
Modern Game Engine - Theory and Practice

@Li Hypo

Cartoon

Filter

Modern Game Engine - Theory and Practice

Vignette

Filter

@li yanchen

Modern Game Engine - Theory and Practice

Radial blur

Effect

@L jay

Modern Game Engine - Theory and Practice

Voice from Communities

• Pilot engine source code hard to read

• Yes, we are working on refactoring to improve the architecture clearance

• We will work on more wiki docs to go through after we done refactoring

• Vulkan API is hard to understand

• Sorry, it’s a problem. We focus on platform portability too much and ignore the learning curve

• We will try to refactor a better RHI layer to hide the complexity of Vulkan API

• Need more extended reading materials to help understand the course

• Yes, we agree. We will organize a list of reference papers on our engine website. It might take

us a few weeks. Please give us more time

• Didn’t submit homework 2 in time, can we open the submission again?

• The due date of homework 2 is delayed to May 30th, 00:00

Thanks for cool names from communities

ONEOX Engine(@Jason), Brick Engine(@Kpure1000), Alkaid Engine(@核桃), Pi Engine(@王十一)

擎空一鹤排云上，引得诗情到碧霄(@Jiazi)

WANG XI GAMES 104 2022

Advanced Animation Technology

Modern Game Engine - Theory and Practice

Lecture 09

Animation System

Modern Game Engine - Theory and Practice

How?

How to Achieve the Animation Effect in Real Game?

simple animation complex animation in real game

Modern Game Engine - Theory and Practice

Animation Blending

• The term animation blending refers to any technique that allows more than one animation clip to

contribute to the final pose of the character

Modern Game Engine - Theory and Practice

Case: Walking to Running

• Assume the character walks at 1.5m/s and runs at 3.0m/s in our game

• As the character's speed increase, we want to switch its animation from walking to running

walking clip running clip No blending Blend Result

Modern Game Engine - Theory and Practice

Math of Blending: LERP

Pose 1

Pose 2

Pose between 1→2

Interpolat

e

Use LERP to get intermediate frame from poses of different clips

Weight is controlled by game parameters, i.e, character speed

LERP between key frames in one clip Blending is LERP between poses of different clips

Modern Game Engine - Theory and Practice

Calculate Blend Weight

current speed

speed of clip1

speed of clip2

calculated weight of clip1

calculated weight of clip1

speedcurrent :

speed1 :

speed2 :

weight1 :

weight2 :

Blending is LERP between poses for different clips

Modern Game Engine - Theory and Practice

Align Blend Timeline

Align timeline of clips

Sliding Step

lengthcurrent :

Δt :

Δt1 :

Δt2 :

current length

delta time of current blend space

delta time of clip 1

delta time of clip 2

walk

run

time(s)

ratio

0

0 1

1.5 3.0

clip

clip

0.5

walking normally

Modern Game Engine - Theory and Practice

Case: Walking to Running

1.5m/s 1.9m/s 2.3m/s 2.7m/s 3.0m/s

In order to achieve the desired effect, we need a lot of animation clips with intermediate speeds.

Let the animators produce a whole bunch?

Modern Game Engine - Theory and Practice

Blend Space

Modern Game Engine - Theory and Practice

1D Blend Space: Directional Movement

Players can move forward from multiple angles

We can blend any angle from three clips:

• Strafe Left clip

• Run Forward clip

• Strafe Right clip

The technique is called 1D Blend Space.

leftward forward rightward multi-directional movement

Modern Game Engine - Theory and Practice

Players can change direction and speed at the same time

We simply place the two 1D Blend Spaces orthogonally and we get an 2D Blend Space

Directional Walking and Running

Modern Game Engine - Theory and Practice

2D Blend Space

Since the movement speed in the lateral direction is lower in the forward direction, the character

should enter the running state in a lower speed in the lateral direction

Delaunay Triangulation

Modern Game Engine - Theory and Practice

Is it possible to make a single applauding animation
that can be applied to all poses?

Case: Applauding on Different Poses

There are multiple robots in different poses in the scene

We need to make applause animations for various poses
separately

Modern Game Engine - Theory and Practice

Skeleton Masked Blending

standing clapping sitting

sitting clapping

The set of all blend percentages for the entire skeleton is sometimes called a blend mask b

Blend Mask

Modern Game Engine - Theory and Practice

Case: Warm Welcome from the Robots

We will let robots applauding in different poses

Modern Game Engine - Theory and Practice

Add a difference clip into a regular clip to produce a new clip

Additive Blending introduces a new kind of animation called a difference clip, which represents the difference
between two regular animation clips.
A difference clip can be added into a regular animation clip in order to produce interesting variations in the
pose and movement of the character.

Additive Blending

Modern Game Engine - Theory and Practice

Nodding to Camera

Modern Game Engine - Theory and Practice

Additive Blending - Abnormal Bone Results

• Additive blends are more likely to have abnormal bone results

Additive Blending

Origin Target

Modern Game Engine - Theory and Practice

Animation Blending Summary

• 1D Blend Space
• Blend poses based on a single input value

• 2D Blend Space
• Blend poses based on two input values
• Triangular blend

• Masked Blending
• Additive Blending

Modern Game Engine - Theory and Practice

Action State Machine (ASM)

Modern Game Engine - Theory and Practice

How to animate jump?

Blend Space is synchronous,

but jump is stateful

We usually model the jumping

action via a finite state machine,

commonly known as the Action

State Machine (ASM)

Case: Jumping

Modern Game Engine - Theory and Practice

• ASM consists of nodes and transitions
• Node types

• Blend space
• Clip

ASM Definition

class ActionStateMachineClipNode
{

AnimationClip m_clip;
bool m_is_loop;

};

class ActionStateMachineBlendSpaceNode
{

BlendSpace m_blend_space;
bool m_is_loop;

};

Modern Game Engine - Theory and Practice

• Transition type

• simply “pop” from one state to another

• cross-fade from one state to the next

• Special transitional states

ASM Definition

class ActionStateMachineTransition
{

int m_source_node_index;
int m_target_node_index;

};

class ActionStateMachineTransitionWithCrossFade
{

int m_source_node_index;
int m_target_node_index;
float m_duration;
Curve m_curve;

};

Modern Game Engine - Theory and Practice

Cross Fades

smooth transition frozen transition

Two common ways

• Smooth transition
• restriction: the two clips must

be looping animations, and
their timelines must be
synchronized

• Frozen transition

no cross fade

Modern Game Engine - Theory and Practice

Cross Fades Curve

• Different cross fades curve could be

used for different demands

Modern Game Engine - Theory and Practice

Animation State Machine in Unreal

• State: a blueprint graph which outputs a pose

• Transition : control when to change state and how to blend (Multi)

Action State Machine State Node with Blend Space

Transition Rule

Modern Game Engine - Theory and Practice

different parts of a character’s body to be

doing different, independent or semi-

independent actions simultaneously

Layered ASM

Devil May Cry 5

Modern Game Engine - Theory and Practice

Animation Blend Tree

Modern Game Engine - Theory and Practice

Blend Tree

a + (b * c) + d * (e + f)

Expression Tree

Structure layered ASMs and operations as a tree

• Inspired by expression tree

• Easy to understand for animators

For a blend tree

• Non-terminal nodes and terminal nodes (leaf nodes)

• The result of each non-terminal node is a pose

Modern Game Engine - Theory and Practice

LERP Blend Node

LERP Output Pose
Clip A

Clip B

LERP

b

Output Pose

b1

b2

b3

b4

b

Clip A

Clip B

Clip C

Clip D

Binary LERP node

• Basic non-terminal node in blend tree

• LERP two input poses with weight β into

one output pose

Usually extended to handle multiple inputs

(e.g. Ternary/Quad LERP node)

Binary LERP node

Extended LERP node

Modern Game Engine - Theory and Practice

Additive Blend Node

Clip A

Diff Clip B

+ Output Pose

Additive Blend node

• Basic non-ternimal node in blend tree

• Add the second input pose (usually a difference one) into the first input pose by weight β

Additive Blend Node

Modern Game Engine - Theory and Practice

Express Layered ASM in Blend Tree

ASM B

ASM F

ASM H

ASM K

+

+

LERP

Use a blend tree to describe the desired final pose of ASMs

K

H

F

B

timet

Layered ASM at time t Blend Tree

Modern Game Engine - Theory and Practice

Terminal node (Leaf Nodes)

• Clip

• Blend Space

• ASM

Non-terminal node (No-Leaf Nodes)

• Binary LERP blend node

• Ternary (triangular) LERP blend node

• Binary additive blend node

Blend Tree Nodes

Nodes in UE4

Modern Game Engine - Theory and Practice

Unreal Animation Blueprint

A blueprint graph which outputs a final pose

• Take clip poses or the results of ASMs as input

• Blend input poses by different methods

Modern Game Engine - Theory and Practice

node search

provide a way for
higher-level code to
find blend nodes in the
tree

named variable

allow names to be
assigned to the individual
control parameters. The
controlling code can look
up a control parameter by
name in order to adjust its
value

control structure

a simple data structure, contains
all of the control parameters for
the entire character. The nodes in
the blend tree(s) are connected
to particular control parameters

Blend Tree Control Parameters

Animation blend tree is way more complicated that those classic notes (i,e, event

nodes, calculation/logic nodes and special blending and flow control nodes).

Modern Game Engine - Theory and Practice

Named variables as members in animation blueprint

• Can be updated through blueprint

• Can be used anywhere inside the Blend Tree

Unreal Animation Blueprint Control

Update Control Parameters

Use Control Parameters

Called by event

Modern Game Engine - Theory and Practice

Unreal5 Animation Tree Sample

Modern Game Engine - Theory and Practice

Inverse Kinematics (IK)

Modern Game Engine - Theory and Practice

• End-effector
The bone which is expected to be moved

to a desired position

• IK (Inverse Kinematics)
The use of kinematic equations to

determine the joint parameters of a

manipulator so that the end-effector

moves to a desired position

• FK (Forward Kinematics)
The use of the kinematics equations of a

robot to compute the position of the

end-effectors from specified values for

the joint parameters

Basic Concepts

Modern Game Engine - Theory and Practice

How to Touch the Ground?

Modern Game Engine - Theory and Practice

Intuitive Idea: Adjust Feet Position for Each Step

Modern Game Engine - Theory and Practice

Two Bones IK

Modern Game Engine - Theory and Practice

• 3D space

Two Bones IK

2D

3D

Modern Game Engine - Theory and Practice

• 3D space

• Determine the final pose by a reference vector

Two Bones IK

3D View

Reference

Vector

2D View of the Final Plane

Reference

Vector

Modern Game Engine - Theory and Practice

More Complicated IK Scenarios

Look At IK Hand IK

Foot IK Full Body IK

Modern Game Engine - Theory and Practice

Complexity of Multi-Joint IK Solving

• Computation cost: high dimension non-linear

function solving in real-time

• May have multiple solutions, unique solution or no

solution

Multiple Solution

Modern Game Engine - Theory and Practice

Check Reachability of the Target

or

Modern Game Engine - Theory and Practice

Constraints of Joints

Constraints of Human Skeleton

Ball-and-socketHinge Pivot

CondyloidSaddle Gliding

Modern Game Engine - Theory and Practice

Need Treat Constraints Seriously

Modern Game Engine - Theory and Practice

Why

• Too many joints + constraints, difficult to solve with analysis

method

Basic Idea

Designed to solve problem in faster and more efficient fashion

by sacrificing optimality, accuracy, precision, or completeness

for speed

• Approximation

• Global optimality is not guaranteed

• Iteration is usually used with a maximum limit

Heuristics Algorithm

Modern Game Engine - Theory and Practice

CCD (Cyclic Coordinate Decent)

Principle

• From joint-to-joint, rotates the end-effector as close as

possible to the target, solves IK problem in orientation

space

Reachability

• Algorithm can stop after certain number of iterations to

avoid unreachable target problem

Contraints

• Angular limits is allowed, by checking after each iteration

Modern Game Engine - Theory and Practice

Optimized CCD (1/2)

Add tolerance regions to each bone's goal

• Each bone stops rotating and moves onto the next bone within tolerance region

• Helps to produce poses that are less rigid and more comfortable looking

Normal CCD
Final Result

......

CCD with tolerance region Final Result

......

Modern Game Engine - Theory and Practice

Use under-damped angle scaling

• Each joint moves only a small amount toward the goal and distributes the movement across multiple bones

• Produce less abrupt joint changes and more smooth and casual poses for character movement

......

Angle Limit Angle Limit
angle limit angle limit

Optimized CCD (2/2)

Modern Game Engine - Theory and Practice

FABRIK (Forward And Backward Reaching Inverse Kinematics)

Principle

• Instead of orientation space, solves IK problem in position space

Reachability

• Algorithm can stop after certain number of iterations to avoid unreachable target problem

Forward(1) Backward(2) Forward(3) Backward(4)

Modern Game Engine - Theory and Practice

FABRIKF with Constraints

Re-positioning

• Joint restrictions can be enforced at each step by taking the

resultant orientation and forcing it to stay with in the valid

range

3D constraints

target

Range of Rotation

Find reposition target in 2D

Reposition

target

Modern Game Engine - Theory and Practice

• May result in conflict between goals, which can not

be achieved simultaneously

• May use a priority or a weighted approach

Multiple End-Effectors

Modern Game Engine - Theory and Practice

• If a shared bone needs to be moved, the end-effector that is updated last will get priority and the other

bones will be pulled away

IK with Multiple End-Effectors

target points

Update First Chain

target points

Update Second Chain

target points

Update Last Chain

Modern Game Engine - Theory and Practice

Jacobian Matrix

In vector calculus, the Jacobian Matrix of a vector-valued function of several

variables is the matrix of all its first-order partial derivatives

Suppose:

then, the Jacobian Matrix of :

Modern Game Engine - Theory and Practice

Only rotate joint 0：

Using Jacobian Matrix to Present Joint Rotations

Only rotate joint 1：

Only rotate joint 2：

joint 0

joint 1

joint 2

Modern Game Engine - Theory and Practice

Jacobian Matrix with Multiple End-effectors

m : the number of end-effectors

n : the number of joints

Modern Game Engine - Theory and Practice

Approaching to Target Step by Step

Calculate ' ' Joint Control

Forward

Kinematics

Modern Game Engine - Theory and Practice

Physics-based Method

• More natural

• Usually need lots of computation if no

optimization

PBD(Position Based Dynamics)

• Different from traditional physics-based

method

• Better visual performance

• Lower computational cost

Fullbody IK in UE5

• XPBD（Extended PBD）

Other IK Solutions

Modern Game Engine - Theory and Practice

IK is still Challenge

• Self collision avoidance

• IK with predication during moving

• Natural human behavior

• Data-driven and deep learning

Modern Game Engine - Theory and Practice

IK Hot Research Areas

From Inverse Kinematics Techniques in Computer Graphics: A Survey

Modern Game Engine - Theory and Practice

Model Pose

World Pose

Mesh Vertex Position

Skinning Matrix Palette

Skinning
World Space

Model Space
CPU

GPU

IK

Clip + timeExtract Clip + timeClip + time

Local Pose

Blend Blend Pose

Post-processing

Local Space

World Current Pose

Local Pose Local Pose

Updated Animation Pipeline with Blending and IK

Modern Game Engine - Theory and Practice

Facial Animation

Modern Game Engine - Theory and Practice

Face is Driven by Complex Muscle System

• 43 Muscles

• Variant shape, strength and

movement

• Work together to make

expressions

Facial Muscles

Modern Game Engine - Theory and Practice

High Precision Requirements

Minor change makes difference:

• Voluntary / Forced

• Natural / Intentional

• Sometimes shows quite opposite

expressions

'In Love' Stare to 'Hate You' Stare

Modern Game Engine - Theory and Practice

Facial Action Coding System

Facial Action Coding System (FACS) is a system to

taxonomize human facial movements by their

appearance on the face.

Part of 46 basic movements are

named action units(AU)

Modern Game Engine - Theory and Practice

Action Units Combination

An expression can be considered as a combination of

some of the basic movements

‘4+5’ Combination

+ =

4 4+5

Brow Lowerer Upper Lid Raiser

5

Modern Game Engine - Theory and Practice

28 Core Action Units

• Apple Inc. extracted the 28 core AUs

• 23 Symmetric AUs are divided into two basic

actions

• Basic actions set varies accoring to the animation

production requirements

28 Core AUs

Neutral face Lip corner depressor

Inner brow raiser Lower lip depressor

Outer brow raiser Chin raiser

Brow lowerer Lip pucker

Upper lid raiser Tongue show

Cheek raiser Lip stretcher

Lid tightener Neck tightener

Lips toward each other Lip funneler

Nose wrinker Lip tightener

Upper lip raiser Lip pressor

Nasolabial deepener Lips part

Lip conner puller Jaw drop

Sharp lip puller Mouth stretch

Dimpler Lip suck

Modern Game Engine - Theory and Practice

Key Pose Blending

+ =

A set of key poses (a variation on per-vertex animation)

Modern Game Engine - Theory and Practice

Problems of Simple Blending

Mouse Open

+ =

+ =

Eye Close

Modern Game Engine - Theory and Practice

FACS In Morph Target Animation

• Create AU key poses only store vertexes different from the neutral pose (Additive Blending)

Vertex offset from neutral face

Modern Game Engine - Theory and Practice

Morph Target Animation

Key PosesFacial animation by morphing among key poses

Modern Game Engine - Theory and Practice

Complex Facial Skeleton

Modern Game Engine - Theory and Practice

UV Texture Facial Animation

• Using a series of texture maps applied to a simple head shape

Animal Crossing: New Horizons The Legend of Zelda: Breath of the Wild

Modern Game Engine - Theory and Practice

Muscle Model Animation

Muscle Spreads Over The Face Cross Section of The Muscle Model

In the reliance on a physical basis, more precise, but more sophisticated

• Muscle controls most part of the face

• 3 Layers: Skin Layer, Muscle Layer, Bone Layer

• The point of insertion will move an amount determined by the muscle

The model used for the skin will dictate how the area around the insertion point muscle reacts

Modern Game Engine - Theory and Practice

Metahuman

Modern Game Engine - Theory and Practice

Animation Retargeting

Modern Game Engine - Theory and Practice

Share Animation Among Characters

• Allow animations to be reused between characters (save animator's work)

• Adapt motion captured animations to different characters (reduce the cost)

Modern Game Engine - Theory and Practice

Terminology

Source Character Source AnimationTarget Character Target Animation

Modern Game Engine - Theory and Practice

The Offset in Retarget Pose

Ignore Offset Between Source and Target Joints

Source vs. Target at

Retarget Pose
(Source skeleton in yellow)

Modern Game Engine - Theory and Practice

Keep Orientation in Different Binding Pose

Target vs. Source at retarget pose The target looks weird

Modern Game Engine - Theory and Practice

Handle animation tracks respectively

• Rotation track comes from source animation

• Keep joint orientation in animation

• Translation track comes from target skeleton

• Keep the proportion of target skeleton

• Scale track comes from source animation

• Keep the scale in animation

Target animation with retargeting (Source

animation in yellow)

Process Tracks

Modern Game Engine - Theory and Practice

The movement of the character

• Usually controlled by displacement curve or motor system at runtime

• Displacement Curve is extracted from the pelvis pose in animation

• Needs to be scaled by the proportion of the pelvis

Hanging feet without movement scale

（Source animation in yellow）
Problem eased with movement scale

（Source animation in yellow）

Align Movement by Pelvis Height

Modern Game Engine - Theory and Practice

Source Skeleton(left) vs. Target Skeleton

with longer thigh(middle) or longer calf(right)

Lock Feet by IK after Retargeting

If the thigh is horizontal (left), longer thigh

results in hanging feet (middle) while longer

calf results in penetration (right) Target animation with foot IK

Modern Game Engine - Theory and Practice

Retargeting with Different Skeleton Hierarchy

Source Skeleton with 1 spine (left) vs.

Target Skeleton with 3 spines (center)

Modern Game Engine - Theory and Practice

Easy Solution

The solution in Omniverse

Modern Game Engine - Theory and Practice

Retargeting Animation in Omniverse

Modern Game Engine - Theory and Practice

Unresolved Problems of Retargeting

• Self mesh penetration

• Self contact constrains (eg. the hands when clap)

• The balance of the target character

Self mesh penetration Hands do not contact when clapping

Modern Game Engine - Theory and Practice

Morph Animation Retargeting

Different face sharing the same topology

Modern Game Engine - Theory and Practice

Morph Animation Retargeting Problem

Eye cannot be fully closed

1 2

3 4

Cannot close Move vertex

Vertex moved Smoothed

Modern Game Engine - Theory and Practice

Take Away

• Controlled animation blending system is the key to animate character according to game play

• Inverse Kinematics help character’s animation adapt to environment constrains

• Facial expression can be encoded in Action Units in FACS

• Morph target animation is well applied in facial animation

• Retarget can help reuse skeleton animation and facial animations among characters

Modern Game Engine - Theory and Practice

Pilot Engine V0.0.4 Releasing – May 17

Refactoring
• Level

• GObject/Component

• Editor Framework

• Style following Wiki documentation

Bugfixes
• Fixed errors in rendering subpass dependency

• Fixed overlapped button and cursor twinkling

Optimizations
• Optimized camera rotation control in high resolution

• Optimized AMD and NVIDIA graphic device race when initializing

Vulkan

• Optimized editor camera controlling

Contributors

Modern Game Engine - Theory and Practice

Lecture 09 Contributor

- 一将

- 喵小君

- 灰灰

- 蓑笠翁

- 小老弟

- 建辉

- Hoya

- 爵爷

- Jason

- 砚书

- BOOK

- MANDY

- 乐酱

- 灰灰

- 金大壮

- Leon

- 梨叔

- Shine

- 浩洋

- Judy

- 乐酱

- QIUU

- C佬

- 阿乐

- 靓仔

- CC

- 大喷

- 大金

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)

Coding

Course Wechat

Modern Game Engine - Theory and Practice

Please note that all videos and images and other media

are cited from the Internet for demonstration only.

