Olivier_Devillers.pdf

• Unreal Engine Chaos, https://docs.unrealengine.com/4.27/en-

US/InteractiveExperiences/Physics/ChaosPhysics/Overview/

Destruction

https://zhuanlan.zhihu.com/p/346846195
https://www.gdcvault.com/play/1026820/Destructible-Environments-in-Control-Lessons
https://www.gdcvault.com/play/1023307/The-Art-of-Destruction-in
https://developer.nvidia.com/blast
https://cs.brown.edu/courses/cs252/misc/resources/lectures/pdf/notes09.pdf
https://members.loria.fr/monique.teillaud/collab/Astonishing/2017_workshop_slides/Olivier_Devillers.pdf
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/ChaosPhysics/Overview/


Modern Game Engine - Theory and Practice

• Vehicle Chapter in PhysX User’s Guide: 

https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/CharacterController

s.html

• Vehicle in Unreal Engine User’s Guide: https://docs.unrealengine.com/4.27/en-

US/InteractiveExperiences/Vehicles/VehicleUserGuide/

• Car Physics for Games, Marco Monster: 

https://asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html

• Replicating Chaos: Vehicle Replication in Watch Dogs 2, Matt Delbosc, Ubisoft Toronto, GDC 2017: 

https://www.gdcvault.com/play/1026956/Replicating-Chaos-Vehicle-Replication-in

Vehicle

https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/CharacterControllers.html
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Vehicles/VehicleUserGuide/
https://asawicki.info/Mirror/Car Physics for Games/Car Physics for Games.html
https://www.gdcvault.com/play/1026956/Replicating-Chaos-Vehicle-Replication-in


Modern Game Engine - Theory and Practice

• Positon Based Dynamics, M. Müller et al., 3rd Workshop in Virtual Reality Interactions and Physical 

Simulation "VRIPHYS“, 2006: https://matthias-research.github.io/pages/publications/posBasedDyn.pdf

• XPBD: Position-Based Simulation of Compliant Constrained Dynamics, M. Macklin et al., MIG '16: 

Proceedings of the 9th International Conference on Motion in Games,  2016: 

http://mmacklin.com/xpbd.pdf

• Detailed Rigid Body Simulation using Extended Position Based Dynamics, M. Müller et al., Symposium 

on Computer Animation, 2020: 

https://www.researchgate.net/publication/344464310_Detailed_Rigid_Body_Simulation_using_Extende

d_Position_Based_Dynamics

• Position Based Dynamics: A fast yet physically plausible method for deformable body simulation, 

Tiantian Liu, GAMES Webinar 2019-88: https://slides.games-

cn.org/pdf/Games201988%E5%88%98%E5%A4%A9%E6%B7%BB.pdf

PBD

https://matthias-research.github.io/pages/publications/posBasedDyn.pdf
http://mmacklin.com/xpbd.pdf
https://www.researchgate.net/publication/344464310_Detailed_Rigid_Body_Simulation_using_Extended_Position_Based_Dynamics
https://slides.games-cn.org/pdf/Games201988%E5%88%98%E5%A4%A9%E6%B7%BB.pdf


Modern Game Engine - Theory and Practice

Lecture 11 Contributor

- 一将

- 灰灰

- 新之助

- BOOK

- Wood

- 爵爷

- 乐酱

- 大喷

- Qiuu

- Adam

- Olorin

- 喵小君

- 呆呆兽

- 蒙蒙

- 人工非智能

- Hoya

- 达拉崩吧

- 蓑笠翁

- 晨晨

- Kun



Q&A

Modern Game Engine - Theory and Practice



Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)

Coding

Course Wechat


