
WANG XI GAMES 104 2022

The Challenges and Fun of Rendering the Beautiful Mother Nature

Modern Game Engine - Theory and Practice

Rendering on Game Engine

Lecture 06

Modern Game Engine - Theory and Practice

Red Dead Redemption

Modern Game Engine - Theory and Practice

Too Complex for Rendering Using Traditional Mesh + Material

Real-World Landscape

• Huge geospatial scale

• Rich geomorphological
l Vegetation

l Rivers

l Undulating peaks

l Alpine snow

l ……

Modern Game Engine - Theory and Practice

Environment Components in Games

缺植
被

Sky and Cloud

Vegetation

Terrain

Modern Game Engine - Theory and Practice

Terrain Rendering

Modern Game Engine - Theory and Practice

Microsoft Flight Simulator

Modern Game Engine - Theory and Practice

No Man’s Sky

Modern Game Engine - Theory and Practice

• Satellite image and google earth

Simple Idea - Heightfield

Height Map Contour Map

Modern Game Engine - Theory and Practice

Expressive Heightfield Terrains

Modern Game Engine - Theory and Practice

Render Terrain with Heightfield

Mesh Grids Material

1km × 1km map, sample distance 1m
Need 2 * 1,000 * 1,000 = 2,000,000 triangles

Modern Game Engine - Theory and Practice

Vast Open World

Modern Game Engine - Theory and Practice

Adaptive Mesh Tessellation

Modern Game Engine - Theory and Practice

Two Golden Rules of Optimization
View-dependent error bound

• Distance to camera and FoV

• Error compare to ground truth (pre-computation)

Modern Game Engine - Theory and Practice

Triangle-Based Subdivision

Modern Game Engine - Theory and Practice

Subdivision and T-Junctions

T-Junction

Continuously partitioning triangles and their
children based on the idea of binary trees

Modern Game Engine - Theory and Practice

54×54 km terrain on GPU using Unity game engine

SIGGRAPH 2021: Experimenting With Concurrent
Binary Trees for Large-scale Terrain Rendering

Triangle-Based Subdivision on GPU

Modern Game Engine - Theory and Practice

Pros
• Easy to construct

• Easy management of data under geospatial,

including objects culling and data streaming

Cons
• Mesh subdivision is not as flexible as triangle mesh

• The grid level of the leaf nodes needs to be

consistent

QuadTree-Based Subdivision

Modern Game Engine - Theory and Practice

Original Terrain Highest Resolution Grid

Lowest Resolution Grid Terrain Quad Tree

Modern Game Engine - Theory and Practice

Solving T-Junctions among Quad Grids

Source

Stitching Step 1

Mesh LoD Stitching

Modern Game Engine - Theory and Practice

加一页现代游戏关于
chunked方法实现的效果图 farcry5，仅示

意要替换

Terrain Rendering with Quad Grid
Far Cry V

Modern Game Engine - Theory and Practice

Triangulated Irregular Network (TIN)

Modern Game Engine - Theory and Practice

Density Variants in TIN

Modern Game Engine - Theory and Practice

Triangulated Irregular Network vs. Adpative Tessellation
Pros

• Easy in runtime rendeirng

• Less triangls in certain terrain types

Cons
• Requires certain pre-processing steps

• Poor reusability

Clip-Map LOD (170,000 Triangles)

GDC2021 Boots on the Ground: The Terrain of Call of Duty

Mesh LOD (50,000 Triangles)

Modern Game Engine - Theory and Practice

GPU-Based Tessellation

Modern Game Engine - Theory and Practice

Hardware Tessellation

Hull-Shader Stage - transforms basis functions
from base mesh to surface patches

Tessellator Stage - produces a semi-regular
tessellation pattern for each patch

Domain-Shader Stage - a programmable shader
stage that calculates the vertex position that
corresponds to each domain sample

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Mesh Shader Pipeline
• Amplification Shader Stage - decides how

many Mesh shader groups to run and passes

data to those groups

• Mesh Shader Stage - produces a semi-regular

tessellation pattern for each patch, and outputs

comprise vertices and primitives

Modern Game Engine - Theory and Practice

Real-Time Deformable Terrain

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Non-Heightfield Terrain

Modern Game Engine - Theory and Practice

Dig a Hole in Terrain

Output 1 NaN
Vertex Position

Kill a Quad

Modern Game Engine - Theory and Practice

Crazy Idea - Volumetric Representation

In 3D computer graphics, a voxel represents a value on a regular grid in three-dimensional space. As pixels in a 2D

bitmap, voxels themselves do not typically have their position (i.e. coordinates) explicitly encoded with their values

Modern Game Engine - Theory and Practice

Marching Cubes

MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE CONSTRUCTION ALGORITHM'; Computer Graphics, Volume 21, Number 4, July 1987

Modern Game Engine - Theory and Practice

Transition Cell Lookup Table

Transvoxel Algorithm

• Constructs the triangulation of transition cells to form

a lookup table, and uses this lookup table to do the

triangulation of LOD voxel cubes

Lengyel, Eric. (2010). Voxel-Based Terrain for Real-Time Virtual Simulations.

Modern Game Engine - Theory and Practice

Make AAA as Flexible as Minecraft??? :-)

Modern Game Engine - Theory and Practice

Paint Terrain Materials

Modern Game Engine - Theory and Practice

11 Biomes 140 Materials
Ghost Recon Wildlands

Modern Game Engine - Theory and Practice

Terrain Materials
Base Color Normal

Material blending result

Material Blend Map
应该是彩色的

Roughness Height

Modern Game Engine - Theory and Practice

Simple Texture Splatting

Smooth but unnatural

Simple Blending

Modern Game Engine - Theory and Practice

Advanced Texture Splatting

float3 blend(float4 texture1, float height1, float4 texture2, float height2)
{
 return height1 > height2 ? texture1.rgb : texture2.rgb;
}

Blending with Height

Height Maps

Height Maps + Alpha Blending

Modern Game Engine - Theory and Practice

Advanced Texture Splatting - Biased

float3 blend(float4 texture1, float height1, float4 texture2, float height2)
{
 float depth = 0.2;
 float ma = max(texture1.a + height1, texture2.a + height2) - depth;
 float b1 = max(texture1.a + height1 - ma, 0);
 float b2 = max(texture2.a + height2 - ma, 0);
 return (texture1.rgb * b1 + texture2.rgb * b2) / (b1 + b2);
}

Height Bias

Links:
https://www.gamedeveloper.com/programming/advanc
ed-terrain-texture-splatting

Modern Game Engine - Theory and Practice

Sampling from Material Texture Array

Material Texture Array

Modern Game Engine - Theory and Practice

Parallax and Displacement Mapping

Parallax mapping Displacement
mapping

Bump mappingColor mapping

Parallax Mapping:
Due to the height of the
surface, the eye sees
point B instead of point
A. It creates a sense of
dimensionality

Modern Game Engine - Theory and Practice

Expensive Material Blending
• Many Texturing - Low performance when

multiple materials are sampled too many times

• Huge Splat Map - We only see a small set of

terrain, but we load splat maps for 100 square km

into video memory

Modern Game Engine - Theory and Practice

Virtual Texture
• Build a virtual indexed texture to represent all

blended terrain materials for whole scene
• Only load materials data of tiles based on view-

depend LOD
• Pre-bake materials blending into tile and store

them into physical textures
Baked Terrain Tile

Modern Game Engine - Theory and Practice

VT Implementation, DirectStorage & DMA

DirectStorage

DMA

CPU based cache management among disk,
main memory and video memory

Modern Game Engine - Theory and Practice

Floating-point Precision Error

IEEE 754 float

IEEE 754 double

Floating-point error caused artifacts while camera and
object in large value (from 1m to 60,000km)

Modern Game Engine - Theory and Practice

Camera-Relative Rendering

• Translates objects by the negated world space

camera position before any other geometric

transformations affect them

• It then sets the world space camera position to 0

and modifies all relevant matrices accordingly

Render a whole galaxy :-)

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Tree Rendering

Tree Rendering LODs

Modern Game Engine - Theory and Practice

Decorator Rendering

Decorator Rendering LODs

Modern Game Engine - Theory and Practice

Road and Decals Rendering

Spline-based Road Editing and
Sculpturing Height Field

Decals

Splatting Road and Decals on Virtual Texture

Modern Game Engine - Theory and Practice

Terrain Editing in Game Engine

Modern Game Engine - Theory and Practice

Procedure Terrain Creation

Modern Game Engine - Theory and Practice

Sky and Atmosphere

Modern Game Engine - Theory and Practice

Red Dead Redemption 2

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

How to "Paint" Everything in the Sky

Sky

Cloud

Modern Game Engine - Theory and Practice

Atmosphere

Modern Game Engine - Theory and Practice

Photograph

Rendering

Analytic Atmosphere Appearance Modeling

Pros
• Calculation is simple and efficient

Cons
• Limited to ground view

• Atmosphere parameters can’t be

changed freely

 An Analytic Model for Full Spectral Sky-dome Radiance, ACM Trans 2012

Modern Game Engine - Theory and Practice

Participating Media
• Volume filled with particles

• Interact differently with light depending on its composition

Atmosphere

Cloud

Modern Game Engine - Theory and Practice

Radiative Transfer Equation (RTE)

How Light Interacts with Participating Media Particles?

Absorption Coefficient Scattering Coefficient

Extinction Coefficient

Phase Function

In-Scattering Function

Modern Game Engine - Theory and Practice

Volume Rendering Equation (VRE)

Camera

Emission

Transmittance: the net reduction factor from absorption
and out-scattering

 The net increase factor from in-scattering

Modern Game Engine - Theory and Practice

Sun Light • Air Molecules
 N2 O2 O3

• Aerosols
 Dust Sand

Real Physics in Atmosphere

Modern Game Engine - Theory and Practice

• Rayleigh Scattering

Scattering of light by particles that have a diameter

much smaller than the wavelength of the radiation

(eg. air molecules）

• Mie scattering
Scattering of light by particles that have a diameter

similar to or larger than the wavelength of the incident

light (eg. aerosols)

Scattering Types

molecules

aerosols

Rayleigh Scattering

Mie scattering

Modern Game Engine - Theory and Practice

• Certain directions receive more light than others

 front-back symmetry

• Shorter wavelengths (eg. blue) are scattered more

 strongly than longer wavelengths (eg. red)

Rayleigh Scattering

Rayleigh Scattering Distribution

Modern Game Engine - Theory and Practice

Scattering Coefficient Phase Function

Rayleigh Scattering Equation

Rayleigh Scattering Distribution

Wavelength

GeometryDensity

Modern Game Engine - Theory and Practice

Why Sky is Blue

Modern Game Engine - Theory and Practice

• Scatter light of all wavelength nearly equally

• Exhibit a strong forward directivity

Mie Scattering

Mie Scattering Distribution

Modern Game Engine - Theory and Practice

• g > 0, scatters more forward

 Mie scattering

• g < 0, scatters more backward

• g = 0, Rayleigh scattering

Phase Function

Mie Scattering Equation

Scattering Coefficient

Geometry Parameter

Mie Scattering Distribution

Modern Game Engine - Theory and Practice

• Exhibit a strong forward directivity (halo

effects around sun)

• Scatter light of all wavelength nearly
equally (fog effects）

Halo of SunFog

Mie Scattering in Daily Life

Modern Game Engine - Theory and Practice

• Ozone (O3)

 Absorb strongly at longer wavelengths to filter out the reds, oranges, yellows

• Methane (CH4)

 Well-known for absorbing red light

Variant Air Molecules Absorption

Neptune covered by CH4Blue sky near zenith on sunset

Modern Game Engine - Theory and Practice

Single Scattering vs. Multi Scattering

Modern Game Engine - Theory and Practice

Single Scattering vs. Multi Scattering

Single Scattering Multi Scattering

Modern Game Engine - Theory and Practice

• Ray marching is a popular method to integrate function along a path

• We use ray marching to calculate final radiance for a given point by single scattering

• The integrated radiance is usually stored in look-up tables (LUT)

Ray Marching

...

Each step makes some
calculations (eg. lighting) Sum all steps'

results together Single Scattering Integration

Modern Game Engine - Theory and Practice

Precomputed Atmospheric Scattering

https://ebruneton.github.io/precomputed_atmospheric_scattering/

Transmittance LUT

Atmosphere
Bottom

Atmosphere
Top

ViewZenithCosAngle

H
ei

gh
t

Modern Game Engine - Theory and Practice

Precomputed Atmospheric Scattering

Single Scattering LUT
Store 4D table in 3D Texture Array

Vi
ew

Ze
ni

th
C

os
An

gl
e

Heig
ht

ViewSunCosAngle x 8, SunZenithCosAngle x 32

Modern Game Engine - Theory and Practice

Transmittance LUT

Precomputed Atmospheric Scattering
Multi Scattering LUT

Single Scattering LUT

Scattered Light
Integration

Multi Scattering LUTN-order Scattering

Modern Game Engine - Theory and Practice

Precomputed Atmospheric Scattering

Modern Game Engine - Theory and Practice

Challenges of Precomputed Atmospheric Scattering

A Scalable and Production Ready Sky and Atmosphere Rendering Technique
https://diglib.eg.org/bitstream/handle/10.1111/cgf14050/v39i4pp013-022.pdf

• Precomputation Cost

• Multi-scattering iterations are very expensive

• Hard to generate atmosphere LUT on low-end devices (ie. mobile)

• Authoring and Dynamic Adjustment of Environments
• Artist can't change scattering coefficients on the fly

• Hard to render effects like weather from sunny to rain fog, space travel among planets

• Runtime Rendering Cost

• Expensive per-pixel multi high dimensional texture sampling for transmittance LUT and multi

scattering LUT (always need to down-sample for efficiency)

Modern Game Engine - Theory and Practice

Production Friendly Quick Sky and Atmosphere Rendering
Simplify Multi-scattering Assumption
• Scattering events with order greater or equal to 2 are

executed using an isotropic phase function

• All points within the neighborhood of the position we

currently shade receive the same amount of

second order scattered light

• Visibility is ignored

Multi Scattering LUT

Modern Game Engine - Theory and Practice

Production Friendly Quick Sky and Atmosphere Rendering

LightViewHorizonAngle

Vi
ew

Ze
ni

th
An

gl
e

Vi
ew

Ze
ni

th
C

os
An

gl
e

Heig
ht

ViewSunCosAngle x 8, SunZenithCosAngle x 32

Fixed view position and sun position to remove 2 dimensions out of LUT

Modern Game Engine - Theory and Practice

Production Friendly Quick Sky and Atmosphere Rendering

• Generated a 3D LUT to evaluate aerial-perspective effects by ray marching

Distance to
Camera

Vi
ew

 Z
en

ith
 A

ng
le

Light View Horizon Angle

3D Aerial-Perspective LUT

Modern Game Engine - Theory and Practice

Good Balance of Performance and Effect

• Scalable from mobile to high-end PCs

Performance for each step of method, as measured
on PC (NV 1080) and a mobile device (iPhone 6s)

Modern Game Engine - Theory and Practice

Video of Atmosphere Demo

Modern Game Engine - Theory and Practice

"Paint" Cloud

Modern Game Engine - Theory and Practice

Cloud Type

Modern Game Engine - Theory and Practice

Mesh-Based Cloud Modeling

Pros
• High quality

Cons
• Overall expensive
• Do not support dynamic weather

Modern Game Engine - Theory and Practice

Billboard Cloud

Pros
• Efficient

Cons
• Limited visual effect
• Limited cloud type

Modern Game Engine - Theory and Practice

Volumetric Cloud Modeling

Pros
• Realistic cloud shapes
• Large scale clouds possible
• Dynamic weather supported
• Dynamic volumetric lighting and shadowing

Cons
• Efficiency must be considered

Modern Game Engine - Theory and Practice

Weather Texture

Modern Game Engine - Theory and Practice

Grid Definition

Dot Product

Interpolation

Noise Functions

Perlin Noise Worley Noise Voronoi

https://en.wikipedia.org/wiki/Perlin_noise https://thebookofshaders.com/12/

Modern Game Engine - Theory and Practice

Cloud Density Model
Basic Distribution Basic Shape

RGBA channels
R Perlin-Worley

GBA layered Worley

More Details
3 low resolution Worley

Modern Game Engine - Theory and Practice

Rendering Cloud by Ray Marching

Step 1 : Cast ray for each screen pixel Step 2 : Big step marching until hitting cloud

Step 3 : Dense step sampling inside cloud Step 4 : Gather radiance scattered from sun

Modern Game Engine - Theory and Practice

Video of Volume Cloud

Modern Game Engine - Theory and Practice

Pilot Engine V0.0.2 Released - 12 April
Bugfixes
• Fixed the transform of rigid bodies of objects

• Fixed crashes when reloading current level

• Fixed transforming objects by dragging axes of Transform – Component in Component Details Panel

• Fixed specular calculation when roughness is 0

• Fixed compilation and crashes on M1 macOS

Optimizations
• Optimized the display performance of the file tree in File Content Panel

• Optimized the coloring of axes of Transform Component in Component Details Panel

• Prefer independent graphics card when initializing Vulkan

Contributors

Modern Game Engine - Theory and Practice

Optimization of Course Arrangement

Take 1 week break every 3 lectures from lecture08
• The course team needs a break to better prepare for the course

• Leave more time for students to digest knowledge and catch up with homework

Q&A

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Lecture 06 Contributor

• 一将

• 光哥

• 炯哥

• 玉林

• 小老弟

• 建辉

• 爵爷

• Jason

• 砚书

• BOOK

• MANDY

• 俗哥

• 金大壮

• Leon

• 梨叔

• Shine

• 邓导

• Judy

• QIUU

• C佬

• 阿乐

• 阿熊

• CC

• 大喷

Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)
Coding

Course Wechat

