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Render Pipeline, Post-process and Everything

Modern Game Engine - Theory and Practice

Lecture 07

Rendering on Game Engine
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Ambient Occlusion

• Approximation of attenuation of ambient light due to occlusion

Visibility Along W Normal Weight
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Precomputed AO
Using ray tracing to compute the AO offline and store the result into texture, which is widely 
used in object modeling process 

• Extra storage cost
• Only apply to static object
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Screen Space Ambient Occlusion (SSAO)

View 
Direction 
Depth

• Generate N random samples in a sphere around each 
pixel p in view space

• Test sample occlusions by comparing depth against 
depth buffer

• Average visibility of sample points to approximate AO
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SSAO+

• Recall the AO equation is acutally done on the normal-oriented hemisphere
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HBAO - Horizon-based Ambient Occlusion

• Use the depth buffer as a heightfield on 2D surface
• Rays that below the horizon angle are occluded

Occluded Area

Slice
NN

attenuation function
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HBAO Implementation
• Use the depth buffer as a heightfield on 2D surface
• Trace rays directly in 2D and approximate AO from horizon angle

P

Depth Image Ray Marching

Find the max horizon angleRandomly jitter the step size and randomly 
rotate the directions per pixel
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GTAO introduces the missing cosine factor, removes the attenuation function, and add a fast 
approximation of multi bounce

GTAO - Ground Truth-based Ambient Occlusion

cosine factor
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Add multiple bounces by fitting a cubic polynomial per albedo

GTAO - Ground Truth-based Ambient Occlusion
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Ray-Tracing Ambient Occlusion

• Casting rays from each screen pixel using RTT hardware
• 1 spp(sample per-pixel) works well for far-field occlusion 
• With 2-4 spp, can recover detailed occlusion in contact region
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Fog Everything
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Depth Fog

Linear fog: 
factor = (end-z)/(end-start)

Exp fog:
factor = exp(- density*z)

Exp Squared fog:
factor = exp(- (density*z)^2)

Linear Exp Exp Squared



Modern Game Engine - Theory and Practice

Height Fog
• Height Fog integration along view diretion

• Fog color after transmission
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Voxel-based Volumetric Fog



Anti-aliasing
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Reason of Aliasing

Texture Sampling

• Aliasing is a series of rendering artifact which is caused by high-frequency signal vs. 
insufficient sampling of limited rendering resolutions

Edge Sampling Specular Sampling
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Anti-aliasing

• The general strategy of screen-based antialiasing schemes is using a sampling pattern to 
get more samples and then weight and sum samples to produce a pixel color
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Super-sample AA (SSAA) and Multi-sample AA (MSAA)

• Super sampling is the most straightforward solution to solve AA

SSAA, 4x rendering resolution
4x z-buffer and framebuffer 

4x rasterization and pixel shading

MSAA, only multi-sampling necessary pixels
4x z-buffer and framebuffer 

4x rasterization and 1+ x pixel shading
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FXAA (Fast Approximate Anti-aliasing) 
Anti-aliasing based on 1x rendered image

• Find edge pixels by luminance
• Compute offset for every edge pixel
• Re-sample edge pixel by its offset to blend with a neighbor

M: Luminance of middle pixel
(L = 0.299 * R + 0.587 * G + 0.114 * B)

#define _MinThreshold 0.05

float MaxLuma = max(N, E, W, S, M); 
float MinLuma = min(N, E, W, S, M); 
float Contrast =  MaxLuma - MinLuma; 
if(Contrast >= _MinThreshold) 
...
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Compute Offset Direction

Horizontal = abs(1*0.25+1*1-2*0.1)
      +abs(2*0.15+2*1-4*0.2)
      +abs(1*0.35+1*1-2*0.3) = 3.3

Vertical = abs(1*0.25+1*0.35-2*0.15)
 +abs(2*0.1+2*0.3-4*0.2)
 +abs(1*1+1*1-2*1)            = 0.3

3.3 > 0.3
Direction is horizontal

abs(1 - 0.2) > 
abs(0.15 - 0.2)
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Edge Searching Algorithm
• Find aliasing edge that the pixel is in

• Record constrast luminance and average 
luminance of current pixel and offset pixel

• Search along the 2 perpendicular direction 
and calculate the average luminance

• Until abs(             -           ) > 0.25
              abs(             -           ) > 0.25
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Calculate Blend Coefficient

targetP is the nearer edge end of CurrentP

if((       -               ) * (         -             ) > 0)
    magnitude = 0;
else
    magnitude = abs(0.5 - dst / edgeLength);

• Compute blender coefficient
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Blend Nearby Pixels
• Compute blender coefficient

PixelNewColor = Texture(CurrentP_UV + offset_direction * offset_magnitude )
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FXAA Result
Origin FXAA
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TAA (Temporal Anti-aliasing) 
Utilize spatial-temporal filtering methods to improve AA stability in motion 

history N-1

input frame N
(jittered) 

reproject with 
motion vector

history 
rectification

neighborhood
color 

boundingbox

blend history N

output
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TAA (Temporal Anti-aliasing) 

Motion Vector Blend Ratio Blend Result
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TAA On/Off
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But, the real magic in Post-process...
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Post-process
Post-process in 3D Graphics refers to any algorithm that will be applied to the 
final image. It can be done for stylistic reasons (color correction, contrast, etc.) 
or for realistic reasons (tone mapping, depth of field, etc.)

Bloom Color GradingTone Mapping



Bloom Effect
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What is Bloom

Airy Disk

• The physical basis of bloom is that, in the 
real world, lenses can never focus 
perfectly

• Even a perfect lens will convolve the 
incoming image with an Airy disk

https://en.wikipedia.org/wiki/Airy_disk
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Detect Bright Area by Threshold

Threshold

Find Luminance (Y) apply the standard 
coefficients for sRGB:
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Gaussian Blur

Gaussian distribution A classic gaussian 
kernel

5*5(25) samples per pixel

Linearly separable
5+5(10) samples per pixel

Blur
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Pyramid Guassian Blur
Down

Down
Down

Blur
Up

+

=
Blur
Up

+

=
Blur
Up

+

=

We can't do all that filtering at high resolution, so we need 
a way to downsample and upsample the image
Need a weight coefficient to tweak final effect



Modern Game Engine - Theory and Practice

Bloom Composite





Tone Mapping
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Tone Mapping

• No way to directly display HDR image in a SDR device
• The purpose of the Tone Mapping function is to map the wide range of high dynamic 

range (HDR) colors into standard dynamic range (SDR) that a display can output
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Tone Mapping Curve

Get a filmic look without making 
renders dirty
Give images proper contrast and 
nicely roll off any pixels over 1
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ACES

• Academy Color Encoding System
• Primarily for Film & Animation
• Interesting paradigms and transformations

• The useful bits
• Applying Color Grading in HDR is good
• The idea of a fixed pipeline up to the final OTD 

transforms stage is good
• Separates artistic intent from the mechanics of 

supporting different devices
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HDR and SDR Pipeline
• Visual consistency between HDR / SDR
• Similar SDR results to previous SDR color pipeline
• High quality
• High performance 
• Minimal disruption to art teams

• Simple transition from current color pipeline
• Minimal additional overhead for mastering HDR and SDR
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Tone Mapping Curve Comparison



Color Grading
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Lookup Table (LUT)

• LUT is used to remap the input 
color values of source pixels to 
new output values based on data 
contained within the LUT

• A LUT can be considered as a kind 
of color preset that can be applied 
to image or footage
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LUT 3D or 2D

3D 2D Slices

Sliced by Blue Axis
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Artist Friendly Tools
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Color grading is the most cost-effective feature of game rendering



Rendering Pipeline
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One Equation for Everything



Modern Game Engine - Theory and Practice

What We Learned about Rendering (1/4)

Rendering objects with meshes, texture and shaders Culling
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What We Learned about Rendering (2/4)

Lighting, Shadow and Global Illumination PBR Materials
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What We Learned about Rendering (3/4)

Terrain Sky and Cloud
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What We Learned about Rendering (4/4)

Bloom Color GradingTone Mapping

Ambient Occlusion Fog Anti-aliasing
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Rendering Pipeline

• Rendering pipeline is the management order of all rendering operation execution and 
resource allocation

ShadingShadowPass

drawCall

drawCall

skybox

Post-process
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Forward Rendering
for n meshes
     for m lights
         color += shading(mesh, light)
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Sort and Render Transparent after Opaque Objects

Transparent Order Render from far to near
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Forward Rendering

Heavy Rain 2010Just Cause 1 2006
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Rendering with Many Lights
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Deferred Rendering

Pass 1

Pass 2

Pass 1: Rendering G-Buffer

Pass 2: Deferred Shading
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Deferred Rendering

Scene with Many Lights

Pros

• Lighting is only computed for visible fragments

• The data from the G-Buffer can be used for post-

processing

Cons

• High memory and bandwidth cost

• Not supporting transparent object

• Not friendly to MSAA

G-Buffer Size:1920*1080, 32bit*1920*1080*4 = 63MB
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Pilot Engine Deferred Rendering
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Tile-based Rendering
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Light Culling by Tiles

Light List in a Screen Tile
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Depth Range Optimization
• Get Min/Max depth per tile from Pre-z pass
• Test depth bounds for each light
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Tile-based Deferred Rendering

Battlefield 4 Ryse
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Forward+ (Tile-based Forward) Rendering

DIRT GRID

• Depth prepass (prevent overdraw / provide tile depth bounds)
• Tiled light culling (output: light list per tile)
• Shading per object (PS: Iterate through light list calculated in light culling)
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Cluster-based Rendering

Doom 2016
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Visibility Buffer
G-Buffer V-Buffer



Real Rendering Pipeline
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Challenges

• Complex parallel work needs to synchronize with complex resource dependency
• Large amount of transient resource whose lifetime is shorter than one frame
• Complex resource state management
• Exploit newly exposed GPU features without extensive user low level knowledge
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Frame Graph
A Directed Acyclic Graph (DAG) of pass and 
resource dependency in a frame, not a real 
visual graph
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Render to Monitor
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Screen Tearing
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Screen Tearing

In most games your GPU frame rate will be highly volatile 
When new GPU frame updates in the middle of last screen frame, screen tearing occurrs
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V-Sync Technology
Synchronizing buffer swaps with the Vertical refresh is called V-sync
V-Sync can be used to prevent tearing but framerates are reduced, the mouse is lagging & stuttering 
ruins gameplay
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Variable Refresh Rate
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Homework 2
• You are supposed to...

• Implement ColorGrading shader code
• Generate own style ColorGrading result
• Add a new post-process pass that you want (advanced)
• Write a report document that contains screenshots of 

your results

• Download at
• Course-site:
     https://games104.boomingtech.com/sc/course-list

• Github: 
https://github.com/BoomingTech/Pilot/tree/games104/homewor
k02-rendering

https://games104.boomingtech.com/sc/course-list
https://github.com/BoomingTech/Pilot/tree/games104/homework02-rendering
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Pilot Engine V0.0.3 Releasing – April 26
New Features
• Deferred shading pipeline
• Configurable global rendering resource
• Motor system with accelerations
• Character-following camera blending

Bugfixes 
• Fixed image layout transition in “pick” pass
• Fixed overlapped button and cursor twinkling

Optimizations
• Optimized display of rotation as Euler angles
• Optimized AMD and NVIDIA graphic device race when initializing 

Vulkan
• Optimized editor camera controlling

Contributors
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Pilot Engine Learning

• The first version of the engine architecture 
document will be uploaded to Github Wiki 
and official website on April 30

• Videos of Pilot Engine source code 
walkthrough will be released in the near 
future 
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Labor Day Holiday Arrangement

• Lecture 08 on May 2 will be postponed to May 9

• All subsequent classes will be postponed



Q&A
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Lecture 07 Contributor

• 一将  

• 光哥

• 炯哥

• 玉林

• 小老弟

• 建辉

• 爵爷

• Jason

• 坤哥

• BOOK

• MANDY

• 婷姐

• 沛楠

• Leon

• 虎哥

• Shine

• 晨晨

• Judy

• QIUU

• C佬

• 阿乐

• 阿熊

• CC

• 大喷



Enjoy ;)
Coding

Course Wechat 

Please follow us for 
further information
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Please note that all videos and images and other media  
are cited from the Internet for demonstration only.


